首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of deep placement (supplied at 20 cm depth from soil surface below plants) of 100 kg N ha?1 of N fertilizers, urea, coated urea or calcium cyanamide (lime nitrogen) on the growth, nitrogen fixation activity, nitrogen absorption rate and seed yield of soybean (Glycine max L. Merr.) plants were examined by comparing them with control plots without deep placement of N fertilizer in sandy dune field. In addition, three different inoculation methods of bradyrhizobia were used for each N treatment: (1) transplantation of 10‐day‐old seedling in a paper pot with vermiculite inoculated with Bradyrhizobium japonicum USDA110, (2) direct transplantation of inoculated 10‐day‐old seedlings, and (3) transplantation of 10‐day‐old seedlings in a non‐inoculated paper pot. The deep placement of N fertilizers, especially calcium cyanamide and coated urea, markedly increased the growth and total N accumulation in shoot, roots and nodules, which resulted in an increase in seed yield. Daily N2 fixation activity and N absorption rate were estimated by relative abundance of ureide‐N analysed from the concentration of N constituents (ureide‐N, amide‐N and nitrate‐N) in root bleeding xylem sap and increase in total N accumulation in whole plants at R1, R3, R5 and R7 stages. The total amount of N2 fixation was about 50 % higher in the plants with calcium cyanamide and coated urea deep placements compared with control plants. Deep placement of slow release fertilizers kept nodule dry weight higher in the maturing stage of seed, possibly through abundant supply of photoassimilate to the nodules by supporting leaf area and activity until late reproductive stages. The results indicate that deep placement of calcium cyanamide or coated urea enhances N2 fixation activity, which ultimately increases the seed yield. The promotive effect was observed with the seedlings transplanted in paper pot with inoculum of bradyrhizobia within any treatments, although nodulation by indigenous rhizobia was observed in the plants transplanted with non‐inoculated paper pot.  相似文献   

2.
When grassland is ploughed and reseeded this results in an increased mineralization of organically bound nitrogen (N) in the soil. Greater amounts of nitrate in autumn are at risk of being leached during the winter half of the year. In two field experiments, nitrate leaching was measured over 2 years after reseeding of a 9‐year‐old grassland field in spring on a sandy soil in northwest Germany. During the experiments, major management factors that can influence the intensity of mineralization were varied: Type of fertilizer, mineral N fertilizer or organic manure, and the level of fertilization, 0, 160 or 320 kg N ha−1 a−1, before renewal of the grassland, and level of fertilization, 0, 160 or 320 kg N ha−1 a−1 in mineral form, after renewal of the grassland. The type of fertilization as well as the level of N fertilization before ploughing had no significant effect on the soil mineral nitrogen content (SMN) in autumn and N leaching in the year following the grassland renewal. N fertilizer level after sward renovation had a significant effect on the nitrate leaching losses in the two following years. Fertilization at a rate of 320 kg N ha−1 resulted in leaching losses of 7 and 61 kg N ha−1 in the first and second subsequent years, respectively. At fertilizer rates of 0 and 160 kg N ha−1 leaching losses were lower than 5 kg N ha−1. It is concluded that for mown grassland no restriction of the N fertilization before the renovation of the sward is necessary to reduce the nitrate leaching risk as long as the amount of N fertilized does not exceed the N‐uptake by the crop. Similarly, the N fertilization after the sward renewal does not bear a particular leaching risk.  相似文献   

3.
Summary Genetic variation in fixed nitrogen (N) yield of red clover (Trifolium pratense L.) strains and cultivars was investigated using the 15N isotope dilution method under three regimes of N fertilization: 0.5, 30, and 60 N (kg N ha–1 per cut). The yield of fixed N per cut (the mean of eight cuts over 2 production years) varied among the strains (progenies of crosses between inbred parents) from 148 to 443 mg per plant at 0.5 N, from 76 to 324 mg at 30 N, and from 69 to 300 mg at 60 N. There were significant and consistent strain differences in the percentage of clover N derived from the atmosphere (% Ndfa). However, %Ndfa was positively correlated with dry mass yield. Consequently, ranking of the strains according to fixed N yield reflected that of dry mass yield. There were only minor strain × N fertilizer interactions, suggesting that selection for enhanced N fixation can be carried out at a single rate of fertilizer N. For a selected pair of strains, the difference in yield of fixed N was confirmed in an Italian ryegrass-red clover mixture, both without and with the addition of N fertilizer (50 kg N ha–1 per cut). Results with 7-week-old seedling plants in a growth chamber, although obtained in the presence of mineral N and with the isotope dilution method, did not adequately predict field performance. It is concluded that selection for dry matter or total N yield is likely to result in an enhanced yield of fixed N at any level of mineral N availability.Abbreviations % Ndfa percentage of clover nitrogen derived from the atmosphere by symbiotic nitrogen fixation - S2-F1-n progeny of pair cross between inbred parents obtained after two generations of selfing  相似文献   

4.
不同施肥量对稻田一年生黑麦草产量及氮磷钾吸收的影响   总被引:2,自引:0,他引:2  
通过大田试验,研究不同施肥量对黑麦草产量及养分吸收的影响,找到南方稻田种植黑麦草的最佳基肥肥料配比。氮、磷、钾肥施用量分别设4个水平,试验设11个处理。测定每次刈割黑麦草的干草产量和氮、磷、钾养分含量,计算氮磷钾的养分吸收量。结果表明:花岗岩发育的水稻土上种植黑麦草,施肥尤其是氮肥能增加黑麦草的株高和产量;基施磷肥和追施氮肥能促进黑麦草的再生。增加氮、磷肥施用量,黑麦草氮、磷含量也增加,钾肥施用达到一定量后,再增加施用量,黑麦草钾含量变化不大。增加氮、磷、钾肥的施用能提高黑麦草氮、磷、钾的吸收量。南方花岗岩发育的水稻土上种植黑麦草的N、P、K肥基肥最佳施用量(折纯)分别为:210.0 kg/hm2 N、108.0 kg/hm2 P2O5、117.5 kg/hm2 K2O。  相似文献   

5.
~(15)N示踪的水稻氮肥利用率细分   总被引:4,自引:0,他引:4  
以粳稻武运粳23和超级杂交籼稻Y两优2号为供试品种,应用15N示踪方法研究不同时期施肥对水稻不同阶段氮肥利用率的影响,以确定不同时期施肥的最佳阶段氮肥利用率。结果表明,基肥在基肥阶段(移栽后的8 d左右)的吸收利用较低,2012年水稻基肥氮(15N)吸收量不到5 kg hm–2,2013年最大为7.5 kg hm–2,回收利用率在1.5%~11.5%之间;基肥主要是在蘖肥阶段(分蘖肥与穗肥之间)被吸收,其回收利用率在6.6%~24.9%之间,平均为15.6%;穗肥阶段(穗肥后到成熟)基本不再吸收基肥。基肥氮的总体恢复利用效率不高,在9.1%~22.8%之间,品种及氮肥运筹对基肥氮的总体恢复利用效率影响不显著。蘖肥主要在蘖肥阶段发生作用,施穗肥后水稻基本不再吸收蘖肥。蘖肥的总体恢复吸收利用率和基肥相当,在17%~34%之间,Y两优2号高于武运粳23。穗肥的回收效率最高,在54.0%~82.1%之间,武运粳23低于Y两优2号。水稻在整个生育期的总体氮肥恢复效率随氮肥用量的增加而下降,变化在32%~64%之间。水稻一生中吸收积累的氮素中,基肥的贡献占4.13%~10.59%(平均6.92%),蘖肥占3.98%~11.75%(平均7.58%),穗肥占13.32%~37.56%(平均26.02%),土壤的贡献在45.71%~70.83%(平均59.91%)之间。基蘖肥用量越大,其损失也越大,总体氮肥利用率也越低。研究结果证明,在水稻氮肥管理中必须考虑水稻各阶段对不同时期施肥的吸收利用情况,从而提高水稻氮肥利用效率,保证产量的同时减少不必要的损失。  相似文献   

6.
In a two year factorial field trial the influence of slight shading (daylight reduced by 27 %), row spacing (15 and 30 cm respectively) and N fertilization (60 and 120 kg* ha?1*cut?1 respectively) on yield and nutritive value of Lolium multiflorum (Lam.) was investigated. Three cuts were taken in the seeding year and four in the full harvest year. Shading reduced DM yield by 4 % at low and 16 % at high level of N fertilization. Higher amount of N fertilizer increased yield by 28 % without and 12 % with shading. Row spacing was of minor importance; on average wider spacing decreased yield by 9 %. Increasing N fertilization and shading had the same effects on nutritive value: crude protein (CP), nitrate content and protein/energy ratio (P/E) went up, whereas energy value (NEL) went down. Compared to the effects of shading or N fertilization, the influence of sward density on nutritive value was small. The effect of shading and high fertilization on nutritive value was similar in both years. However for vegetatively grown forage in the seeding year shading caused P/E values and nitrate contents too high for an adequate ruminant feeding which was already evident at low level of N fertilization; also increased supply of N fertilizer without shading deteriorated the nutritive value. On the other hand forage of the full harvest year (at reproductive stages) showed too high P/E values only in shaded and highly fertilized plots. Therefore N fertilization ought to be limited at periods when the grass only grows vegetatively and/or light intensity is low, like e.g. in autumn. None of the experimental treatments had any marked effect on the fibre content of the forage (ADF) in the seeding year; in the full harvest year, however, when plants grew reproductively, shading as well as higher N fertilization increased ADF content. There was no significant correlation between ADF and NEL for vegetatively grown plants but a close relation for plants which were at reproductive stages.  相似文献   

7.
In intensive farming systems, farmers split up and apply the N fertilization to winter cereals and oilseed rape (OSR) at several dates to meet the need of the crop more precisely. Our objective was to determine how prior fertilizer N application as slurry and/or mineral N affects contributions of fertilizer‐ and soil‐derived N to N uptake of barley (1997), oilseed rape (OSR; 1998) and wheat (1999). In addition, residual fertilizer N effects were observed in the subsequent crop. Since autumn 1991, slurry (none, slurry in autumn, in spring, in autumn plus in spring) and mineral N fertilizer (0, 12 and 24 g N m−2) were applied annually. Each year, the treatments were located on the same plots. In 1997–1999, the splitting rates of the mineral N fertilization were labelled with 15N. Non‐fertilizer N uptake was estimated from the total N uptake and the fertilizer 15N uptake. All three crops utilized the splitting rates differently depending on the time of application. Uptake of N derived from the first N rate applied at the beginning of spring growth was poorer than that from the second splitting rate applied at stem elongation (cereals) or third splitting rate applied at ear emergence or bud formation (all three crops). In contrast, N applied later in the growing season was taken up more quickly, resulting in higher fertilizer N‐use efficiency. Mineral N fertilization of 24 g N m−2 increased significantly non‐fertilizer N uptake of barley and OSR at most of the sampling dates during the growing season. In cereals, slurry changed the contribution of non‐fertilizer N to the grain N content only if applied in spring, while OSR utilized more autumn slurry N. In OSR and wheat, only small residual effects occurred. The results indicate that 7 years of varying N fertilization did not change the contribution of soil N to crop N uptake.  相似文献   

8.
The response to N fertilization of a short-duration pigeonpea genotype, ICPL 87, was studied in the field to assess the scope for genetically improving symbiotic N2 fixation by pigeonpea. The field study was undertaken during 1985, 1986 and 1987 growing seasons on Vertisol and Alfisol at ICRISAT Center (peninsular India), Inceptisol at Gwalior (central India) and Entisol at Hisar (northern India) in as non-limiting environmental conditions as possible. Nitrogen fertilizer was applied to the soil at various growth stages to determine when N becomes most limiting. There was a significant response in grain yield to fertilizer N applied at flowering in Vertisol but not in Alfisol, Inceptisol or Entisol. This suggests that biological N2 fixation by short-duration pigeonpea was not adequate to meet N requirements of the crop grown in Vertisol but that it was probably adequate in the other three soil types. These results are discussed in relation to the nodulation and acetylene reductase activity of pigeonpea and also N mineralization potential of different soils. It can be concluded that there is a need for genetic improvement of N2 fixing ability of short-duration pigeonpea grown on heavy textured soils such as Vertisols.  相似文献   

9.
N2O Emissions from True Meadows Dependent on Location and N Fertilization Agricultural production is thought to be a main anthropogenic emitter of nitrous oxide (N2O), which contributes to global warming and the destruction of the ozone layer. There is still considerable uncertainty about the amount of N2O emission, and the site‐specific parameters that affect N2O emission. From October 1995 until March 1998 experiments were conducted at established field plots (true meadows) at three different sites, i.e. low mountain range (Eifel), lowland (Niederrhein), and moist meadows (Münsterland). Plots were fertilized with calcium ammonium nitrate (CAN) at nitrogen equivalents ranging from 0 to 360 kg N ha–1. N2O fluxes were measured throughout the whole year using the closed‐chamber method. In addition, data on temperature, water‐filled pore space and precipitation were collected. N2O emission rates (mg N2O‐N ha–1 h–1) were highest either after fertilizer application or in winter during frost, depending on the experimental site and N dosage. The annual amount of N losses due to N2O emission was dependent on the experimental site and the type and dosage of fertilizer. Disregarding the 360 kg N ha–1 level of the CAN treatments, the N losses in this experiment were less than 1.5 kg N2O‐N ha–1 yr–1. At low fertilizer dosage there was no reliable correlation between the amount of N that was applied and the amount of N2O that was emitted. However, with high fertilizer levels the N2O emissions increased gradually. Finally, N2O emissions were more influenced by the amount of CAN than by the site.  相似文献   

10.
Crops generally utilize nitrogen (N) from slurries less efficiently than from mineral fertilizers. In order to compare the effects of slurry and mineral N application on yield and residual fertilization effects, a long-term field trial was established in autumn 1994, where pig slurry was applied to oilseed rape (OSR), winter wheat and winter barley at the same application dates as mineral N fertilizer. N amounts ranged from 0 to 240 kg total N ha−1. The same treatment regimes were applied to the same plots in each year. Starting in 2010 (2011), wheat (barley) received no N fertilization in order to allow for testing residual fertilizer effects. Every year seed yield and N offtake by the seeds were determined.Accounting only for ammonia N of pig slurry, similar seed yields in OSR and slightly higher grain yields in wheat and barley compared to mineral N fertilizer were achieved. This indicates that mineralization of organically bounded slurry N compensated gaseous ammonia losses. In plots without N fertilization, OSR showed no yield trends during the experimental period, whereas wheat (barley) yield started to decrease after 10 (13) years without N fertilization. In the highly fertilized treatments, no significant trend in seed yield or N amount required for maximum yield could be detected. In the subsequent unfertilized wheat crop, accumulated slurry effects increased grain yield more than those of mineral N fertilizer. Barley grown in the second year without N supply remained unaffected by the previous slurry N application.  相似文献   

11.
养分专家系统推荐施肥对潮土夏玉米产量及肥料效率的影响   总被引:12,自引:0,他引:12  
为实现潮土区夏玉米科学施肥, 通过2年田间试验研究了玉米养分专家系统推荐施肥对夏玉米产量、收益、养分积累量及肥料利用效率的影响。结果表明, 沙壤质潮土夏玉米施肥两年增产6.55%~39.32%和5.53%~21.19%, 玉米养分专家系统和Agro Services International Inc推荐施肥较农户习惯施肥分别增产4.06%和5.04%, 增收21.90%和27.44%。基于玉米养分专家系统推荐施肥的氮、磷、钾肥农学效率分别为11.46、25.89和9.93 kg kg-1, 氮、磷、钾肥料利用率分别为41.13%、31.48%和50.35%, 化肥偏生产力平均为36.62 kg kg-1。玉米养分专家系统推荐施肥提高了沙壤质潮土区夏玉米叶片叶绿素含量, 促进了氮磷钾的吸收利用, 增加了干物质积累量, 具有增产增收效应, 肥料利用效率较高, 可作为该地区夏玉米推荐施肥方法推广应用。  相似文献   

12.
Little is known about the effect of combined phosphorus and nitrogen (P‐N) fertilization on the N requirement of sunflower (Helianthus annus L.). This study was carried out to evaluate the effects of varying levels of P and N, as well as the interaction P × N, on the N uptake, yield and N apparent utilization efficiency under field conditions. Split‐plot design experiments were conducted in the mid‐western Pampas in Argentina. Four levels of N (0, 46, 92 and 138 kg N ha?1) and three levels of P (0, 12 and 40 kg P ha?1) were applied to two Typic Hapludolls over two growing seasons (1997–98 and 1998–99). N uptake and soil N‐NO3 contents were determined at the V7, R5 and R9 growth stages. The sunflower yield ranged from 2.5 to 5.0 Mg ha?1. The total N requirement was around 45 kg N Mg?1 grain, and this result suggests that it is not necessary to use different N requirements (parameter b) for fertilized crops when a yield response is expected. To achieve a 100 % yield maximum a N supply (soil plus fertilizer) of 181 kg N ha?1 at P40 was needed. However, at P0, the highest yield was about 80 % of the maximum yield with a N supply (soil plus fertilizer) of 164 kg N ha?1. P application increased the apparent use efficiency of the supplied N.  相似文献   

13.
减少化肥配施有机肥对滴灌棉花N、P吸收和产量的影响   总被引:11,自引:2,他引:9  
陶瑞  李锐  谭亮  褚贵新 《棉花学报》2014,26(4):342-349
施用有机肥是作物增产和提升地力的有效途径。本试验在连续定位施肥的第3年,研究了常规单施化肥(CF)和化肥减量20%~40%、配施3000~6000 kg·hm-2不同种类的有机类肥料对棉株干物质质量,产量,氮、磷吸收量,土壤保水性以及养分利用率的影响。结果表明,与单施化肥相比,减化肥配施有机肥各处理的生物量在蕾期、铃期和吐絮期分别增加4.3%~30.0%、16.8%~35.1%和18.5%~38.8%;棉花产量在第3年提高了6.9%~18.5%,其中施用6000 kg·hm-2生物有机肥获得最高产,子棉产量为7578 kg·hm-2。施用有机肥能增加棉株对氮、磷养分的吸收,且显著提高了氮肥利用率(P0.05)以及田间持水量,生物有机肥对磷肥利用率的提高优于普通有机肥。  相似文献   

14.
氮素实时管理对冬小麦产量和氮素利用的影响   总被引:9,自引:0,他引:9  
为实现氮素效率和小麦产量的协同提高,以山东省泰安市和兖州市为试验地点,连续2年在4个田块上进行了基于土壤硝态氮测试的氮素实时管理试验。与农民习惯施肥相比,优化施氮处理提高产量0.87%~10.44%,平均5.82%;而氮肥用量减少38.61%~53.29%,平均46.70%;氮素吸收效率、氮素表观利用率和氮素农学效率分别增加36.67%~85.69%、58.49%~267.69%和34.16%~410.58%;氮肥偏生产力升高74.23%~124.87%;产/投比提高78.50%~112.09%。说明应用土壤硝态氮测试进行小麦氮肥实时实地管理达到了减少氮肥用量,提高氮素利用效率,增加产量和经济效益的目的。  相似文献   

15.
张玉娇  李军  郭正  岳志芳 《作物学报》2015,41(11):1726-1739
为探索不同肥力水平对渭北旱塬连作冬小麦田在长周期免耕/深松轮耕措施下土壤蓄水保墒和作物增产效应的影响,在模拟精度验证基础上,应用Win EPIC模型长周期定量模拟研究了1980–2009年渭北旱塬免耕/深松轮耕连作麦田5个不同施肥水平下(T1,N 75 kg hm–2+P2O5 60 kg hm–2;T2,N 120 kg hm–2+P2O5 90 kg hm–2;T3,N 150 kg hm–2+P2O5 120 kg hm–2;T4,N 180 kg hm–2+P2O5 150 kg hm–2;T5,N 255 kg hm–2+P2O5 90 kg hm–2)冬小麦产量和土壤水分效应。在30年模拟期间,各处理的冬小麦产量、年度耗水量和水分利用效率均呈波动下降趋势,下降幅度表现为T5T4T3T2T1。0~5 m土层土壤有效含水量呈季节性波动降低趋势,且随施肥水平的升高而降低,5个处理的麦田平均干燥化速率依次为每年13.5、17.1、17.4、20.1和23.9 mm。0~1.5 m土层土壤湿度随季节降水波动;各处理在不同深度形成稳定的土壤干层,其中T1在1.5~2.0 m,T2和T3在1.5~3.0 m,T4和T5在1.5~4.0 m。上述结果表明,随着肥力水平的增加,旱作冬小麦产量和耗水量也增加,土壤干层加厚。综合考虑认为,在渭北旱塬免耕/深松轮耕长期连作小麦田适宜的施肥量为纯氮150 kg hm–2+P2O5 120 kg hm–2。  相似文献   

16.
为了探讨氮磷钾肥料配施对甜瓜主要经济性状的影响,采用3因素5水平2次正交旋转组合设计,研究N、P、K配施对甜瓜产量的影响,构建肥料配施的数学模型,并对最优施肥量、单因子效应及互作效应进行分析。结果表明:N与P、N与K、P与K之间存在明显的互作效应,且适宜的施肥配比可以提高甜瓜的产量;当N、P、K配比为2.03:1:3.36,即氮(N)、磷(P2O5)、钾(K2O)用量分别为157.5、77.4、260.38 kg/hm2时,甜瓜的最高产量可达51893.205 kg/hm2。  相似文献   

17.
The faba bean is among the major grain legumes cultivated in Ethiopia and is used extensively as a break crop in the highlands. Although a blanket application of DAP (diammonium phosphate) at the rate of 100 kg · ha?1 has been practised in faba bean production in the country, this was not based on research results. In addition, little information is available on the response of the crop to N and P fertilizers under diverse environmental conditions. Hence, field experiments were carried out at three locations in 1991, seven locations during 1992 and 1993 and at one location in both 1993 and 1995 to determine faba bean response to N and P fertilization. Five levels of N (0, 9, 18, 27 and 36 kg N · ha?1 as urea) in factorial combinations with four levels of P (0, 23, 46 and 69 kg P2O5 · ha?1 as TSP [triple super phosphate]) were studied in a randomized complete block design with four replications in the first year. In the remaining years four levels of N (0, 18, 27 and 36 kg N · ha?1 as urea) in factorial combinations with four levels of P (0, 23, 46 and 92 kg P2O5 · ha?1 as TSP) were used in a randomized complete block design with three and four replications at one and seven locations, respectively. Results indicated that a positive linear response of faba bean seed yield was noted at all locations (except Debre Zeit and Burkitu) to P fertilization, while a significant quadratic response was also found at Holetta. In addition, plant height, above ground biomass and number of pods per plant were positively influenced by P application while the effect of N on these was mostly nonsignificant. Faba bean seed yield response to N was noted at only two out of eight locations; in most cases, nonsignificant and inconsistent seed yield responses to N fertilization were obtained. There was nonsignificant N × P rate interaction. In conclusion, we do not recommend supplemental N application to faba bean at six out of eight locations but we recommend the application of P fertilizer to faba bean at almost all locations (with the exception of Debre Zeit) and for other soils deficient in available P. Further work is recommended on the determination of critical levels for soil-available P, below which P fertilization should be practised for optimum faba bean seed yield.  相似文献   

18.
To identify the best practice for nitrogen (N) fertilization of overwinter processing spinach, two field experiments were carried out in the Foggia plain (Southern Italy), one of the most vocated area for leafy vegetables production. The field trials were aimed to define and suggest the proper fertilizer dose, typology and the right time of application. Experiment 1 evaluated four N fertilizer doses (0, 150, 225, 300 kg ha−1) in a two-year field trial. Experiment 2 was aimed to assess the effect of the split distribution of prilled urea fertilizer in comparison with the application of nitrification inhibitor (DMPP) containing urea fertilizer, broadcasted at sowing.Spinach yield, yield quality (nitrate – NO3 – and carotenoids content), N-use efficiency and risk of soil nitrate (NO3-N) leaching were evaluated. The processing spinach yielded 37.8 and 3.6 t ha−1 of fresh and dry yield, respectively (average of the two experiments). Fresh and dry yield among the fertilizing treatments were similar. Also the β-carotene and the lutein content of spinach leaves (19.5 and 38.1 mg kg−1, respectively) were not affected by the N fertilizer dose. Conversely, the N dose strongly influenced the NO3 content of the leafy vegetable tissues (1286 mg kg−1 on average, 58% lower than the limits imposed by the EC regulation). As expected, the different rainfall pattern influenced both the leaf NO3 content and the risk of soil NO3-N leaching. The results achieved demonstrated that, in order to get a favorable trade-off, among yield, yield quality, N-use efficiency and environmental impact, the processing spinach growers of the Foggia plain area should be encouraged to apply 225 kg N ha−1 as maximum fertilization rate. Also, the split urea fertilizer application appeared as the more effective strategy for N fertilization of overwinter spinach in comparison with the use of the nitrification inhibitor containing urea fertilizer, being the last strategy not able to adequately match the N crop demand.  相似文献   

19.
为分析氮磷钾肥料配施对甜瓜Vc的影响,通过采用3因素5水平二次正交旋转组合设计,研究N、P、K配施对甜瓜果实中Vc含量的影响,构建了肥料配施的数学模型,并对最佳施肥量、单因子效应及互作效应进行分析。结果表明:N与P、N与K、P与K之间存在明显的互作效应,且适宜的施肥配比可以提高果实中Vc的含量。分析认为,当N、P、K配比为,即氮(N)、磷(P2O5)、钾(K2O)用量分别为157.5、77.4、260.38 kg/hm2时,甜瓜果实中Vc的含量可达25.32 mg/100 g。  相似文献   

20.
Field experiments were conducted at Indian Agricultural Research Institute, New Delhi, during 2001–2002 and 2002–2003, to study the effect of inorganic, organic and Azotobacter combined sources of N on cotton (Gossypium hirsutum L.) and their residual effect on succeeding wheat (Triticum aestivum L.) crop. The results indicated considerable increase in yield attributes and mean seed cotton yield (2.33 Mg ha?1) with the combined application of 30 kg N and farmyard manure (FYM) at 12 Mg ha?1 along with Azotobacter (M4). The treatment in cotton that included FYM, especially when fertilizer N was also applied could either improve or maintain the soil fertility status in terms of available N, P and K. Distinct increase in yield attributes and grain yield of wheat was observed with the residual effect of integrated application of 30 kg N ha?1 + FYM at 12 Mg ha?1 + Azotobacter. Direct application of 120 kg N ha?1 resulted 67.4 and 17.7 % increase in mean grain yield of wheat over no N and 60 kg N ha?1, respectively. Integrated application of organic and inorganic fertilizer is therefore, recommended for higher productivity and sustainability of the cotton–wheat system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号