首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
张文英  高雪松  王启 《水土保持通报》2023,43(3):349-356,365
[目的] 研究土地利用碳平衡与人类活动强度间的协同关系,为沱江流域的区域协同碳减排规划及实现中国“碳达峰、碳中和”目标提供参考。[方法] 基于2000—2020年土地利用及社会经济数据,使用碳排放经济贡献系数、碳生态承载系数、人类活动强度指标,耦合协调度模型及回归分析方法,核算了沱江流域土地利用碳排放量并分析了土地利用碳平衡与人类活动强度的时空演变特征及其协同关系。[结果] 研究表明,2000—2020年沱江流域碳排放量增加了5.13×107 t,其中建设用地碳排放量占90%以上;碳吸收量变化不大,主要来自林地,呈现先减后增的趋势;净碳排放增长率呈下降趋势。各区县的土地利用碳平衡协调度均在提升,但70%以上的区域处于失调衰退状态。沱江流域人类活动强度整体处于中等强度水平,空间上从北向南呈现“低—高—低—高”的格局。[结论] 人类活动强度与人均GDP、人均碳排放均存在显著的正相关关系。土地利用碳平衡协调度与人类活动强度的负相关关系随着技术进步与能源利用效率的提高而降低。提高碳汇能力与碳生产力是改善区域土地利用碳平衡协调水平的有效途径。  相似文献   

2.
福建省土地利用变化碳排放时空差异与碳补偿   总被引:1,自引:1,他引:0       下载免费PDF全文
周萍  陈松林  李晶  李晨欣 《水土保持通报》2022,42(3):356-365,372
[目的] 开展土地利用碳排放差异与碳补偿研究,为各地域根据净碳排放量制定低碳发展政策提供依据。[方法] 基于2005—2020年福建省土地利用和能源消费数据,构建碳排放以及碳补偿价值测算模型,计算各市域不同时段的碳排放量以及碳补偿价值。[结果] ①福建省土地利用变化净碳排放呈现出明显的增长趋势,增长速度先快后慢。建设用地为主要碳源,其碳排放量增加3.41×107 t;林地为主要碳汇,其碳吸收量减少近3.00×104 t。②净碳排放量高值区域主要分布在碳排放量高、碳补偿率低的福州市、泉州市和漳州市,净碳排放量低值区域主要分布在碳排放量少、碳补偿率高的南平市,除厦门市外,各市的净碳排放强度与净碳排放量的空间分布相似。③碳补偿价值与各市净碳排放量的空间分布具有高度相似性,高碳补偿区主要是经济发展水平高、净碳排放量大的福州市、泉州市,受偿区主要是经济发展水平低、净碳排放量小的南平市。[结论] 为实现区域协调以及低碳发展,需不断完善碳补偿机制,从低碳层面依靠碳补偿推动区域低碳协调发展。  相似文献   

3.
[目的] 探查粮食主产区土地利用变化规律及其碳效应,为土地利用结构调整及低碳经济发展提供依据。[方法] 基于1980,2000,2020年3期土地利用现状数据,在网格采样法、土地利用动态度模型、碳排放系数法以及空间自相关分析模型支持下,揭示1980年以来洞庭湖流域土地利用变化规律及其碳效应的空间异质性特征。[结果] ①洞庭湖流域土地利用阶段性变化。1980—2000年综合动态度为0.02%,其中动态度最大的是建设用地,未利用地次之。2000—2020年综合动态度增至0.18%,建设用地面积增长加快。②净碳效应表现为碳汇,但由1980年的5.93×107 t下降到2020年2.82×107 t,而由土地利用变化引起的碳效应呈现碳排放变化量大于碳汇变化量特点,并导致净碳排放量增加了6.08×105 t,且空间上净碳排放相对高值区呈“H”型分布特点,低值区逐渐扩张。③洞庭湖流域集水小区净碳排放的空间自相关性特征显著。1980—2000年主要聚集类型为高—高型和低—低型,低—高型分布零散,2000—2020年高—高型分布更加集中连片,低—低型主要在湘江流域北部。[结论] 在洞庭湖流域,应坚持“碳增汇,碳减排”定位,保持林地的碳汇稳定状态,科学引导高碳排放土地的开发利用,并依据空间自相关特点关注不同集水区的碳排放“同化”作用。  相似文献   

4.
[目的] 土地利用变化是影响碳排放和环境质量的重要驱动力之一。研究土地利用碳排放时空格局变化与效应,为制定低碳发展策略提供理论依据。[方法] 基于灰色理论和生态承载系数,利用1980—2020年宁夏回族自治区22个县区土地利用和能源消耗数据,分析了土地利用变化与碳排放强度变化及效应。[结果] ①碳排放变化量与土地利用变化之间具有密切的关联性。其中,建设用地与碳排放的关联度最大,为0.95。②1980—2020年宁夏土地利用类型碳排放量净增加了5.24×107 t,增幅625.43%。建设用地面积以年均4.42%的速率增长,碳排放量增幅达2 385.85%;草地面积减少了2.95×105 hm2,碳汇量减少了5.80×104 t;林地对碳汇的贡献超过75%,且随林地面积的不断增大而增加。③1980—2020年宁夏土地利用碳排放强度以年均0.25 t/hm2的速率增大,中度及以上等级覆盖面积逐渐增大,在空间上形成沿黄城市碳排放强度高于中、南部的分布格局。④宁夏各县区碳排放生态承载系数空间差异明显,碳生态容量表现出北弱南强的分布格局。[结论] 1980—2020年宁夏土地利用碳排放强度逐渐增大,北部沿黄河各县区碳生态容量逐渐减小,中南部县区碳生态容量增大,但减排压力较大。建议优化建设用地空间格局,增加混交林面积,增强森林碳汇能力。  相似文献   

5.
北部湾城市群土地利用碳收支时空分异及碳补偿分区   总被引:1,自引:1,他引:0  
[目的] 分析市域空间尺度对城市群碳收支时空格局演变特征及耦合协调关系,构建碳补偿分区评价体系,为实现碳中和目标提供城市群层面的实施策略参考。[方法] 以北部湾城市群为例,在分析2000,2010,2020年研究区土地利用碳收支时空分异及耦合协调度分析的基础上,结合熵权法和TOPSIS法测算2020年15个城市碳补偿贴近度,构建碳补偿综合评价体系并引入三维魔方单元模型初步构建碳补偿等级进行功能分区研究。[结果] ①2000—2020年北部湾城市群碳收支量呈现整体上升状态,市域尺度主体碳排放区域呈现“核心—外围”结构,主体吸收区域呈现“倒钩”状空间格局。②2000—2020年该区城市群碳源、碳汇在分异格局上,除广西区域呈现西北—东南方向,其余地区均呈现东北—西南为主导的方向,空间分布重心稳定。③2000—2020年城市群内部碳源与碳汇坐标均高于0.5,碳排放与碳吸收水平较高,两者具有较高的耦合协调性。[结论] 北部湾城市群的碳收支存在明显的时空异质性,碳排放与碳吸收耦合协调程度较高。为了进一步探索实现“双碳”目标多元化路径,北部湾城市群未来应多方面考虑区域资源能力、碳排放强度和经济发展条件等,从而健全城市群区域间碳补偿体制。  相似文献   

6.
杜梦晴  杨欣 《水土保持学报》2024,38(1):197-206,219
[目的] 碳补偿机制是实现双碳目标和社会环境公平的重要途经。[方法] 在测算2010—2020年碳收支基础上,建立碳补偿模型核算碳补偿空间转移额度。[结果] (1)研究期间全省碳排放总量年平均递增率为2.51%,除佛山、东莞、清远外其余城市的碳排放均不同程度增加,空间上呈现以广州为中心的"核心-外围"的格局。广东省2010—2020年碳吸收总量呈现缓慢下降趋势,空间格局趋于稳定,总体呈现北高南低的特点。(2)研究期间碳补偿支付区范围变大,面积占比由55.22%扩大至60.49 %,支付区主要分布净碳排放较多的惠州及净碳排放少但碳排放效率低的云浮、阳江等,受偿区主要分为2类,一类是净碳排放量少的河源、汕尾等地;另一类是碳排放多但碳排放效率高的深圳、广州、东莞等。(3)惠州需支付碳补偿额度居于首位,深圳获得碳补偿额度最多,各市跨区域碳补偿额度占区域GDP的比例在0.017%~0.095%波动,跨区域碳补偿具有可操作性。[结论] 为实现广东省区域间的低碳协同发展,未来应建立以政府为主导的区域横向碳补偿制度,并实施以低碳为导向的差异化的低碳优化策略,这对区域协调和低碳发展具有重要的现实意义。  相似文献   

7.
[目的] 基于碳排放和碳吸收双重视角来探究农业碳收支时空差异和碳补偿潜力,为湖南省农业全面绿色转型和协调发展提供理论参考。[方法] 采用探索性空间数据分析、绝对β收敛、参数对比法和GIS空间分析方法,对湖南省县域农业碳收支时空差异、碳补偿率空间相关性及收敛性特征、农业碳补偿潜力区域差异进行实证分析。[结果] 湖南省县域农业碳排量整体呈“以高值区为中心,向外围逐渐降低”的结构且农田土壤碳排量是其主要来源,县域农业碳排强度呈“西南高,东北低”且逐年显著降低;县域农业碳汇量整体呈“东中北部高,西南部低”的空间格局且其农业碳汇能力渐趋增强。稻谷对农业碳汇量贡献最大,农业碳吸收强度显著提升且其空间格局发生明显转变。县域农业碳补偿率表现为净碳源,存在显著的空间正相关性和收敛性且其空间集聚特征和关联特征均较为明显。县域农业碳补偿潜力在空间上呈现显著不平衡特征,中、高碳补偿县域比例达60.66%,表明湖南省县域农业碳补偿率偏低,仍具有很大碳补偿空间。[结论] 应深入强化区域合作,多方共促绿色转型,充分发挥农业碳补偿率热点区辐射带动效应,维持好农业碳补偿能力较强区域优良低碳农业发展情势,重点关注中、高碳补偿潜力区域绿色农业发展趋势,缩减湖南省各县域低碳农业发展差距。  相似文献   

8.
[目的] 分析河北省邯郸市近20 a土地利用格局及碳储量分布,并探讨生态保护政策下未来10 a的土地利用变化趋势,为增加城市碳汇和实现城市可持续发展提供参考依据。[方法] 使用PLUS模型,选取自然、社会驱动因素及生态规划限制因子,分析邯郸市在2000—2020年及自然发展情景和生态保护情景下2030年的土地利用变化规律,并结合InVEST模型,评估邯郸市2000—2030年3期碳储量。[结果] ①邯郸土地利用类型的分布呈现“西部林地,东中部耕地”的总体空间分布特征,耕地和人造地表之间的土地利用转移占总土地利用变化的96.58%; ②邯郸市碳密度空间分布呈现西部高东部低的特点,碳储量总体呈下降趋势,碳损失在2010年突增,耕地的过度侵占是导致邯郸市碳损失的最主要原因; ③与自然发展情景相比,生态保护情景下土地利用变化趋于克制,虽然生态用地的提升潜力一般,但由于人类活动受到限制,避免了生态资源的消耗; ④2020—2030年自然发展情景和生态保护情景下邯郸市碳储量变化分别为减少4.23×106 t和增加2.16×104 t。各区县碳损失风险显著降低,不同区县碳汇潜力差异明显。[结论] 人造地表侵占耕地是导致碳损失的主要原因。生态保护政策干预下,各区县碳损失风险显著降低,不同区县也存在明显差异,碳损失更易发生于东中部平原地区,西南部的太行山东麓县区则具有较强的碳汇潜力,需针对差异化表现灵活布局。  相似文献   

9.
[目的] 研究安徽省芜湖市2011—2021年碳储量时空分布格局,同时探究生态环境因子、地形因子、气象因子和土地利用程度对其固碳能力的影响变化,为芜湖市土地资源管理及绿色农业发展提供参考依据。[方法] 以芜湖市2011,2015,2021年土地利用数据,利用InVEST模型Carbon storage模块定量评估研究碳储量空间分布,探究土地利用程度、地形、气象、土壤侵蚀等因子影响,并根据相关性分析叠加计算碳储量热点区域。[结果] ①近年,芜湖市因土地利用变化碳储量减少了4.14×105 t,呈逐年减少趋势;固碳能力:草地<耕地<林地,林地为5 488.97 t/km2且耕地碳储量高达7.39×106 t。②在自然因素中,用地类型、海拔、坡度及土地利用程度是影响碳储量空间分布主要原因,随海拔、坡度升高而逐级缓慢增加,碳储量整体呈“北低南高”分布情况。③在生态环境因素中,碳储量与土壤保持为显著正相关,相辅相成互为协同关系;相反,与土壤侵蚀互为权衡关系。④南部碳储量呈现“高—高集聚”占18.77%,北部为“低—低集聚”仅为2.73%;碳储量热点区域因资源开发利用影响呈逐年减少趋势,优良区域占11.95%,集中于南部山林地带,局部较弱需重点保护管理优化。[结论] 2011—2021年芜湖市固碳总量逐年减少,固碳速率呈现逐年减弱趋势,固碳能力较稳定。芜湖市北部固碳能力相对较弱,可通过土地管理优化以提升其固碳能力。  相似文献   

10.
[目的]分析山东省烟台市各区县土地利用结构与能源消耗碳排放的关联测度及其变化规律,为合理利用土地资源与低碳城市的建设提供科学建议。[方法]基于烟台市1986—2012年各区县的土地利用结构和能源消耗数据,采用碳排放量计算模型,测算出其能源消耗碳排放总量、碳排放强度和人均碳排放量,并运用灰色关联分析法,测度烟台市各区县土地利用结构与能源消耗碳排放的关联度。[结果]1 1986—2012年烟台市能源消费碳排放总量由3.05×106 t上升到1.494×107 t,增加了3.9倍;2 2012年烟台市各区县土地利用结构与能源消耗碳排放量、碳排放强度之间关联度最高的土地利用类型为园地,与人均碳排放量关联度最高的用地为交通运输用地;3烟台市各区县土地利用结构与能源消耗关联度较高的分别是园地(0.812 8)、城镇村及工矿用地(0.812 0)、水域及水利设施用地(0.805 9);4 1986—2012年烟台市各区县土地利用结构与能源消耗碳排放关联度较大的地区依次是长岛县(0.980 4)、芝罘区(0.962 4)和莱山区(0.948 0)。[结论]烟台市土地利用结构与能源消耗碳排放存在着密切的关联性,土地利用结构与能源消耗碳排放的关联度在空间上存在着差异性。  相似文献   

11.
不同有机物料还田对华北农田土壤固碳的影响及原因分析   总被引:2,自引:3,他引:2  
中国农业面临着废弃物数量大、污染严重,农田土壤生产力低的现实问题。该研究以增加农田土壤固碳为目标对砂质农田进行有机物料还田,将秸秆、猪粪、沼渣和生物炭4种物料用尿素调节等氮还田,对农田土壤有机碳、颗粒有机碳、可溶性有机碳和微生物量碳的含量进行测定,并探究不同有机物料还田对土壤有机碳的影响原因。研究结果表明:物料还田3a后,生物炭、猪粪和沼渣处理土壤有机碳(SOC)比秸秆处理分别高262.4%、26.8%和20.7%;2014—2015年生物炭处理的土壤微生物量碳(MBC)较秸秆处理降低2.9%~35.5%,猪粪处理和沼渣处理的土壤可溶性有机碳(DOC)分别提高17.1%~60.1%和7.2%~64.8%;2014—2015年生物炭、猪粪和沼渣处理土壤颗粒有机碳(POC)较秸秆处理提高10.8%~148.2%、9.5%~58.3%和11.3%~57.6%;物料还田后,土壤总有机碳(TOC)和POC呈极显著的回归关系(R2=0.67,P0.001),土壤DOC与MBC有极显著相关性(R2=0.52,P0.001)。与秸秆还田相比,生物炭还田有利于土壤POC的累积进而促进土壤有机碳的提升,猪粪和沼渣则通过提高土壤MBC、DOC和POC的含量,促进土壤有机碳的周转和固定。从农田土壤固碳角度而言,生物炭,猪粪和沼渣还田优于秸秆还田。  相似文献   

12.
秸秆机械集中沟埋还田对农田净碳排放的影响   总被引:3,自引:0,他引:3  
通过大田试验,采用秸秆机械集中沟埋和常规还田方式,将上季作物秸秆进行全量还田(秸秆沟埋量2.1 kg/m).设置沟埋深度为20 cm(D2),30 cm(D3),常规还田(CK)3个处理.利用West提出的净碳排放方程对CK、D2、D3农田各项投入造成的碳排放和土壤碳累积及农作物碳吸收进行比较.结果表明:CK、D2、D3稻麦轮作各项农田投入造成的碳排放量分别为9 018.19,6 459.9,7 162.86 kg/(hm2·a),表层0-28 cm土壤的碳储量分别为8 375.98,15 854.42,10 954.36 kg/(hm2·a),农作物年碳吸收量分别为10 912.42,12 863.95,12 585.51 kg/(hm2·a);农田净碳排放量分别为-10 270.2,-22 258.5,-16 377.0kg/(hm2·a),与CK相比,D2、D3的相对净碳排放量分别为-11 988.30,-6 106.81 kg/(hm2·a);D2、D3农业投入的碳减排量2 558.29,1 855.33 kg/(hm2·a)分别为碳增汇量28 718.4,23 539.9kg/(hm2·a)的8.91%,7.88%,秸秆集中沟埋还田对农田储碳减排能能力较常规还田强,其贡献优先排序是D2>D3>CK.  相似文献   

13.
以1990—2009年上海市农作物产量、农田面积、农业投入等相关统计数据为依据,对上海农田生态系统主要碳源汇进行了测算,分析了上海农田生态系统碳源汇的时空变化特征,并探讨了农田生态系统碳源汇的影响因素。结果表明,1999—2009年上海农田生态系统碳吸收总量总体处于逐步下降趋势,且经济作物和果蔬作物碳吸收比例分别下降和上升明显;碳排放总量则呈逐步下降并趋于稳定的趋势,农用化学品投入是其主要排放源;单位面积碳吸收和排放量则一直处于波动状态。2009年上海各区县农田生态系统碳吸收量、碳排放量和单位耕地面积碳吸收量均为远郊大于近郊,而单位耕地面积碳排放量则为近郊大于远郊。碳源汇影响因素相关性分析表明,碳吸收与粮食作物和经济作物产量显著正相关,而与果蔬作物产量显著负相关;碳排放与农用化学品投入和燃料动力使用以及耕作灌溉管理均显著正相关。  相似文献   

14.
依据2001-2010年农作物产量、耕地面积及农业投入等数据,对山东省德州市农田生态系统的碳汇进行了估算,并分析了其变化情况.结果表明,德州市2001-2010年农田生态系统的碳吸收总量呈增加的趋势,且2004年以来增加的趋势较明显;小麦、玉米作为主要的粮食作物,碳吸收量明显高于其他农作物,棉花作为主要经济作物,吸收量不高;2001-2010年,由于德州市发展生态、高效、优质农作物,碳排放呈现先增后减的变化;不同县市由于农业发展方向和发展特色的差异,具有不同的碳排放;在这3种途径的碳排放过程中,化肥施用过程中碳排放所占的比例较大,且呈减少的趋势;2001-2010年德州市碳吸收量为6.35×107t,碳排放总量为4.53×106 t,碳吸收量远远大于碳排放量,说明德州市农田生态系统具有较强的碳汇功能.  相似文献   

15.
Abstract

Soils from the A, B, and C horizons representing three natural drainage classes and differing textures were chosen to study relationships between denitrification rate and estimates of available carbon. The highest correlation with denitrification rate was obtained with total organic C. Water‐extractable C, mineralizable C and 0.1 N Ba(OH)2‐extractable C produced less satisfactory correlations. When soils of the B and C horizons only were included in the regression analysis, 0.1 N Ba(OH)2‐extractable C was found to be unsatisfactory as a predictor of available C for soil denitrifiers. None of the four methods for estimating available C were found adequate for B and C horizon soils which were relatively low in available C. Coarser‐textured soils with relatively low C levels had correspondingly low denitrification rates. Regressions of denitrification rate on mineralizable C or water‐extractable C were nonsignificant with poorly drained soils whereas they were highly significant with well or imperfectly drained soils.  相似文献   

16.
Many institutions have substantial landholdings, but few consider soil carbon preservation and augmentation in their carbon management plans. A methodical framework was developed to analyse terrestrial carbon stocks (soil and tree biomass) for credible carbon offsetting strategies in institutional land. This approach was demonstrated at two farms (805 hectares) managed by Newcastle University. Soil carbon for three depths (0–30 cm, 30–60 cm and 60–90 cm) and above-ground tree biomass were quantified. These data provided a terrestrial carbon baseline to evaluate future land management options and effects. Historical land-use records enabled the following comparisons: (1) agricultural land vs. woodland; (2) arable land vs. permanent grassland; (3) organic vs. conventional farming; (4) coniferous vs. broadleaved woodland; and (5) recent vs. long-established woodland. Carbon storage (kg/m2) varied with land usage and woodland type and age, but only agricultural land vs. woodland, and for agriculture, arable land vs. permanent grassland, significantly affected the 0–90 cm soil carbon. At the university-managed farms, current terrestrial carbon stocks were 103,620 tonnes in total (98,050 tonnes from the 0–90 cm soil and 5,569 tonnes from tree biomass). These terrestrial carbon stocks were equivalent to sixteen years of the current carbon emissions of Newcastle University (6,406 tonnes CO2 equivalents-C per year). Using strategies for alternative land management, Newcastle University could over 40 years offset up to 3,221 tonnes of carbon per year, or 50% of its carbon emissions at the current rate. The methodological framework developed in this study will enable institutions having large landholdings to rationally consider their estates in future soil carbon management schemes.  相似文献   

17.
长白山森林土壤有机碳库大小及周转研究   总被引:3,自引:0,他引:3  
主要分析不同森林植被下有机碳的分解动态和土壤碳库各组分大小、周转时间。结果表明:土壤样品培养90天,CO2累计释放量表层大致为1723~5065mg/kg、下层大致为178~642mg/kg。分解速率总的趋势是前期快,后期慢,表层明显大于下层。大小顺序为:冷杉林〉针阔混交林和阔叶林〉针叶林。在不同植被下的表层和下层土壤中,活性碳占总有机碳的0.54%~1.67%,0.45%~5.48%.平均驻留时间为11~56天、60~88天;缓效性碳占总有机碳的23.0%~63.3%,33.2%~72.2%,平均驻留时间为4~70年、24~161年;惰效性碳占总有机碳的35.5%~75.5%.26.0%~65.%。表层土壤的总有机碳、活性碳、缓效性碳和惰效性碳含量都明显大于下层。凋落物的化学组成主要决定活性碳库、缓效性碳库含量,土壤的粘粒含量等性质主要决定惰效性碳库含量。  相似文献   

18.
不同森林植被下土壤有机碳的分解特征及碳库研究   总被引:30,自引:7,他引:30  
分析了不同森林植被和同一植被不同林龄的人工杉木林下土壤有机碳的分解特征及土壤有机碳中的活性碳库、缓效性碳库和惰效性碳库的大小和周转时间。结果表明:不同森林植被下土壤有机碳的分解速率不同,总的趋势都是:培养前期分解速度快,后期分解速度慢,土壤剖面A层>剖面B层。在剖面A层中:不同森林植被下分解速率的大小顺序为常绿阔叶林>人工杉木林,不同林龄的人工杉木林为成熟林>中龄林>幼龄林;在剖面B层中:分解速率差异不大。不同森林植被下不同土壤剖面上的土壤活性碳库、缓效性碳库和惰效性碳库的库容和分解速率不同,土壤活性碳库碳含量一般占总有机碳的0 99%~2 89%,田间平均驻留时间为10~23天;土壤缓效性碳一般占总有机碳的17 17%~55 46%,田间平均驻留时间为1 6~24 2年;土壤惰效性碳一般占总有机碳的42 05%~80 66%,田间平均驻留时间为假定的1000年。  相似文献   

19.
Landuse can alter soil organic carbon (SOC) fractions by affecting carbon inflows and outflows. This study evaluated changes in SOC fractions in response to different landuses under variable rainfalls. We compared cropland, grassland and forest soils in high rainfall (Islamabad ~1142 mm) and low rainfall (Chakwal ~667 mm) areas of Pothwar dryland, Pakistan. Forest soils in both rainfall areas had highest SOC (11.32 g kg?1), particulate organic carbon (POC, 1.70 g kg?1), mineral-associated organic carbon (MOC, 7.17 g kg?1) and aggregate-associated organic carbon (AOC, 7.86 g kg?1). However, in rangeland and cropland soils, these varied with rainfall. Under high rainfall, SOC and MOC were 12% and 17% higher in rangeland than in cropland while POC and AOC were equal. Under low rainfall, SOC and MOC were higher in rangeland than in cropland by 7.21 and 1.79 g kg?1 at 0–15 cm and equal at 15–30 cm depth. POC and AOC were higher in rangeland than in cropland, in both depths. Averagely, SOC, POC, MOC and AOC were 26%, 68%, 76% and 30% higher in high rainfall than in low rainfall soils. Sensitivity of SOC fractions to landuses observed under different rainfalls could provide useful information for soil management in subtropical drylands.  相似文献   

20.
秸秆覆盖对冬小麦农田土壤有机碳及其组分的影响   总被引:3,自引:1,他引:3  
通过对黄土高原旱塬区冬小麦地4种覆盖方式下(无覆盖对照处理(CK)、全生育期9 000kg/hm~2秸秆覆盖(M1)、全生育期4 500kg/hm~2秸秆覆盖(M2)和夏闲期9 000kg/hm~2秸秆覆盖(SM))土壤的田间定位试验和室内分析,探讨不同秸秆覆方式对冬小麦地土壤有机碳及其组分含量以及各组分之间相关性的影响。结果表明:(1)较CK(无覆盖对照)处理,M1(全生育期9 000kg/hm~2)、M2(全生育期4 500kg/hm~2)和SM(夏闲期9 000kg/hm~2)处理,均显著增加0—10cm和10—20cm土层的土壤有机碳、微生物量碳、潜在矿化碳和颗粒有机碳含量(p0.05),而20—40cm土层差异不明显,其中M1(全生育期9 000kg/hm~2)处理效果最佳,SM(夏闲期9 000kg/hm~2)处理作用相对较弱。(2)不同覆盖方式影响土壤微生物量碳、潜在矿化碳和颗粒有机碳在总有机碳中的分配比例,土壤微生物量碳、潜在矿化碳和颗粒有机碳的相对含量变化范围分别为1.96%~3.31%,2.83%~3.78%,18.13%~37.25%。(3)各覆盖方式下土壤有机碳及其组分含量都随着土层的逐渐深入而下降,且土层越深,变化越趋于缓慢。(4)不同覆盖方式下的土壤有机碳及其组分含量两两之间均达到了极显著正相关关系(p0.01),颗粒有机碳、微生物量碳和潜在矿化碳与土壤有机碳的相关系数依次为:0.847,0.700,0.614,可见微生物量碳、潜在矿化碳、颗粒有机碳含量在一定程度上决定于土壤有机碳的贮存量。综上所述,秸秆覆盖对土壤有机碳及其组分含量具有增加效应,全生育期9 000kg/hm~2秸秆覆盖方式实际运用价值较高。颗粒有机碳和微生物量碳的动态变化更能反映土壤有机碳的早期变化,是土壤肥力变化更加敏感的指标。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号