首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal and structural behaviors of anhydrous goat's milk fat (AGMF) have been determined as a function of temperature using a powerful technique allowing simultaneous time-resolved synchrotron X-ray diffraction as a function of temperature (XRDT) and high-sensivity differential scanning calorimetry (DSC) measurements from the same sample. This first paper, aiming at the characterization of the physical properties of AGMF, we examine crystalline organizations made by triacylglycerols (TG) upon slow cooling at /dT/dt/ = 0.1 degrees C/min from 45 to -20 degrees C in order to approach system equilibrium. Three overlapped exotherms were observed by DSC upon cooling, whereas four endotherms were found on the subsequent heating at 1 degrees C/min. XRDT evidenced that AGMF crystallizes under four different lamellar structures, two with double-chain length packings at 41.5 and 38.2 angstroms and two with triple-chain lengths of 72 and 64.7 angstroms stacking. Simultaneous wide-angle XRDT has shown that initial nucleation mainly occurs in a packing of beta' type from approximately 26 degrees C, although some transient presence of alpha was detected. The absence of polymorphic transition, on heating, until final melting (approximately 40 degrees C) demonstrated the relative stability of the structures formed.  相似文献   

2.
The interaction of resveratrol (trans-3,5,4'-trihydroxystilbene) and two of its derivatives (3,5,4'-tri-O-methylresveratrol and 3,5,4'-tri-O-triacetylresveratrol) with biomembrane models, represented by dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV), has been studied by differential scanning calorimetry (DSC). The analysis of MLV prepared in the presence of increasing molar fraction of such compounds has been carried out to reveal their maximum interaction with biomembrane models. The results from these studies have been compared with kinetic experiments results, in order to detect the entity and rate of compound absorption by the biomembrane models. The findings indicate that the compounds affected the thermotropic properties of DMPC MLV by suppressing the pretransition peak and broadening the DMPC main phase transition calorimetric peak and shifting it to lower temperatures. The order of effectiveness found was resveratrol > trimethylresveratrol > triacetylresveratrol. The kinetic experiments reveal that in an aqueous medium the absorption of resveratrol by the biomembranes models is allowed, whereas the absorption of its derivatives is hindered; in contrast when a lipophilic medium is employed, all three compounds are easily absorbed.  相似文献   

3.
Summary Changes in the physicochemical properties of three kinds of litter (Prunus serotina leaves, Carpinus betulus leaves, and Pinus sylvestris needles) were analyzed by differential scanning calorimetry and differential thermogravimetry after decomposition for 12 to 27 months under field conditions. As expected, holocellulose was always decomposed to a larger extent than the corresponding lignin components, leading to an enrichment of lignin in the residue. These lignins were more or less modified depending on the plant species. Moreover, the results suggest that energy-rich crystalline cellulose accumulates during decomposition at the expense of easier degradable amorphous cellulose and hemicelluloses. The quotient Q, from the corresponding calorimetry and thermogravimetry values, was introduced to estimate the specific energy content as a measure for the decomposition of litter components.Dedicated to the late Prof. Dr. W. Kühnelt  相似文献   

4.
To verify the paradigm that organic matter (OM) quality (q) decreases with decomposition it is necessary to define q in strictly chemical, operational terms. We suggest defining q as the result of a balance between the energy stored in OM and the external supply of energy needed to release it. We apply this concept to the study of litter decomposition in four European pine forests: boreal, cool Atlantic, Mediterranean and warm Atlantic. Intact litter cores were taken and transported to the laboratory, where needles were sorted into six classes that summarize the main facts of the decomposition: melanisation, fragmentation and perforation by mesofauna. Each class was analyzed by both differential thermogravimetry and differential scanning calorimetry to obtain its spectra of weight loss and energy release.In the non-decomposed needles, two peaks of weight loss and energy release appear: a labile peak at about 350 °C, and a recalcitrant peak at about 450 °C. During decomposition, both peaks (but especially the recalcitrant one) move to lower temperatures, and their shapes change from well defined to flattened. In Mediterranean litters, a third peak appears at about 500 °C, due probably to refractory products of neoformation. There is a continuous increase in the energy stored in the remaining litter (in Joules per unit OM): this increase is concentrated in both the most thermolabile fractions (lost at temperatures <350 °C) and the most thermostable ones (>450 °C). With decomposition OM becomes more recalcitrant (i.e., it is lost at higher temperatures), but its stored energy becomes more available (i.e., it is released at lower temperatures). Overall, the energetic benefit/cost ratio increases. Thus, our results to date do not agree with the current paradigm that q decreases with decomposition; rather, they suggest that, at least in the first phases we studied, q is maintained or even increases.  相似文献   

5.
The different interactions of p-hydroxybenzoic acid (1), a simple biophenol (BP) found in olives and their food products, and its substitute analogues, benzoic (2), anisic (3), and toluic (4) acids, with a model membrane represented by dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles (MLV) was studied by differential scanning calorimetry (DSC). The influence of their different lipophilic character on transfer and absorption processes through an aqueous medium into a lipid bilayer was also investigated. DSC experiments allowed monitoring of the interaction of BP with biomembranes by considering the effects exerted on the thermotropic behavior of DMPC multilamellar and unilamellar vesicles at different pHs (4 and 7.4). The examined compounds affect the transition temperature (T(m)) of phospholipid vesicles, causing a shift toward lower values, which is modulated by the molecular fraction entering into the lipid bilayer, as well as by their molecular interaction with the lipids. Kinetic calorimetric measurements were performed on suspensions of blank liposomes immediately after being added to fixed weighed amounts of powdered compounds and after increasing incubation periods at 37 degrees C. T(m) shifts, due to molecular dissolution and transfer of the compounds into the membrane surface occurring during the incubation time, were compared with those determined by a fixed molar fraction of free compounds directly dispersed in the membrane. The results show that the kinetic process, involved in molecular release, transfer through aqueous medium, and uptake by the model membrane surface, is influenced by lipophilicity as well as by pH, acting on the acid solubility and membrane disorder, allowing us to gather useful information on the BP intake process of olive derived foodstuffs.  相似文献   

6.
The influences of ultrafiltration (UF), the intensity of heat treatment (70 degrees C for 5 or 30 min) applied to milk prior to UF processing, and species on the syneresis rate of curd from cow's, ewe's, and goat's milk were analyzed. The influence of the species was significant (P < 0.05) in the syneresis rate. The syneresis rate depended significantly on the intensity of the heat treatment applied before UF and the degree of concentration; these two parameters showed significant (P < 0.05) differences in the syneresis rate depending on the species studied. These results could indicate a possible difference in the structure of the curd formed. The differences in the curd structure could be due to the different relative composition of the retentates of the different species as well as the possible effect of the UF process on the physicochemical composition of milk.  相似文献   

7.
The oxidation of linolenic acid (LNA) and soy lecithin was studied by differential scanning calorimetry (DSC) with linear programmed heating rates (non-isothermal mode). The interpretation of the shape of DSC curves is discussed, and it has been concluded that temperatures of the extrapolated start of heat release are the most reliable data for the rapid estimation of the oxidative stability of lipid materials. The Ozawa-Flynn-Wall method was used to calculate the kinetic parameters of the process: for LNA autoxidation the activation energy, Ea, and pre-exponential factor, Z, are 66 +/- 4 kJ/mol and 1.5 x 10(7) s(-1), respectively, and the autoxidation of lecithin is described by Ea = 98 +/- 6 kJ/mol and Z = 9.1 x 10(10) s(-1). Values of Ea and Z can be applied for calculation of the overall first-order rate constant of autoxidation at various temperatures, k(T). For the two studied lipids the comparison of k(T) values shows the inversion of their oxidative stabilities; that is, below 167 degrees C lecithin is more stable than LNA, k(T)lecithin < k(T)LNA, and above that temperature (termed the isokinetic temperature) k(T)lecithin > k(T)LNA. The calculated inversion of oxidative stabilities can be an explanation of similar observations for other pairs of lipids if the results of accelerated tests measured at temperatures above 100 degrees C are compared with the results obtained at temperatures below 100 degrees C.  相似文献   

8.
The effect of frozen storage (-10 and -30 degrees C), formaldehyde, and fish oil on collagen, isolated from cod muscle, was investigated. Salt- and acid-soluble collagen fractions as well as insoluble collagen indicated changes in solubility on frozen storage. Differential scanning calorimetry (DSC) showed a highly cooperative transition at 28.2 degrees C for isolated collagen. Changes in the thermodynamic properties of collagen were observed on frozen storage at -10 degrees C compared with the control at -30 degrees C because of changes in structure. In the presence of formaldehyde, there were no changes in the DSC collagen transition; however, in the presence of fish oil there was an increase in enthalpy and an extra peak was observed at 44.6 degrees C, indicating collagen-fish oil interaction. Structural changes resulted in a decrease in the solubility of collagen in salt and acid solution. FT-Raman spectra obtained for collagen at -10 degrees C and -30 degrees C confirmed the alteration of the conformation of collagen not only at -10 degrees C but also in the presence of formaldehyde and fish oil.  相似文献   

9.
Differential scanning calorimetry (DSC) was used to study the thermal behavior of authentic honeys (Lavandula, Robinia, and Fir honeys) and industrial sugar syrups. Thermal or thermochemical parameters such as the glass transition temperature (Tg), enthalpies of fusion (DeltaH(fus)), and heat capacity variation (DeltaC(p)) were measured. The syrups and honeys showed significant differences in thermal phenomena, as well as in their amplitude and position on the temperature scale. Results showed good reproducibility of the method for all samples studied. The effect of adulteration of honey with different amounts of syrup (5, 10, 20, 40, and 60%) was investigated. A linear relationship was found between the percentage of added syrup and the glass transition temperature. A similar relationship was obtained from the enthalpy of fusion results in the temperature range of 40-90 degrees C. Under applied conditions, the effects of adulteration of honeys by industrial syrups appeared to be detectable from a level as low as 5%.  相似文献   

10.
Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) were used to study changes in the conformation of globulin from common buckwheat (Fagopyrum esculentum Moench) (BWG) under various environmental conditions. The IR spectrum of the native BWG showed several major bands from 1691 to 1636 cm(-1) in the amide I' region, and the secondary structure composition was estimated as 34.5% beta-sheets, 20.0% beta-turns, 16.0% alpha-helices, and 14.4% random coils. Highly acidic and alkaline pH conditions induced decreases in beta-sheet and alpha-helical contents, as well as in denaturation temperature (Td) and enthalpy of denaturation (DeltaH), as shown in the DSC thermograms. Addition of chaotropic salts (1.0 M) caused progressive decreases in ordered structures and thermal stability following the lyotropic series of anions. The presence of several protein structure perturbants also led to changes in IR band intensities and DSC thermal stabilities, suggesting protein unfolding. Intermolecular antiparallel beta-sheet (1620 and 1681 cm(-1)) band intensities started to increase when BWG was heated to 90 degrees C, suggesting the initiation of protein aggregation. Increasing the time of the preheat treatment (at 100 degrees C) caused progressive increases in Td and pronounced decreases in DeltaH, suggesting partial denaturation and reassociation of protein molecules.  相似文献   

11.
Goat milk is characterized by a very low heat stability that could be attributed, in part, to the covalent interaction between whey proteins and casein micelles. However, the formation of such a complex in goat milk has never been evidenced. This study was designed to assess whether heat-induced covalent interaction occurs between purified casein micelles and beta-lactoglobulin. We used a multiple approach of ultracentrifugation of heated mixture, chromatographic fractionation of resuspended pellets, sequential enzyme digestion of disulfide-linked oligomers, and identification of disulfide-linked peptides by on-line liquid chromatography-electrospray ionization mass spectrometry (LC-ESI/MS), and tandem MS. We identified three different types of disulfide links: (1) expected intermolecular bridges between beta-Lg molecules; (2) disulfide bond involving two kappa-casein molecules; and (3) a disulfide bond between two peptides, one from beta-Lg and the other from kappa-casein. The involved sites in this last bond were Cys(160) of beta-Lg and Cys(88) of kappa-casein. Although the identified heterolinkage is possibly only one of several different types, the results of this study constitute the first direct evidence of the formation of a covalent complex between casein micelles and beta-lactoglobulin derived from goat milk.  相似文献   

12.
《Geoderma》2007,137(3-4):378-387
The burrowing activity of earthworms creates a distinct area around the resulting macropores called the drilosphere, which controls various soil processes. Density and microstructure of the drilosphere were studied and compared with those of the surrounding soil. For this purpose soil cores were separately inoculated with the vertically burrowing earthworm species Lumbricus terrestris. After 70 days some cores were compacted by a hydraulic press (250 kPa) and all cores were analysed by means of X-ray computed tomography. Mean Hounsfield Units were measured for concentric ROI cylinders (ROI = region of interest) of increasing diameters located around vertical macropore sections within selected horizontal slices. Based on these data we estimated stepwise the distribution of bulk density from the inner boundary of the drilosphere to the surrounding soil. In uncompacted soil the bulk density of the drilosphere was increased by 11% over that of the surrounding soil. In cross section, drilosphere and burrow form a concentric area with a total radius up to 2.2 cm. Soil compaction increased the dry bulk density of soil and decreased the diameter of earthworm burrows. Moreover, we found a less dense part of soil between the dense drilosphere and the remaining soil of the compacted core. Scanning electron microscopy revealed that the coarse silt particles of the bulk soil were rearranged to a parallel orientation due to compaction whereas the microstructure of the drilosphere remained unchanged. In any case, the drilosphere revealed a very homogeneous and dense arrangement of silt particles.  相似文献   

13.
The thermal behavior of fresh tuna muscle, rehydrated freeze-dried tuna muscle, and tuna sarcoplasmic protein fraction was studied by three types of differential scanning calorimetry (DSC): conventional DSC, alternating DSC, and sensitive micro-DSC. The relationship between glass transition temperature, T(g), and water content was established. Only a low-temperature glass transition was detected for fresh tuna and freeze-dried tuna rehydrated to high water contents, whereas for sarcoplasmic protein fraction both a low-temperature and an apparent high-temperature glass transition were detected for samples of high water content. Construction of the supplemented state diagrams for whole tuna muscle and for tuna sarcoplasmic protein fraction confirmed the low-temperature transition to be glass transition of the maximally freeze-dehydrated phase. The apparent upper transition of sarcoplasmic protein fraction was shown not to be a glass transition but rather to originate from the onset of melting of ice, and the temperature of this event should be denoted T(m)'. The glass transition temperature and the concentration of the maximally freeze dehydrated tuna muscle are -74 degrees C and 79% (w/w), respectively.  相似文献   

14.
Functional properties of whey protein concentrates (WPC) are primarily dependent on the degree of denaturation of beta-lactoglobulin (beta-LG), the major globular whey protein. Irreversible modifications in the tertiary structure and association state of beta-LG after heat treatment were studied by partition in aqueous two-phase systems and fluorescence quenching. Partitioning of preheated beta-LG in two-phase systems containing 5% (w/w) poly(ethylene glycol) and 7% (w/w) dextran, between pH 6.0 and7.0, are appropriately related with the intensity of heat treatment. An increase in the partition coefficient of beta-LG was observed with increasing temperature of heat treatment. On the other hand, fluorescence quenching of beta-LG by acrylamide was used to study the conformational flexibility of the protein at pH values between 4. 0 and 9.0. The values of bimolecular quenching rate constant (k(q)) obtained showed that beta-LG appears to be more flexible at high pH values, while at low pH the protein assumes a more compact form. The efficiency of acrylamide quenching on preheated beta-LG was substantially more pronounced than for the untreated protein. This difference can be ascribed to the presence of unfolded monomers and aggregates of denatured molecules formed after heat treatment, whose tryptophanyl residues are more exposed to the solvent. In conclusion, the results suggest that partition studies in aqueous two-phase systems and fluorescence quenching are very useful tools to detect changes in conformation and aggregation of beta-LG induced by heat treatment.  相似文献   

15.
Fluorescence and differential scanning calorimetry (DSC) were used to study changes in the conformation of red kidney bean (Phaseolus vulgaris L.) protein isolate (KPI) under various environmental conditions. The possible relationship between fluorescence data and DSC characteristics was also discussed. Tryptophan fluorescence and fluorescence quenching analyses indicated that the tryptophan residues in KPI, exhibiting multiple fluorophores with different accessibilities to acrylamide, are largely buried in the hydrophobic core of the protein matrix, with positively charged side chains close to at least some of the tryptophan residues. GdnHCl was more effective than urea and SDS in denaturing KPI. SDS and urea caused variable red shifts, 2-5 nm, in the emission λ(max), suggesting the conformational compactness of KPI. The result was further supported by DSC characteristics that a discernible endothermic peak was still detected up to 8 M urea or 30 mM SDS, also evidenced by the absence of any shift in emission maximum (λ(max)) at different pH conditions. Marked decreases in T(d) and enthalpy (ΔH) were observed at extreme alkaline and/or acidic pH, whereas the presence of NaCl resulted in higher T(d) and ΔH, along with greater cooperativity of the transition. Decreases in T(d) and ΔH were observed in the presence of protein perturbants, for example, SDS and urea, indicating partial denaturation and decrease in thermal stability. Dithiothreitol and N-ethylmaleimide have a slight effect on the thermal properties of KPI. Interestingly, a close linear relationship between the T(d) (or ΔH) and the λ(max) was observed for KPI in the presence of 0-6 M urea.  相似文献   

16.
Hydration of freeze-dried chicken breast meat was followed in the water activity range of aw=0.12-0.99 by a multianalytical approach comprising of sorption isotherm, differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR). The amount of frozen water and the shape of the T2-relaxogram were evaluated at each water content by DSC and NMR, respectively. Data revealed an agreement between sorption isotherm and DSC experiments about the onset of bulk water (aw=0.83-0.86), and NMR detected mobile water starting at aw=0.75. The origin of the short-transverse relaxation time part of the meat NMR signal was also reinvestigated through deuteration experiments and proposed to arise from protons belonging to plasticized matrix structures. It is proved both by D2O experiments and by gravimetry that the extra protons not contributing to the water content in the NMR experiments are about 6.4% of the total proton NMR CPMG signal of meat.  相似文献   

17.
Intrinsic fluorescence (IF), surface hydrophobicity (S(o)), electrophoresis, amino acid analysis, circular dichroism (CD), and differential scanning calorimetry (DSC) were used to study folded and unfolded soluble proteins from Amaranthus hypochondriacus (A. h.) and soybean (S). Globulin (Glo) and albumin subfractions (Alb-1 and Alb-2) were extracted from A. h. and S and denatured with urea. Electrophoretic and functional properties indicated a significant correlation between soluble protein fractions from soybean and amaranth. The protein fractions shared some common electrophoretic bands as well as a similar amino acid composition. The larger percent of denaturation in protein fractions, which is associated with enthalpy and the number of ruptured hydrogen bonds, corresponds to disappearance of alpha-helix. The obtained results provided evidence of differences in their secondary and tertiary structures. The most stable was Glo followed by the Alb-2 fraction. Predicted functional changes in model protein systems such as pseudocereals and legumes in response to processing conditions may be encountered in pharmaceutical and food industries. These plants can be a substitute for some cereals.  相似文献   

18.
Interactions of proline-rich proteins (PRPs) with flavan-3-ols was studied using poly(L-proline) as a model protein by means of isothermal titration calorimetry (ITC). Several parameters were varied: (i) the galloylation and B-ring trihydroxylation of the flavan-3-ols (catechin, epicatechin, epicatechin gallate, and epigallocatechin gallate) and (ii) the degree of polymerization (monomers were compared to a mixture of oligomers with average degree of polymerization of 3.85). Large differences were observed between the flavan-3-ol monomers: no enthalpy change was measured when catechin and epicatechin were titrated by poly(L-proline), whereas thermodynamic parameters were determined in the case of galloylated monomers and mixture of oligomers. Stoichiometry ranged from 1 oligomer bound for each 12 proline units to 1 galloylated monomer for each 8 or 10 proline units. Association constants were in the range of 10(4)-10(5) M(-1), indicating a relatively high affinity of galloylated flavanols toward poly(L-proline), and the coexistence of both enthalpy- and entropy-driven phenomena was suggested. Finally, the binding of grape seed tannins to proteins was shown to be a cooperative process.  相似文献   

19.
20.
Fe-rich concretions commonly occur in Greek soils with alternating drying and waterlogging periods. This study was conducted to characterize the iron oxides in Fe-rich concretions from the upper solum of an Alfisol with seasonal perched water table by the combination of selective dissolution and X-ray diffraction (XRD) techniques. The results showed that more than 75% of the total iron (Fet) was associated with the crystalline and the amorphous Fe oxides, indicating a strong accumulation of free iron oxides (Fed) in concretions. Amorphous iron compounds (Feo) was present at high concentrations and fluctuated with profile depth. The active Fe ratio (Feo/Fed) values that ranged from 0.35 to 0.41 reflected an association of poorly crystalline goethite with some ferrihydrite. The XRD data showed that the Fe-rich concretions consisted of quartz, feldspars, illite and gypsum. The mineralogy of iron oxides in concretions was determined by comparison of XRD patterns for dithionite-citrate-bicarbonate (DCB) treated (deferrated) and untreated (non-deferrated) samples. Poorly crystalline goethite as demonstrated by broad lines in the diffraction patterns and ferrihydrite were the iron oxides detected in the concretions. This mineral assemblage appears to be related to the pedoenvironmental conditions in which the concretions were formed and indicates that the mechanisms governing the formation of crystalline Fe oxides from ferrihydrite are retarded by the presence of crystallization inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号