首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A wafer-scale graphene circuit was demonstrated in which all circuit components, including graphene field-effect transistor and inductors, were monolithically integrated on a single silicon carbide wafer. The integrated circuit operates as a broadband radio-frequency mixer at frequencies up to 10 gigahertz. These graphene circuits exhibit outstanding thermal stability with little reduction in performance (less than 1 decibel) between 300 and 400 kelvin. These results open up possibilities of achieving practical graphene technology with more complex functionality and performance.  相似文献   

2.
Chung K  Lee CH  Yi GC 《Science (New York, N.Y.)》2010,330(6004):655-657
We fabricated transferable gallium nitride (GaN) thin films and light-emitting diodes (LEDs) using graphene-layered sheets. Heteroepitaxial nitride thin films were grown on graphene layers by using high-density, vertically aligned zinc oxide nanowalls as an intermediate layer. The nitride thin films on graphene layers show excellent optical characteristics at room temperature, such as stimulated emission. As one of the examples for device applications, LEDs that emit strong electroluminescence emission under room illumination were fabricated. Furthermore, the layered structure of a graphene substrate made it possible to easily transfer GaN thin films and GaN-based LEDs onto foreign substrates such as glass, metal, or plastic.  相似文献   

3.
Permeation through nanometer pores is important in the design of materials for filtration and separation techniques and because of unusual fundamental behavior arising at the molecular scale. We found that submicrometer-thick membranes made from graphene oxide can be completely impermeable to liquids, vapors, and gases, including helium, but these membranes allow unimpeded permeation of water (H(2)O permeates through the membranes at least 10(10) times faster than He). We attribute these seemingly incompatible observations to a low-friction flow of a monolayer of water through two-dimensional capillaries formed by closely spaced graphene sheets. Diffusion of other molecules is blocked by reversible narrowing of the capillaries in low humidity and/or by their clogging with water.  相似文献   

4.
Nanoelectromechanical systems were fabricated from single- and multilayer graphene sheets by mechanically exfoliating thin sheets from graphite over trenches in silicon oxide. Vibrations with fundamental resonant frequencies in the megahertz range are actuated either optically or electrically and detected optically by interferometry. We demonstrate room-temperature charge sensitivities down to 8 x 10(-4) electrons per root hertz. The thinnest resonator consists of a single suspended layer of atoms and represents the ultimate limit of two-dimensional nanoelectromechanical systems.  相似文献   

5.
Yang H  Heo J  Park S  Song HJ  Seo DH  Byun KE  Kim P  Yoo I  Chung HJ  Kim K 《Science (New York, N.Y.)》2012,336(6085):1140-1143
Despite several years of research into graphene electronics, sufficient on/off current ratio I(on)/I(off) in graphene transistors with conventional device structures has been impossible to obtain. We report on a three-terminal active device, a graphene variable-barrier "barristor" (GB), in which the key is an atomically sharp interface between graphene and hydrogenated silicon. Large modulation on the device current (on/off ratio of 10(5)) is achieved by adjusting the gate voltage to control the graphene-silicon Schottky barrier. The absence of Fermi-level pinning at the interface allows the barrier's height to be tuned to 0.2 electron volt by adjusting graphene's work function, which results in large shifts of diode threshold voltages. Fabricating GBs on respective 150-mm wafers and combining complementary p- and n-type GBs, we demonstrate inverter and half-adder logic circuits.  相似文献   

6.
We determined the electromechanical properties of a suspended graphene layer by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements, as well as computational simulations of the graphene-membrane mechanics and morphology. A graphene membrane was continuously deformed by controlling the competing interactions with a STM probe tip and the electric field from a back-gate electrode. The probe tip-induced deformation created a localized strain field in the graphene lattice. STS measurements on the deformed suspended graphene display an electronic spectrum completely different from that of graphene supported by a substrate. The spectrum indicates the formation of a spatially confined quantum dot, in agreement with recent predictions of confinement by strain-induced pseudomagnetic fields.  相似文献   

7.
The nematic phase transition in electronic liquids, driven by Coulomb interactions, represents a new class of strongly correlated electronic ground states. We studied suspended samples of bilayer graphene, annealed so that it achieves very high quasiparticle mobilities (greater than 10(6) square centimers per volt-second). Bilayer graphene is a truly two-dimensional material with complex chiral electronic spectra, and the high quality of our samples allowed us to observe strong spectrum reconstructions and electron topological transitions that can be attributed to a nematic phase transition and a decrease in rotational symmetry. These results are especially surprising because no interaction effects have been observed so far in bilayer graphene in the absence of an applied magnetic field.  相似文献   

8.
刘坤平  李惠茗  何钢  颜军  郭晓强  赵琦  苟小军 《安徽农业科学》2013,41(10):4238-4241,4349
[目的]研究了芦丁在石墨烯修饰电极上的电化学行为及其测定方法。[方法]采用化学还原法,制备了氨基功能化的石墨烯,并用于构建灵敏的芦丁电化学传感器。采用循环伏安法和差分脉冲法,研究芦丁在该修饰电极上的电化学行为,并用差分脉冲法对芦丁进行检测。[结果]高比表面积和高导电性的石墨烯使芦丁在该传感器上表现出增强的电化学活性。电极反应动力学研究表明,芦丁在该修饰电极表面经历了一个受表面控制的准可逆过程。在最优试验条件下,芦丁的还原峰电流与其浓度在2×10-8~1×10-5 mol/L范围内呈良好的线性关系,检出限(S/N=3)为1.0×10-8mol/L。[结论]该修饰电极具有良好的选择性和稳定性,可实现实际样品中芦丁含量的灵敏检测。  相似文献   

9.
【目的】探究碳化石墨烯对朝天椒产量、品质及其根区土壤养分、酶活性、重金属含量和微生物群落结构的影响,为石墨烯碳肥在辣椒高产高效优质栽培上的应用提供科学依据。【方法】以鲜用型朝天椒为研究对象,在基础施肥(CK)的基础上分别在定植后的朝天椒根区淋施0.07%石墨烯水溶液(A8处理)、0.35%石墨烯水溶液(B8处理)和 1...  相似文献   

10.
Graphene produced by exfoliation has not been able to provide an ideal graphene with performance comparable to that predicted by theory, and structural and/or electronic defects have been proposed as one cause of reduced performance. We report the observation of domains on exfoliated monolayer graphene that differ by their friction characteristics, as measured by friction force microscopy. Angle-dependent scanning revealed friction anisotropy with a periodicity of 180° on each friction domain. The friction anisotropy decreased as the applied load increased. We propose that the domains arise from ripple distortions that give rise to anisotropic friction in each domain as a result of the anisotropic puckering of the graphene.  相似文献   

11.
An obstacle to the use of graphene as an alternative to silicon electronics has been the absence of an energy gap between its conduction and valence bands, which makes it difficult to achieve low power dissipation in the OFF state. We report a bipolar field-effect transistor that exploits the low density of states in graphene and its one-atomic-layer thickness. Our prototype devices are graphene heterostructures with atomically thin boron nitride or molybdenum disulfide acting as a vertical transport barrier. They exhibit room-temperature switching ratios of ≈50 and ≈10,000, respectively. Such devices have potential for high-frequency operation and large-scale integration.  相似文献   

12.
In monolayer graphene, substitutional doping during growth can be used to alter its electronic properties. We used scanning tunneling microscopy, Raman spectroscopy, x-ray spectroscopy, and first principles calculations to characterize individual nitrogen dopants in monolayer graphene grown on a copper substrate. Individual nitrogen atoms were incorporated as graphitic dopants, and a fraction of the extra electron on each nitrogen atom was delocalized into the graphene lattice. The electronic structure of nitrogen-doped graphene was strongly modified only within a few lattice spacings of the site of the nitrogen dopant. These findings show that chemical doping is a promising route to achieving high-quality graphene films with a large carrier concentration.  相似文献   

13.
The patterning of graphene is useful in fabricating electronic devices, but existing methods do not allow control of the number of layers of graphene that are removed. We show that sputter-coating graphene and graphene-like materials with zinc and dissolving the latter with dilute acid removes one graphene layer and leaves the lower layers intact. The method works with the four different types of graphene and graphene-like materials: graphene oxide, chemically converted graphene, chemical vapor-deposited graphene, and micromechanically cleaved ("clear-tape") graphene. On the basis of our data, the top graphene layer is damaged by the sputtering process, and the acid treatment removes the damaged layer of carbon. When used with predesigned zinc patterns, this method can be viewed as lithography that etches the sample with single-atomic-layer resolution.  相似文献   

14.
Field emission of electrons from individually mounted carbon nanotubes has been found to be dramatically enhanced when the nanotube tips are opened by laser evaporation or oxidative etching. Emission currents of 0.1 to 1 microampere were readily obtained at room temperature with bias voltages of less than 80 volts. The emitting structures are concluded to be linear chains of carbon atoms, Cn, (n = 10 to 100), pulled out from the open edges of the graphene wall layers of the nanotube by the force of the electric field, in a process that resembles unraveling the sleeve of a sweater.  相似文献   

15.
The movement of dislocations in a crystal is the key mechanism for plastic deformation in all materials. Studies of dislocations have focused on three-dimensional materials, and there is little experimental evidence regarding the dynamics of dislocations and their impact at the atomic level on the lattice structure of graphene. We studied the dynamics of dislocation pairs in graphene, recorded with single-atom sensitivity. We examined stepwise dislocation movement along the zig-zag lattice direction mediated either by a single bond rotation or through the loss of two carbon atoms. The strain fields were determined, showing how dislocations deform graphene by elongation and compression of C-C bonds, shear, and lattice rotations.  相似文献   

16.
石墨烯基碱金属原子有效电荷变化规律   总被引:1,自引:0,他引:1       下载免费PDF全文
应用S.Yu.Davydov提出的石墨烯态密度模型,求出吸附在石墨烯上的碱金属原子的有效电荷数,研究了吸附原子的电子能级、能级移动量、有效电荷数随金属原子元素的变化以及有效电荷数随电子能量的变化规律.结果表明:(1)被吸附的碱金属原子的电子能级和能级移动量随原子序数的变化为非线性,在Li,Na,K,Rb,Se,Fr这6种碱金属原子中,以Na原子的值为最小,其原因在于碱金属原子的电离能以及石墨烯与吸附原子的相互作用能均随原子序数的增大而减小;(2)石墨烯能带电子和吸附原子的局域态电子对有效电荷的贡献以及总有效电荷数,均随原子序数的增加而非线性地减小.其中,能带电子对有效电荷的贡献与电子能量无关,而吸附原子局域态电子的贡献与总有效电荷数和电子能量都有关,且随电子能量的变化有明显的局域特点,最可几电子能量随原子序数的增大而增大.  相似文献   

17.
氧化石墨烯作为一种新型碳质纳米材料,具有生物相容性好、化学性质稳定、分散性高、比表面积大、丰富的含氧官能团等优良特性,是纳米材料领域研究的热点,在航空航天、医药、新能源和生物传感器等领域应用广阔。近年来,氧化石墨烯在现代农业技术领域也得到了广泛的关注和应用,为现代农业的可持续性发展带来新的机遇和挑战。综述了国内外关于氧化石墨烯在农业领域的应用研究进展,包括对农作物生长发育(种子萌发、枝叶生长、根系生长)、提高农作物抗逆性能、产量和品质、开发具有缓控释功能的氧化石墨烯基肥料,实现提高肥料利用率和降低环境风险的功效;作为农药载体及增效剂用于农作物病虫害防控,达到缓控释放、高效利用的目的 ; 探讨氧化石墨烯作为吸附剂或降解细菌固定剂来修复受污染土壤的效果,为污染土壤修复提供新技术、新方法;介绍了氧化石墨烯作为高灵敏度的湿度传感器,可实现土壤墒情实时监测和无损监测植物生长状况;最后探讨了氧化石墨烯在农业领域的未来研究方向。目前,氧化石墨烯技术在农业中的应用仍处于初期阶段,尚不具备大规模商业化应用的条件。随着氧化石墨烯在农业领域的研究深入和应用范围的扩大,有望实现农业生产方式和技术的变革、实现资源高效利用、降低农业生产带来的环境危害,为推进绿色低碳农业的发展助力。  相似文献   

18.
Electrons in graphene behave like Dirac fermions, permitting phenomena from high-energy physics to be studied in a solid-state setting. A key question is whether or not these fermions are critically influenced by Coulomb correlations. We performed inelastic x-ray scattering experiments on crystals of graphite and applied reconstruction algorithms to image the dynamical screening of charge in a freestanding graphene sheet. We found that the polarizability of the Dirac fermions is amplified by excitonic effects, improving screening of interactions between quasiparticles. The strength of interactions is characterized by a scale-dependent, effective fine-structure constant, α(g)* (k,ω), the value of which approaches 0.14 ± 0.092 ~ 1/7 at low energy and large distances. This value is substantially smaller than the nominal α(g) = 2.2, suggesting that, on the whole, graphene is more weakly interacting than previously believed.  相似文献   

19.
Graphene produced by chemical vapor deposition (CVD) is polycrystalline, and scattering of charge carriers at grain boundaries (GBs) could degrade its performance relative to exfoliated, single-crystal graphene. However, the electrical properties of GBs have so far been addressed indirectly without simultaneous knowledge of their locations and structures. We present electrical measurements on individual GBs in CVD graphene first imaged by transmission electron microscopy. Unexpectedly, the electrical conductance improves by one order of magnitude for GBs with better interdomain connectivity. Our study suggests that polycrystalline graphene with good stitching may allow for uniformly high electrical performance rivaling that of exfoliated samples, which we demonstrate using optimized growth conditions and device geometry.  相似文献   

20.
We report on the intrinsic optoelectronic response of high-quality dual-gated monolayer and bilayer graphene p-n junction devices. Local laser excitation (of wavelength 850 nanometers) at the p-n interface leads to striking six-fold photovoltage patterns as a function of bottom- and top-gate voltages. These patterns, together with the measured spatial and density dependence of the photoresponse, provide strong evidence that nonlocal hot carrier transport, rather than the photovoltaic effect, dominates the intrinsic photoresponse in graphene. This regime, which features a long-lived and spatially distributed hot carrier population, may offer a path to hot carrier-assisted thermoelectric technologies for efficient solar energy harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号