首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Consolidation of fragile historic silks is of great importance for further displays and researches. An effective and convenient method to consolidate aged silk fabric has been proposed by using a silk fibroin (SF)/ethylene glycol diglycidyl ether (EGDE) consolidation system. Artificial aged silk fabrics treated with SF/EGDE show great improvement in mechanical properties. The chemical reaction between EGDE and silk fabrics has been proved in previous paper. And in this paper, mechanical test, field emission scanning electron microscopy (FESEM), Fourier transform infrared spectrum (FTIR) test and amino acid analysis (AAA) were applied to illustrate the interactions between SF and silk fabric, EGDE and SF. Results show that SF takes part in the consolidation in the form of adhesions on the surface of silk fibers. The chemical reactions and film adhesion are both responsible for the improvements of mechanical properties in the consolidation.  相似文献   

2.
Dyeing and color fastness properties of a reactive disperse dye containing an acetoxyethylsulphone group on PET, Nylon, silk and N/P fabrics were examined. The reactive disperse dye exhibited almost the same dyeing properties on PET fabric as a conventional disperse dye except the level of dye uptake. The most appropriate pH and dyeing temperature for the dyeing of Nylon fabric were 7 and 100°C respectively. The build-up on Nylon fabric was good and various color fastnesses were good to excellent due to the formation of the covalent bond. Application of the reactive disperse dye on silk fabric at pH 9 and 80°C yielded optimum color strength. The rate of dyeing on Nylon fabric was faster than that on PET fabric when both fabrics were dyed simultaneously in a dye bath, accordingly color strength of the dyed Nylon was higher. The reactive disperse dye can be applied for one-step and one-bath dyeing of N/P mixture fabric with good color fastness.  相似文献   

3.
There has been growing interest in the use of bioresource waste for natural dyeing and finishing. This paper discusses dye extraction from the novel source fruit shell waste of Sterculia foetida and its application on mulberry silk fabric to confer aesthetic coloration and wellness properties such as ultra-violet (UV) protection and antibacterial properties. Treated fabrics showed a substantial increase in color depth and adequate wash, light, and rubbing fastness properties for dyed silk fabrics with and without mordanting. Pre-and post-mordanting of silk fabrics were carried out using mordants such as alum, harda (myrobalan), and copper sulfate. UV-visible spectrophotometric analysis of fruit shell extract (FSE) at different pHs and FSE with three different mordants at neutral pH was used to understand the phenomena of dye-fiber interaction. The treated fabrics characterised by ATR-FTIR, SEM-EDS, and XRD analysis indicate the nature of dye fiber interaction justifying the multifunctional properties. The treated fabric also showed very good ultraviolet protection property and antibacterial properties both against S. aureus and E. coli bacteria even after ten washes. The results indicate that Sterculia foetida fruit shell extract offers an excellent potential as coloration, antibacterial, and ultraviolet protective agent for mulberry silk fabric.  相似文献   

4.
In this paper, Rajshahi silk fabric was modified by acetic acid, tannic acid and their mixture. After acid modification, the silk fabric was dyed with three dyes classes namely: Reactive Orange 14, Direct Yellow 29 and Mordant Blue 9. Results revealed that the fabric modified with acid mixture of 30 % acetic acid and 20 % tannic acid improved the colorfastness of the dyed fabric after 7 days exposure on simulated sunlight and washing with hot soap solution. Also, the acid modification could improve the dyed fabrics’ colorfastness properties to acids and alkalis. Optimum dyeing condition was observed at 1.5, 2.0, and 2.0 % dyes for Reactive Orange 14, Direct Yellow 29 and Mordant Blue 9 respectively. The optimum dyeing time was observed 50, 60, and 50 min; and temperature was 90, 100 and 80 °C respectively. Modification of silk fabrics with acids improves the dyeability and colorfastness of Rajshahi silk fabrics. However, the acid modification could reduce the loss in tenacity of silk fabric upon exposure to sunlight.  相似文献   

5.
α,ω-di[(4-butoxy-piperazin-1-yl)-phosphinic acid methyl ether]-terminated linear polysiloxane (PNPDMS) was synthesized and utilized as the flame retardant and hydrophobing agent. The flame retardance and thermal decomposition behaviors of cotton fabrics were systematically estimated by limiting oxygen index (LOI), thermogravimetric analysis and vertical burning test, respectively. It was found that the LOI of cotton fabric treated with PNPDMS enhanced to 29.82 % compared with cotton fabric without treatment, whose LOI was only 18.00 %. The treated cotton fabric showed a shorter char length, a shorter After-flame time, and no After-glow time as revealed in vertical burning test. The mechanical property in treated cotton fabric was slightly decrease. Furthermore, the grade of water repellency of treated cotton fabric reached to 90 and water contact angle (WCA) increased to 141.90° compared with cotton fabric without treatment whose WCA was 62.80°. The result showed that the cotton fabric treated with PNPDMS exhibited excellent flame retardance and hydrophobic properties.  相似文献   

6.
Hybrid yarn was produced by twisting silk with nylon covered lycra yarn. Silk of 20 D in warp and hybrid yarn in weft was woven to develop lustrous woven stretch fabrics for sari blouse. Silk and hybrid yarn fabrics were produced in three different weaves namely plain, crepe and sateen. An in-depth study was carried out to understand the effect of weave on thermal comfort; low stress mechanical properties, total hand value and stretch properties. Nine blouses (3 samples× 3 figures) were constructed from three different woven stretch materials for fit assessment and objective pressure comfort test. The effect of fabric weave, low stress mechanical properties, total hand value and stretch properties on fit and pressure comfort of silk/hybrid yarn stretch fabrics were analyzed. Sateen weave silk/hybrid yarn stretch fabric shows higher total hand value, stretch properties and better thermal comfort properties. Sateen and crepe weave stretch fabrics provided good fit. Sateen weave fabric exerted lower clothing pressure value in the range of 3-12 mmHg at all body locations in standing position and in different postures.  相似文献   

7.
This study was carried out to optimize dyeing conditions of unripe Citrus Unshiu extract on silk fabric and to evaluate antimicrobial activity of the dyed fabric for its potential use as a functional natural dye. Unripe fruits of Citrus Unshiu in Jeju Island, Korea, extracted in 80 % Ethanol solution to final solid dye powder were dyed on silk fabric under a variety of conditions such as dye bath concentrations, temperature, and dyeing duration together with mordanting. Dyeing fastness properties to washing, rubbing, perspiration, and light were tested and the antimicrobial activities of the dyed fabric against Staphylococcus aureus and Klebsiella pneumoniae were investigated quantitatively. As results, the fabric showed the maximum dye uptake (K/S) under the conditions of 80 °C for temperature, 30 min for duration, and 600 % (o.w.f.) for dye concentration. Both pre- and post-mordanting seemed not to be effective on increasing K/S values of the dyed silk fabrics under the optimum dyeing conditions. Fastness ratings to washing, rubbing, and perspiration were all very good (4–5 grades) for both 300 and 600 % dyed silk fabrics. Excellent antimicrobial activities over 99 % reduction rate against two both bacteria were exhibited for all of dyed fabrics undergone more than 300 % of dye concentration. From these results, it was concluded that the dye concentration of 300 % of unripe Citrus Unshiu could be employed to produce antimicrobial silk fabric. Furthermore, to get more saturated shades on the fabric by the citrus, higher dye concentration such as 600 % was available as well.  相似文献   

8.
In this paper, a purpose-built apparatus was used to analyze the moisture liberation of textile fabrics. Fabrics were wetted and placed in an air-conditioned room to test the variation of weight and surface temperature during the process of moisture liberation. Effects of textile materials and fabric structures on the velocities of moisture liberation of fabrics were analyzed; the temperature variation and its relationship with moisture regains of fabrics in the moisture liberation were also studied. Moisture liberation velocities of polyester and silk fabrics are much higher than that of wool and cotton fabrics. For the same textile materials, knitted fabrics absorbed more water and thus took longer time to liberate the water. The surface temperature of fabrics showed three stages during moisture liberation. With the decrease of moisture regain, fabric temperature decreased gradually and jumped quickly to ambient temperature. In this way we could evaluate the moisture desorption of fabrics and develop quick-drying fabrics with imporved moisture and thermal properties.  相似文献   

9.
Graphene, multi-wall carbon nanotube (MWCNT) and fine boron nitride (BN) particles were separately applied with a resin onto a cotton fabric, and the effect of the thin composite coatings on the thermal conductive property, air permeability, wettability and color appearance of the cotton fabric was examined. The existence of the fillers within the coating layer increased the thermal conductivity of the coated cotton fabric. At the same coating content, the increase in fabric thermal conductivity was in the order of graphene > BN > MWCNT, ranging from 132 % to 842 % (based on pure cotton fabric). The coating led to 73 %, 69 % and 64 % reduction in air permeability when it respectively contained 50.0 wt% graphene, BN and MWCNTs. The graphene and MWCNT treated fabrics had a black appearance, but the coating had almost no influence on the fabric hydrophilicity. The BN coating made cotton fabric surface hydrophobic, with little change in fabric color.  相似文献   

10.
Waterborne polyurethane modified by acrylate/nano-ZnO (PUA/ZnO) was synthesized and used to improve the wet rubbing fastness of reactive dyed cotton fabric. The reaction conditions were optimized and the products were characterized by FT-IR, TG, DSC, SEM, and particle size distribution. The dyed cotton fabrics were finished with PUA/ZnO emulsion and the rubbing fastness, ultraviolet resistant property, and wearability of treated fabrics were measured. The wet rubbing fastness of treated fabrics was increased by about 0.5–1 rate to achieve 3–4 rate, and the ultraviolet protection factor (UPF) achieved 50+ level. The whiteness, air permeability, and elongation at break of treated fabric were not decreased significantly. SEM showed that the smooth and reticular coating on the surface of treated fabric reduced the mechanical friction force between dyed fabric and rubbing cloth, and thus improved the rubbing fastness. The decomposition temperature of finished fabric was increased by 50–80 °C.  相似文献   

11.
Actinomycins as clinical medicine have been extensively studied, while few investigations were conducted to discover the feasibility of actinomycins as antimicrobial natural dye contributing to the medical value of the functional fabrics. This study was focused on the application of actinomycin X2 (Ac.X2), a peptide pigment cultured from marine-derived Streptomyces cyaneofuscatus, in the dyeing and finishing of silk fabric. The dyeing potential of Ac.X2 with silk vs. cotton fabrics was assessed. As a result, the silk fabric exhibited greater uptake and color fastness with Ac.X2. Through Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and X-ray diffraction (XRD) analyses, some changes of chemical property for the dyed fabric and Ac.X2 were studied. The silk fabric dyed with Ac.X2 exhibited good UV protection ability. The antibacterial properties of dyed and finished silk were also evaluated, which exhibited over 90% antibacterial activity even after 20 washing cycles. In addition, the brine shrimp assay was conducted to evaluate the general toxicity of the tested fabric, and the results indicated that the dyed silk fabrics had a good biological safety property.  相似文献   

12.
Silk fibrillation, one major weakness of silk fibers, can lead to undesirable fabric appearance. In this research, an effective method for reducing the fibrillation of silk fibers through the graft copolymerization with methyl methacrylate (MMA) has been developed. The major copolymerization factors such as the initiator concentration, MMA monomer concentration, reaction time and temperature were investigated. An AATCC Crockmeter was used to rub the fabric to simulate the abrasion in production to generate the fibrillation. The microscope observation and the evaluation of fibrillation index (FI) were applied to assess the degree of fibrillation of silk fibers. The optimum graft copolymerization factors were obtained. Instrumental analyses, such as FTIR, TG and SEM, proved that the silk fabric had been successfully grafted with MMA monomers. The fibrillation of the grafted silk fibers was considerably reduced since the coated PMMA can protect the silk fiber. In addition, the physical properties such as the crease recovery, breaking strength, and the breaking length of the grafted silk fabrics were also improved.  相似文献   

13.
The use of natural dyes and natural finishes on textiles has become a matter of significant importance because of the increased environmental awareness to avoid some hazardous synthetic dyes and synthetic chemicals. The Delonix regia stem shells were extracted in distilled water methanol and ethanol solvents. Phytochemical analysis was carried out for the presence of bioactive chemical constituents such as saponin, terpenoid, flavonoid, glycoside, phenol and tannin using the standard procedure. All the tests showed positive for the presence of components except saponin in methanol and ethanol extract. The qualitative antibacterial analysis was done by AATCC 147 method with excerpts from three different solvents both against S. aureus (gram-positive) and E. coli (gram-negative) bacteria. Delonix regia stem shell extract (DSE) in distil water was used for natural dyeing of mulberry silk fabric. Pre-mordanting and post-mordanting of silk fabric were carried out using alum and myrobalan mordants. Treated fabrics showed a substantial increase in colour depth (K/S) and adequate wash, light and rubbing fastness properties without and with mordanted and dyed silk fabrics. Quantitative antibacterial analysis by AATCC 100 method was done on dyed silk fabric which showed very good resistance both against bacteria S. aureus and E. coli bacteria. Dyed silk fabric also showed good to very good ultraviolet (UV) protection property. The physicochemical composition of the untreated and without mordant treated silk fabrics were analysed by attenuated total reflection (ATR) Fourier transforms infrared (FTIR) spectroscopy, scanning electron microscope (SEM), energy dispersive spectrometry (EDS) and atomic absorption spectrophotometer (AAS). In addition to that wash, durability was also measured of dyed silk fabric for antibacterial and ultraviolet protection (UPF) properties according to AATCC 61 2A washing method.  相似文献   

14.
This study develops a method to evaluate the contact coolness of fabric using the infrared thermal image of a small test specimen. By using infrared thermal images of 7 types of fabrics developed as cool fabric, the average temperature difference on the surface of the human palm and a heating plate, with and without fabric was measured and this was used for the scale of the ability of the fabric to cool by touch. By comparing the average temperature differences with the Qmax of a fabric, absorption coolness, subjective contact coolness, and correlations were investigated. More heat is transmitted via fabric when the Qmax value is higher and average temperature difference of thermogram image is smaller, which means the coolness perceived by the skin becomes stronger. Fabric with a small average temperature difference in infrared thermal imaging had a high Qmax value and it was evaluated as having strong coolness in subjective evaluation too. However, it was found that there was no relationship between average temperature differences and absorption coolness. Therefore, it can be concluded that the evaluation of fabrics’ coolness using infrared thermal image is useful when evaluating contact coolness at the point of physical contact. In addition, by comparing the methods using the palm and heating plate, the method using the palm showed higher correlation with Qmax (-.828, p<0.05). Therefore, we confirmed that evaluating the coolness of small test specimens using an infrared thermal camera and the palm is effective.  相似文献   

15.
A novel antibacterial agent polysulfopropylbetaine (PSPB) bearing carboxyl groups was synthesized and its application on cotton fabric to provide durable antibacterial property was also presented. The successful synthesis of PSPB and its immobilization onto the cotton fabric surface were verified by a series of tests including FTIR, 1H NMR, XPS and SEM. Viable cell counting method was employed to investigate antibacterial properties of the finished cotton fabrics. It was found that the cotton fabrics treated with PSPB were endowed with desirable antibacterial activity against both gram-negative bacteria Esherichia coli (E.coli, AATCC 6538) and gram-positive bacteria Staphylococcus aureus (S.aureus, AATCC 25922), with the bacterisotatic rates of 99.69 % and 99.95 %, respectively. Notably, the bacterial reduction rates still maintained over 90 % against both bacteria even after 50 consecutive laundering cycles. Moreover, tests concerning the hydrophilicity, air permeability, water vapor transmission, mechanical properties as well as thermal properties were carried out systematically. The experimental results indicated the hydrophilic performance, air permeability and moisture penetrability of the cotton fabrics finished with PSPB were improved greatly in spite of a slight reduction in thermal performance and little obvious influence on mechanical performance. The antibacterial cotton fabric has the potential to be applied in sportswear, underwear, household textiles, medical fields and much more.  相似文献   

16.
In order to develop ultraviolet protection and yellowing resistance silk fabric, the silk fabric was treated with dispersive TiO2/La(III) composite solution. The morphology, microstructure, ultraviolet protection and whiteness of the treated silk fabric were characterized by means of transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectra, X-ray diffraction and ultraviolet transmittance. Furthermore, the mechanism of the ultraviolet protection was investigated. The results show that the TiO2/La(III) composite particles disperse uniformly. The TiO2/La(III) particles can not only be treated onto the surface of the silk fabric but also can be treated into the interior of the silk fabric successfully. The result of Fourier transform infrared spectra and X-ray diffraction demonstrates that there are hydrogen bonds between the silk fabric and composite particles, and crystallinity of the treated silk fabric decrease when compares to the untreated silk fabric. The ultraviolet protection factor of the TiO2/La (III) treated silk fabric is significantly higher than that of the untreated silk fabric. The main ultraviolet shielding effect of TiO2 treated silk fabric is absorption. The La(III) treated SF has a bad ultraviolet shielding effect, but it has a certain reflection and absorption.  相似文献   

17.
A natural dye extracted from eucalyptus leaves was applied to a silk and wool fabric by the use of two padding techniques, namely the pad-batch and pad-dry techniques under different conditions. Silk and wool fabrics dyed in a solution composed of eucalyptus extract from leaves showed a shade of pale yellow to brown. The exception was when the fabric was dyed with ferrous mordant, resulting in a shade of dark grayish-brown. The fastness properties ranged from good to excellent, while light fastness was fair to good.  相似文献   

18.
The effects of chemical treatment on the mechanical, morphological, and chemical resistance properties of uniaxial natural fabrics, Grewia tilifolia/epoxy composites, were studied. In order to enhance the interfacial bonding between the epoxy matrix and the Grewia tilifolia fabrics, two different types of treatment: alkali treatment (5 % NaOH) and (3-aminopropyl)-triethoxysilane coupling agent (CA), were used. The epoxy composites containing 0–15 wt% of Grewia tilifolia fabric were prepared by hand lay-up technique, at room temperature. The tensile and flexural properties of the untreated, alkali-treated and coupling agent treated Grewia tilifolia reinforced epoxy composites were determined as a function of fabric loading. The 9 % wt Grewia tilifolia fabric reinforced epoxy composites showed improved tensile and flexural modulii when compared to the neat epoxy matrix. Significant improvement in the mechanical properties was obtained when both alkali and coupling agent treated fabrics were used as reinforcement. Morphological studies demonstrated that better adhesion between the fabrics and the matrix was achieved especially when the alkali-treated and coupling agent treated Grewia tilifolia fabrics were used in the composites. For the water absorption and chemical resistance studies, various solvents, acids and alkalis were used on the epoxy composites. This study has shown that Grewia tilifolia fabric/epoxy composites are promising candidates for structural applications, where high strength and stiffness are required.  相似文献   

19.
The use of non-toxic and eco-friendly natural dyes on textiles has received much attention due to the increased environmental awareness in order to avoid some hazardous synthetic dyes. In the present study, an eco-friendly approach was developed to impart color and antibacterial properties to silk fabrics dyed with turmeric extract as a non-toxic natural colorant. The natural colorant was extracted from Curcuma Longa rhizome. Copper sulfate, ferrous sulfate and potassium aluminium sulfate were applied in a pre-metallization process as mordanting agents. Antibacterial properties of treated fabrics were evaluated against common pathogenic bacteria, Staphylococcus aureus (Gram-positive) and Escherichia coli (Gram-negative). The effects of dye concentration and mordant types on the obtained color hues, antibacterial efficiency and color fastness of the fabrics were investigated. The results indicated that mordanted and dyed fabrics possessed desirable antibacterial properties. Complete antibacterial activity of the treated fabrics was obtained with 3 %owf (on weight of the fabric) copper sulfate. It was also shown that increasing the dye concentration could lead to a more efficient antibacterial activity on the mordanted dyed fabrics. An optimum level of the antibacterial activity was observed in the sample treated with 30 %owf of turmeric. Furthermore, the results of CIE L*, a*, b* values, FTIR, washing, light and rubbing fastnesses of the dyed fabrics were reported. The mordanted dyed silk fabrics exhibited desirable color fastness properties. These studies proved a direct relationship between the degree of antibacterial activity of the fabrics treated with turmeric and the metals ion concentration.  相似文献   

20.
Electrospun web may possibly be widely applied to protective garments or specialty textiles due to its high level of protection as well as comfort. Of particular interest in this study is to develop waterproof-breathable fabric by applying electrospun web of polyurethane directly onto the substrate fabric. The optimal electrospinning condition was examined with regards to the concentration, applied voltage and tip-to-collector distance. Solvent-electospinning of polyurethane was performed at the optimum condition, using N,N-dimethylacetamide as solvent. The thickness of 0.02 mm of electrospun web was applied onto the polyester/nylon blended fabric. For comparison, the polyester/nylon fabrics were coated with 0.02 mm thickness of polyurethane resin membranes adopting four different conditions. The electrospun PU web/fabric was compared to resin coated fabrics in terms of water-proof and breathable properties. The electrospun web applied fabric showed higher air permeability, vapor transmission, and thermal insulation properties than resin coated fabrics, which can be translated as greater comfort sensation of electrospun applied fabrics. However, water resistance value of electrospun web applied fabric did not reach that of resin coated fabrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号