首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
以云南元谋干热河谷典型坡面上改造后的微地形为研究对象,对集中降雨条件下的土壤水分进行动态监测,运用土壤水分动力学原理和水量平衡原理,分析计算改造微地形的土壤水分特征曲线,土壤水分通量、导水率和扩散率.结果表明:微地形改造后,强化了降雨的入渗,水平沟整地和水平台整地分别能将89%和83%的降雨转化为土壤水分,而自然坡面只有22%的天然降雨转化为土壤水分,集中降雨后,土壤水分以垂直人渗为主,土壤水分以零通量面为界,在零通量面以上水分向上运动.零通量面以下向下运动,改造后微地形土壤水分运移动速度明显增大,最大运移速度大约为15~17 cm/d,但随着坡度增加.土壤水分的侧向损失有所增加,在集中降雨条件下,水平台、水平沟整地后能使拦截的降雨在0-200 cm土层范围进行分配,且缓坡上的水平台能使100 cm以下的土壤水分得到明显改善,而自然坡面人渗的水分主要在0-100 cm范围分配,且改善土壤水分效果不好,100 cm以下土层,降雨后土壤水分仍维持在较低水平.  相似文献   

2.
云南干热河谷不同坡面整地方式对土壤水分环境的影响   总被引:6,自引:1,他引:6  
云南干热河谷高温少雨.水土流失严重,土壤水分严重亏缺,人工植被“土壤干化”现象严重。通过在坡面采用不同的整地方式.对微地形进行塑造,强化降雨入渗.结果表明,不论是雨季还是早季,水平台和水平沟整地后,水平台、台间坡面、水平沟、沟间坡面的土壤水分环境均比同一等高水平上自然坡面好,旱季水平台和水平沟与自然坡面的差距从分水岭到坡脚逐渐减小,雨季差距最大值出现在坡的中部.水平台整地后,西坡的含水率比北坡和南坡高。在一定的坡度范围内,坡度越缓.水平台整地改善土壤水分的效果越明显.偏粘性土壤水平台整地后,改善土壤水分环境的效果要比偏沙性的土壤好,水平台和水平沟整地后,增加了水分在土壤中蓄存的时间.对植物的吸收利用非常有利。  相似文献   

3.
土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响   总被引:40,自引:11,他引:40  
在防止土壤侵蚀和雨后抑制蒸发的条件下,利用室内人工降雨试验,研究了土壤初始含水率对坡面降雨入渗、湿润锋运移及土壤水分再分布规律的影响。结果表明:初始含水率越高,产流越快,平均入渗率越小,达到稳定入渗率的时间也越短;当初始含水率均匀分布时,降雨入渗和再分布过程中湿润锋面平行坡面垂直向下整体运移,坡面降雨入渗过程可以简化为一维;当初始含水率非均匀分布时,初始含水率越高,再分布过程中湿润锋的运移速率越大,但在降雨入渗过程中,湿润锋的运移速率与土体的湿润程度和范围有一定的关系;坡面上方来水(径流)虽然对湿润锋运移速率影响不大,但对入渗有一定的促进作用;再分布过程中,土壤水分有沿坡向下运移的趋势。  相似文献   

4.
黄丘区野外坡面土壤水分变化对次降雨过程的响应   总被引:4,自引:0,他引:4  
土壤水分的垂直变化与空间变异特征对坡面降雨入渗和产流过程有重要影响。为了研究黄丘区降雨-土壤水分响应关系,在天水罗玉沟流域建立野外坡面小区,利用野外水分动态观测和人工模拟降雨试验,研究天然状态和90 mm/h降雨强度下的土壤水分变化规律。结果表明:天然状态下,土壤剖面土壤水分的垂直变化可以划分为速变层(0~20 cm)、活跃层(20~30 cm)、次活跃层(30~40 cm)和相对稳定层(40~100 cm),土壤水分的垂向分布存在分层现象,坡向分布存在显著的坡位差异(P0.05)。降雨过程中,降雨能明显增强土壤水分的活跃性,主要表现在0~30 cm土层范围内,随土层深度的增加,降雨对土壤水分活跃程度的影响逐渐减弱。0~30 cm土层土壤水分随降雨时间变化表现为3段式,即快速上升期、稳定期、略微下降期,深层次土壤水分在垂向的变化中表现为不均匀性,存在梯度性差异;除0~30 cm土层外,降雨仅增加各土层中的土壤水分,对各层间土壤水分在整体土层范围中土壤水分的占比影响较小,雨中坡位间土壤水分的分布差异更为显著(P0.01)。随着0~30 cm土层的土壤水分含水率的增加,产流速率呈增加并趋于稳定的趋势,产沙速率的变化趋势为产沙量达到高峰后逐渐减小并趋于稳定。  相似文献   

5.
为分析半干旱区毛乌素沙地樟子松固沙林土壤水分对降雨的动态响应特征,采用AV-3665R雨量计、ECH_2O-5土壤水分传感器、深层渗漏水量测试仪自动监测樟子松固沙林2013—2014年降雨、0—200 cm土壤含水量、200 cm以下渗漏量。结果表明:樟子松固沙林5—10月累积降雨均显著(p0.01)影响0—200 cm层土壤水分变化,其中5—6月降雨对150 cm以下土层影响较小、9月后降雨对土壤水分补给作用显著;小于45.2 mm降雨对150 cm以下土层无直接补给作用;大于53.8 mm降雨对200 cm层土壤水分有补给作用,且表层初始含水量较高时,降雨入渗快、历时时间短、补给作用大。降雨量、土壤表层初始含水量对降雨后樟子松固沙林土壤水分入渗过程及特征有显著影响。  相似文献   

6.
以天然草地上整地5a后的水平沟和鱼鳞坑、封育5a后的草地为研究对象,在不同恢复措施的上坡、中坡和下坡设置3个观测样地,每个样地设置5个水分测定点,测定了宁夏黄土丘陵区本氏针茅(Stipa bungeana)典型草原0-200cm土壤水分含水率季节动态和垂直变化。结果表明:土壤水分的变化可分为3-6月土壤水分强烈蒸发丢失期,7-9月土壤水分蓄积期,10-12月土壤水分缓慢蒸发期;土壤水分表现为水平沟含水率最高,鱼鳞坑居中,封育草地最低,水平沟和鱼鳞坑增加土壤水分的主要时间在雨季;3种措施下,土壤水分较大变异值集中在0-60cm土层,0-40cm土壤水分变异以封育草地最大,水平沟最低,40-100cm土壤水分变异以鱼鳞坑最高,水平沟最低,而100-200cm土壤水分变异以封育草地最低;不同时期土壤水分的垂直变化存在差异,0-40cm土壤水分含量与40-100cm的差异在7-9月份最为明显。封育草地随坡位降低含水率呈显著增加趋势,但鱼鳞坑和水平沟无此明显规律。  相似文献   

7.
为探讨半干旱区柠条锦鸡儿林沙丘土壤水分对降雨的响应,采用WatchDog土壤水分传感器、HOBO U30小型自动气象站同步监测毛乌素沙地人工柠条锦鸡儿林0—110 cm层土壤含水量与2019年降水量,分析了沙丘土壤含水量动态变化与降雨入渗特征。结果表明:2019年5月1日—9月15日期间,柠条锦鸡儿林沙丘不同土层水分含量变化受降雨量、累计降雨以及降雨入渗效应等综合因素的影响。其中0—50 cm层土壤含水量对降雨的响应较敏感,累计降雨46 mm可对110 cm层土壤水分进行补给;降雨量5 mm时,湿润深度5 cm,降雨量10 mm左右时,湿润深度30 cm,降雨量20 mm左右时湿润深度30—50 cm,降雨量30 mm时,湿润深度50 cm,降雨量50 mm时湿润深度可达110 cm土层,说明降雨对柠条锦鸡儿林沙丘水分状况有补给作用,但是对90 cm以下土层水分状况的补给能力有限;当降雨量基本相等时,降雨强度与土壤初始含水量对入渗深度及进程有明显影响,即降雨强度越大,土壤初始含水量越高,降雨入渗深度越深,入渗历时越短。  相似文献   

8.
黄土丘陵区不同林龄乔灌林地土壤水分及持水性能研究   总被引:3,自引:1,他引:3  
土壤水分是黄土丘陵区生态恢复过程中的主要制约因素,对该区典型流域不同林龄主要乔灌林地土壤容重、水分特征和持水能力的分析结果表明,表层土壤容重表现出天然灌木林乔木林人工灌木林果园,且容重随林龄的增加而减小,即20a25a30a。下层土壤容重与表层变化规律相似。土壤总孔隙度与土壤容重和非活性孔度变化规律相反,与土壤活性孔度和土壤孔隙比变化基本一致。0-50cm土层土壤含水量变化顺序为果园刺槐柠条狼牙刺,50-500cm土层则是刺槐林地最小,灌木林地在50-200cm土层的变动幅度较大,200-350cm土层柠条小于狼牙刺,350-500cm土层狼牙刺则小于柠条,主要受人工林种植密度和人为干扰措施影响。苹果园经过隔坡梯田整地措施,其林下0-500cm土层土壤水分含量最高。该区提倡"灌木先行"的植被恢复措施是必要的。表层土壤总持水量随林龄增加而增加,土壤总持水量变化顺序为天然灌木林地乔木林地人工灌木林地,有效持水量却表现出与总持水量相反的变化趋势,容重越低,土壤有效持水性越强。20-40cm土层及40-60cm土层的持水特性表现出与表层土壤相似的规律。  相似文献   

9.
花岗岩红壤坡面工程措施初期的水土保持效果   总被引:1,自引:1,他引:0  
在福建长汀花岗岩红壤的1个18°坡面,设置反坡台地、鱼鳞坑、水平沟和对照小区,通过实地观测和取样分析,研究比较了这3种坡面工程措施实施第2a的水土保持效果。3种坡面工程措施都有较好的坡面减流作用,水平沟效果最好,减流38.74%。3种措施减沙效果不稳定,反坡台地甚至增加了坡面产沙量,水平沟减沙效果最好,减沙16.32%。3种措施均改善了土壤机械组成,其中水平沟措施效果最为显著,反坡台地其次,鱼鳞坑效果不明显。3种措施均促进了坡面降水入渗,增加了0—8cm表土含水量,水平沟小区的8—15cm土层含水量最高,空间分布最均匀,反坡台地和鱼鳞坑改善水分入渗和涵蓄水分效果弱于水平沟措施。结果表明对花岗岩中陡坡面红壤,水平沟工程措施效果优于反坡台地和鱼鳞坑。  相似文献   

10.
长武塬区降雨入渗特征   总被引:3,自引:0,他引:3  
为了深入理解深厚黄土层的降雨入渗机制,在黄土高原塬区的长武试验站,应用TDR监测天然降雨下大型土柱土壤含水率的动态变化,并结合土柱底部出流量测定数据,分析天然降雨的入渗特征。结果表明:降雨对土壤含水率的影响主要集中在160 cm深度以上,且随深度增加而递减,至240 cm土层降雨峰值信息几近消失;湿润锋运移速率与降雨强度呈正相关关系,与土壤初始含水率成负相关关系,湿润锋运移深度同降雨量和降雨强度正相关;降雨对300 cm土壤水的补给行为普遍存在,入渗补给以活塞流方式为主;降雨入渗补给土壤水的滞后作用表现出对100~200 cm土壤水的补给滞后时间为15~18 d,对300 cm深度土壤水的补给滞后时间为30~45 d。研究结果对明确黄土塬区水循环机制具有一定参考意义。  相似文献   

11.
明确黄土丘陵区降雨对土壤水分影响,对准确评估降雨格局变化对生态系统结构和功能的影响具有重要意义。以陕北黄土丘陵区退耕地栽植后自然撂荒23年的柠条人工纯林为研究对象,通过土壤湿度传感器监测不同土层土壤体积含水量,探讨不同土层土壤水分补充增量对降雨特征(降雨量、降雨历时和降雨强度)的响应。结果表明:(1)土壤水分消耗和补充主要集中于0-500 cm土层,其月变化在垂直剖面呈“双峰”(4—5月)、“单峰”(6月)和“双峰”(7—10月),随土层深度增加变化率减弱;(2)当降雨量>4 mm时表层土壤水分得到有效补充,当其超过142.8 mm时补充深度可到达200 cm土层,其中长历时强降雨较短历时强降雨对土壤水分补充增量小,但其补充深度较深,达到峰值时间长,但小降雨长历时则土壤水分补充增量较小;(3)降雨特征对土壤水分影响随土层深度增加而减弱,其中降雨量和降雨历时对土壤水分影响主要在0—50 cm土层,而降雨强度对其影响主要在0—30 cm土层。降雨量(降雨历时)和土壤水分补充增量对数拟合最优,而降雨强度与其则表现为幂函数拟合最优,其可分别解释土壤水分补充增量的39%~76%(降雨量)、...  相似文献   

12.
三峡水库消落带是库区水域与周边陆地环境的关键过渡地带,周期性反季节干湿交替使其具有强烈的物质交换特征。辨析消落带泥沙及其吸附的颗粒态磷的来源对消落带土壤污染防治和环境效应评估以及三峡水环境保护具有重要意义。以三峡库区汝溪河支流不同高程(145~155、>155~165、>165~175 m)消落带为研究对象,运用复合指纹技术查明,消落带泥沙中颗粒态磷的主要来源是长江干流悬移质和汝溪河上游悬移质。淹水期间长江干流江水顶托引起的泥沙沉积是颗粒态磷的主要来源,在>165~175 m高程带对颗粒态磷的贡献达到最大(54.5%)。雨季初期支流上游悬移质对145~155 m高程消落带的颗粒态磷贡献最大(51.6%),而随高程的增加贡献率减少。消落带上方的土壤侵蚀产沙主要堆积在>155~165和>165~175 m高程范围内,导致消落带上方土壤对泥沙和颗粒态磷的贡献率都随高程的增加而增加。  相似文献   

13.
用土钻法连续5年对荒坡地不同坡向、坡位的土壤水分进行了定位测定,表明不同坡向土壤水分差异显著,南坡和北坡相比,0~2m土层北坡含水量高,但1~2m土层南坡比北坡土壤含水量高。荒坡地耗水深度南坡2.3m,北坡1.3m。坡地蒸散平均305~335mm,其中90%来自大气降水。  相似文献   

14.
为阐明亚热带湿润气候区山地坡面土壤水分的时空变化及影响因素,以三峡库区针叶林覆盖的中山凹坡为研究对象,采用经典统计学和地统计学的方法,对2019-2020年5 m×5 m网格点监测的117个点位0-70 cm土层深度的土壤水分数据进行分析,研究了湿润和干旱条件下典型凹坡集水区内土壤含水量的统计学特征与环境因子的相关性,以及土壤含水量的空间变异特征。结果表明:(1)水平方向上,集水区内各层土壤水分均表现为中等变异(10%相似文献   

15.
不同降雨等级下杉木林土壤含水率和侧向流变化特征   总被引:2,自引:0,他引:2  
为了探究不同降雨等级对林下不同深度土壤含水率和侧向流变化的影响,探究南京城郊杉木林各层土壤含水率、侧向流变化对降雨事件的响应,分析土壤含水率变化量与累计降雨量和侧向流的关系,初步探讨杉木林的水源涵养机制。选取南京市铜山林场46年生杉木林,在大、中、小3种降雨等级下,采用ECH2O土壤水分监测系统对土壤剖面0—5,5—15,15—30,30—60 cm的土壤水分含量进行了实时连续监测。结果表明:(1)0—5,5—15 cm土层土壤含水率变化曲线和降雨量变化曲线具有同步性,15—30,30—60 cm土层含水率达到峰值时间滞后1~1.5 h;(2)小雨条件下,只有0—5,5—15 cm土层变化趋势较明显,侧向流主要发生在5—15 cm土层;(3)中雨条件下,雨强在8 mm/h和15.2 mm/h时,土层含水率出现2次明显的响应,侧向流主要发生在15—30 cm土层;(4)大雨条件下,累计降雨量22.8 mm时,5—15,15—30,30—60 cm土层出现峰值,侧向流主要发生在30—60 cm土层;(5)小雨、中雨、大雨过程中产生的最大侧向流分别为1.55,13.88,94.77 mm,随着降雨量的增加,侧向流有增加的趋势。土壤水分入渗为非饱和入渗,随着土层深度的增加,含水率峰值逐渐增大,侧向流增加较明显。土壤含水率变化和降雨量有较好的线性关系且相关性较强,随着降雨量的增加,土壤含水率和降雨量的相关性越来越差。土壤含水率变化量与累计降雨量和侧向流三者间互有显著相关性,最大侧向流与累计降雨量呈指数关系,y=0.7614e0.2238x。  相似文献   

16.
利用黄土区燕沟流域42场模拟降雨下土壤水分观测数据,研究2种坡度的草地、灌木地在不同经营方式(原状地、刈割地、翻耕地)下的土壤水分对模拟降雨的响应。结果表明:1)在5次降雨补充下,依据土壤水分的标准差和变异系数指标,0-100cm土壤水分受土地经营方式影响表现为,原状草灌地土壤水分可划分为活跃层、次活跃层和相对稳定层,刈割地全剖面为相对稳定层,翻耕地可分为活跃层和相对稳定层。2)单次降雨事件则随降雨量增加,各经营方式下的水分活跃层逐渐变薄或消失,次活跃层变厚,而相对稳定层变薄,整个土壤剖面水分变化趋于一致。3)对于受高强度降雨补充的土壤水分变异性分层,建议采用更加灵敏的土壤水分标准差和变异系数判别标准:活跃层,标准差大于1.4,变异系数大于0.12;次活跃层,标准差1.4-0.9,变异系数0.12-0.08;相对稳定层,标准差小于0.9,变异系数小于0.08。4)坡度越小,土壤水分越高,坡度对草灌木地、刈割地的影响较翻耕地显著,且对50-100cm层水分影响远大于对表层0-50cm的影响。总之,降雨后土壤水分0-100cm层不断增加,且剖面土壤水分逐渐一致,土地经营方式、坡度因素对土壤水分变化强度和在不同深度土层中的表现有显著影响。  相似文献   

17.
干旱河谷区坡耕地等高植物篱种植系统土壤水分动态研究   总被引:21,自引:4,他引:21  
金沙江干旱河谷区坡耕地固氮植物篱种植模式的研究结果表明 ,植物篱与农作物利用土壤水分的深度不同 ,植物篱在旱季主要利用 5 0 cm以下深层土壤水分来度过严酷的旱季 ,在雨季促进水分向深层土壤渗透 ,提高 0~ 15 0 cm土层贮水量 ;据剖面含水量的变异程度可将剖面分为 4个层次 :水分剧变层、水分渐变层、水分弱变层和水分稳定层 ,其中植物篱模式下剧变层为 0~ 30 cm,渐变层为 30~ 10 0 cm ,弱变层为 10 0~ 15 0 cm,稳定层在15 0 cm以下 ,而传统耕作坡地和裸坡地 (梯地 )分别为剧变层 0~ 30 cm,渐变层为 30~ 5 0 cm,弱变层为 5 0~ 12 0cm ,稳定层在 12 0 cm以下 ,渐变层厚度显著小于植物篱种植模式。植物篱模式提高系统中土壤水分周转库容 ,不仅有利于雨季调节地表径流 ,而且有利于旱季改善土壤水分条件。在时间上 ,一个旱季 -雨季周期内干热河谷坡耕地土壤水分动态可分为 3个时期 :水分消耗期、水分补给期和水分平稳期  相似文献   

18.
晋西黄土区土壤剖面水分动态研究   总被引:2,自引:2,他引:2       下载免费PDF全文
 通过对2004年7—10月、2005年4—10月不同植被类型土壤剖面水分状况的监测,分析研究黄土区剖面土壤水分的分布特征、季节动态变化、变异特征和不同植被类型对剖面土壤水分状况的影响。结果表明:2004年剖面土壤水分呈上高下低的分布特征,2005年剖面土壤水分呈小幅度的递增变化;土壤水分在剖面上的变化包括先减少后增加“<”型和先增加后减小再增加的倒“S”型、先增后减再增再减的波浪型;在观测期,土壤剖面各土层土壤水分含量在随时间变化呈现减少趋势,与降水量关系显著;土壤水分的变异系数地表(0~20cm)最大,0~100cm土层呈减小趋势,100~200cm土层基本保持不变,将100~120cm土深作为土壤水分速变和稳定的分界限。  相似文献   

19.
刘廷宏  王丽 《水土保持通报》1992,12(6):64-70,77
通过对旱塬地0~200cm不同层次土壤水分的定期观测,表明:旱塬地年内土壤水分动态,分为4个时期:晚春初夏强烈损失期;雨季恢复补充期;晚秋缓慢损失期;冬季早春相对稳定期。旱塬地土壤水分垂直分布分为3个层次,即水分速变层(0~20cm);水分活跃层(20~100cm);相对稳定层(100~200cm)。并在上述试验研究的基础上,对旱塬地蓄水保土耕作技术措施等进行了专题研究,表明:旱塬地向日癸与大豆带状间作,具有明显的水保及经济效益;旱塬地推行作物配方施肥技术,能够节约用肥,提高肥料利用率,促进作物增产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号