首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nutrient fluxes from a soil treatment process for pig slurry   总被引:3,自引:0,他引:3  
Abstract. The effects of pig slurry applications to a hydrologically isolated field treatment plant (at Solepur) were studied over a period of eight years. Thirty repeated doses, averaging 160 m3 ha?1 were applied from April to October of each year (1991–1995), to reach a total application of 4930 m3 ha?1. All slurry samples were analysed for their total solids (TS), macronutrient (C, N, P, K, Ca) and micronutrient (Cu, Zn) content. In total, 284 tonnes of total solids (57 t TS ha?1 yr?1), 115 tonnes of carbon (23 t C ha?1yr?1), 24.5 tonnes of nitrogen (4900 kg N ha?1 yr?1), 7964 kg of phosphorus (1593 kg P ha?1 yr?1), 16 518 kg of potassium (3304 kg K ha?1 yr?1), 183 kg copper (37 kg Cu ha?1 yr?1) and 266 kg zinc (53 kg Zn ha?1 yr?1) were applied to the soil. Thus, this site provides an opportunity to assess the balance and to examine the long‐term behaviour of nutrients under conditions of intensive land application of pig slurries or similar effluents. The main nutrient fluxes through the soil‐water system were determined for each element. Over 40% of the total carbon applied was retained by the soil. About 25% of the slurry nitrogen applied remained in the soil profile and 12.5% was leached through the drainage water as nitrate. Most of the slurry phosphorus applied was retained in the soil profile either as P‐Dyer extractable (83%), or as total soil phosphorus (112%); <0.01% was found in the drainage water. Forty‐three per cent of the potassium applied in the slurry was recovered from the soil profile and 15% was recovered in the drainage water. Most of the copper (62%) and zinc (74%) applied in the slurry remained in the soil as EDTA extractractable forms; very low percentages (0.05% and 0.6% respectively) were found in the drainage water.  相似文献   

2.
Abstract. In dairy farming systems the risk of nitrate leaching is increased by mixed rotations (pasture/arable) and the use of organic manure. We investigated the effect of four organic farming systems with different livestock densities and different types of organic manure on crop yields, nitrate leaching and N balance in an organic dairy/crop rotation (barley–grass-clover–grass-clover–barley/pea–winter wheat–fodder beet) from 1994 to 1998. Nitrate concentrations in soil water extracted by ceramic suction cups ranged from below 1 mg NO3-N l?1 in 1st year grass-clover to 20–50 mg NO3-N l?1 in the winter following barley/pea and winter wheat. Peaks of high nitrate concentrations were observed in 2nd year grass-clover, probably due to urination by grazing cattle. Nitrate leaching was affected by climatic conditions (drainage volume), livestock density and time since ploughing in of grass-clover. No difference in nitrate leaching was observed between the use of slurry alone and farmyard manure from deep litter housing in combination with slurry. Increasing the total-N input to the rotation by 40 kg N ha?1 year?1 (from 0.9 to 1.4 livestock units ha?1) only increased leaching by 6 kg NO3-N ha?1. Nitrate leaching was highest in the second winter (after winter wheat) following ploughing in of the grass-clover (61 kg NO3-N ha?1). Leaching losses were lowest in 1st year grass-clover (20 kg NO3-N ha?1). Averaged over the four years, nitrate concentration in drainage water was 57 mg l?1. Minimizing leaching losses requires improved utilization of organic N accumulated in grazed grass-clover pastures. The N balance for the crop rotation as a whole indicated that accumulation of N in soil organic matter in the fields of these systems was small.  相似文献   

3.
In this study, three types of cropping systems with different nutrient management strategies were studied on a clay soil with the aim of comparing leaching of N, P and K and obtaining knowledge on nutrient budgets. A conventional cropping system with cereals and application of mineral fertilizers (CON) was compared with two organic cropping systems, one without animal manure in which green manure crops were used for N supply (OGM) and one where animal manure (cattle slurry) was applied (OAM). Leaching and crop uptake of N, P and K, and soil mineral N were measured in pipe‐drained plots over a 6‐year period. The mean annual leaching loads of N were moderate and did not differ significantly (P > 0.05) between treatments; 13 kg N ha?1 in CON, 11 kg N ha?1 in OGM and 7.4 kg N ha?1 in OAM. Average annual P leaching showed greater variation than N leaching and was significantly greater in OGM (0.81 kg ha?1 year?1) than in CON (0.36 kg ha?1) and OAM (0.41 kg ha?1). For all cropping systems, removal in harvested crops was the most important export of nutrients from the field and constituted between 80 and 94% of total N outputs (harvested and leached N). Yields of cereals in the organic systems were considerably less (15–50%) than in the CON system, leading to a less efficient use of N than in the conventional system.  相似文献   

4.
Abstract. Large nitrogen (N) inputs to outdoor pig farms in the UK can lead to high nitrate leaching losses and accumulation of surplus N in soil. We investigated the residual effects of three contrasting outdoor pig systems as compared to an arable control on nitrate leaching and soil N supply for subsequent spring cereal crops grown on a sandy loam soil during 1997/98 and 1998/99 harvest seasons. Previously, the pig systems had been stocked for 2 years from October 1995 and were designated current commercial practice (CCP, 25 sows ha?1 on stubble), improved management practice (IMP, 18 sows ha?1 on undersown stubble) and best management practice (BMP, 12 sows ha?1 on established grass). Estimated soil N surpluses by the end of stocking in September 1997 were 576, 398, 265 and 27 kg ha?1 N for the CCP, IMP, BMP and continuous arable control, respectively. Nitrate leaching losses in the first winter were 235, 198, 137 and 38 kg ha?1 N from the former CCP, IMP and BMP systems and the arable control, respectively. These losses from the former pig systems were equivalent to 41–52% of the estimated soil N surpluses. Leaching losses were much smaller in the second winter at 21, 14, 23 and 19 kg ha?1 N, respectively. Cultivation timing had no effect (P>0.05) on leaching losses in year 1, but cultivation in October compared with December increased nitrate leaching by a mean of 14 kg ha?1 N across all treatments in year 2. Leaching losses over the two winters were correlated (P<0.001) with autumn soil mineral N (SMN) contents. In both seasons, spring SMN, grain yields and N offtakes at harvest were similar (P>0.05) for the three previous pig systems and the arable control, and cultivation timing had no effect (P>0.05) on grain yields and crop N offtake. This systems study has shown that nitrate leaching losses during the first winter after outdoor pig farming can be large, with no residual available N benefits to following cereal crops unless that first winter is much drier than average.  相似文献   

5.
In grassland farming, especially on coarse‐textured soils, K can be a critical element. On these soils, the actual K management as well as fertilizer history to a large extent determine the leaching of K. The effects of four fertilizer regimes on the nutrient balances and leaching of K from grassland grown on a sandy soil were investigated. The swards differed in the source and level of N input and K fertilizer: no fertilizer N + 166 kg K ha?1 year?1 (Control), 320 kg inorganic N ha?1 + 300 kg K ha?1 year?1 (MIN 320), 320 kg N + 425 kg K ha?1 year?1 in form of cattle slurry (SLR 320) and a grass–clover sward + 166 kg K ha?1 year?1 (WCL 0) without any inorganic N input. In a second experimental phase, cores from these swards were used in a mini‐lysimeter study on the fate of K from urine patches. On cut grassland after 6 years K input minus removal in herbage resulted in average K surpluses per year of 47, 39, 56 and 159 kg K ha?1 for the Control, MIN 320, WCL 0 and SLR 320, respectively. Related leaching losses per year averaged 7.5, 5, 15 and 25 kg K ha?1. Losses of urinary‐K through leaching were 2.2–4.5 and 5.7–8.4% of the K supplied in summer and autumn applications, respectively. Plant and soil were the major sinks for K from fertilizer or urine. High levels of exchangeable K in the soil and/or large and late fertilizer or urine applications stimulated leaching of K.  相似文献   

6.
Abstract

To determine the relationships between microbial biomass nitrogen (N), nitrate–nitrogen leaching (NO3-N leaching) and N uptake by plants, a field experiment and a soil column experiment were conducted. In the field experiment, microbial biomass N, 0.5 mol L?1 K2SO4 extractable N (extractable N), NO3-N leaching and N uptake by corn were monitored in sawdust compost (SDC: 20 Mg ha?1 containing 158 kg N ha?1 of total N [approximately 50% is easily decomposable organic N]), chemical fertilizer (CF) and no fertilizer (NF) treatments from May 2000 to September 2002. In the soil column experiment, microbial biomass N, extractable N and NO3-N leaching were monitored in soil treated with SDC (20 Mg ha?1) + rice straw (RS) at five different application rates (0, 2.5, 5, 7.5 and 10 Mg ha?1 containing 0, 15, 29, 44 and 59 kg N ha?1) and in soil treated with CF in 2001. Nitrogen was applied as (NH4)2SO4 at rates of 220 kg N ha?1 for SDC and SDC + RS treatments and at a rate of 300 kg N ha?1 for the CF treatment in both experiments. In the field experiment, microbial biomass N in the SDC treatment increased to 147 kg N ha?1 at 7 days after treatment (DAT) and was maintained at 60–70 kg N ha?1 after 30 days. Conversely, microbial biomass N in the CF treatment did not increase significantly. Extractable N in the surface soil increased immediately after treatment, but was found at lower levels in the SDC treatment compared to the CF treatment until 7 DAT. A small amount of NO3-N leaching was observed until 21 DAT and increased markedly from 27 to 42 DAT in the SDC and CF treatments. Cumulative NO3-N leaching in the CF treatment was 146 kg N ha?1, which was equal to half of the applied N, but only 53 kg N ha?1 in the SDC treatment. In contrast, there was no significant difference between N uptake by corn in the SDC and CF treatments. In the soil column experiment, microbial biomass N in the SDC + RS treatment at 7 DAT increased with increased RS application. Conversely, extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT decreased with increased RS application. In both experiments, microbial biomass N was negatively correlated with extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT, and extractable N was positively correlated with cumulative NO3-N leaching. We concluded that microbial biomass N formation in the surface soil decreased extractable N and, consequently, contributed to decreasing NO3-N leaching without impacting negatively on N uptake by plants.  相似文献   

7.
A field experiment was carried out in a semi-arid region of Iran during the 2006–2007 growing season to investigate canola seed yield as affected by nitrogen (N) and natural zeolite (Z) rates. This experiment studied N efficiency and N leaching loss in a sandy soil. Experimental treatments consisted of a factorial combination of three N levels (90, 180, and 270 kg N ha?1) and four zeolite rates (0, 3, 6, and 9 t zeolite ha?1). The result showed that the greatest seed yield (2452.3 kg ha?1) was obtained from the N270Z9 treatment whereas the control treatment (N0Z0) produced the lowest seed yield (1038.3 kg ha?1). Moreover, use of 270 kg N ha?1 without zeolite (N270Z0) led to the greatest amount of N leaching loss (144.23 kg ha?1). Zeolite application clearly reduced N leaching loss in all N rates. This justified low N-use efficiency in high N applications. More N uptake and more canola seed yield is attributed to zeolite application.  相似文献   

8.
High rates of cattle slurry application induce NO inf3 sup- leaching from grassland soils. Therefore, field and lysimeter trials were conducted at Gumpenstein (Austria) to determine the residual effect of various rates of cattle slurry on microbial biomass, N mineralization, activities of soil enzymes, root densities, and N leaching in a grassland soil profile (Orthic Luvisol, sandy silt, pH 6.6). The cattle slurry applications corresponded to rates of 0, 96, 240, and 480 kg N ha-1. N leaching was estimated in the lysimeter trial from 1981 to 1991. At a depth of 0.50 m, N leaching was elevated in the plot with the highest slurry application. In October 1991, deeper soil layers (0–10, 10–20, 20–30, 30–40, and 40–50 cm) from control and slurry-amended plots (480 kg N ha-1) were investigated. Soil biological properties decreased with soil depth. N mineralization, nitrification, and enzymes involved in N cycling (protease, deaminase, and urease) were enhanced significantly (P<0.05) at all soil depths of the slurry-amended grassland. High rates of cattle slurry application reduced the weight of root dry matter and changed the root distribution in the different soil layers. In the slurry-amended plots the roots were mainly located in the topsoil (0–10 cm). As a result of this study, low root densities and high N mineralization rates are held to be the main reasons for NO inf3 sup- leaching after heavy slurry applications on grassland.  相似文献   

9.
Based on experiments conducted during 1988–2009 on rainfed pearl millet/sorghum with 9 treatments in Vertisols, an efficient treatment for sustainable productivity is identified. Twenty kg of nitrogen (N) from farmyard manure (FYM) + 20 kg N (urea) + 10 kg phosphorus (P) ha?1 in pearl millet and 40 kg N (urea) + 20 kg P + 25 kg zinc sulfate (ZnSO4) ha?1 in sorghum gave maximum yield and rainwater-use efficiency, whereas 20 kg N (FYM) + 20 kg (urea) + 10 kg P ha?1 in pearl millet and 40 kg (urea) + 20 kg P ha?1 in sorghum and gave maximum soil N, P, and potassium (K) over years. The regression model of 20 kg N (crop residue) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 for predicting sorghum equivalent yield separately through precipitation and soil variables, whereas 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 under combined model of both variables. Treatment of 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 was superior for attaining maximum sorghum equivalent yield of 1062 kg ha?1, net returns of Rs. 4805 ha?1, benefit/cost (BC) ratio of 1.50, and 127 kg ha?1 of soil N, 10.3 kg ha?1 of soil P, and 386 kg ha?1 of soil K over years.  相似文献   

10.
Long-term fertilizer experiments were conducted on cotton (Gossypium hirsutum) for 21 years with eight fertilizer treatments in a fixed site during 1987–2007 to identify an efficient treatment to ensure maximum yield, greater sustainability, monetary returns, rainwater-use efficiency, and soil fertility over years. The results indicated that the yield was significantly influenced by fertilizer treatments in all years except 1987 1988, and 1994. The mean cotton yield ranged from 492 kg ha?1 under the control to 805 kg ha?1 under 25 kg nitrogen (N) [farmyard manure (FYM)] + 25 kg N (urea) + 25 kg phosphorus (P) ha?1. Among the nutrients, soil N buildup was observed with all treatments, whereas application of 25 kg N + 12.5 kg P ha?1 exhibited increase in P status. Interestingly, depletion of potassium (K) was recorded under all the fertilizer treatments as there was no K application in any of the treatments. An increase in soil N and P increased the plant N and P uptake respectively. Using relationships of different variables, principal component (PC) analysis technique was used for assessing the efficiency of treatments. In all the treatments, five PCs were found significant that explained the variability in the data of variables. The PC model of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 explained maximum variability of 79.6% compared to other treatments. The treatment-wise PC scores were determined and used in developing yield prediction models and measurement of sustainability yield index (SYI). The SYI ranged from 44.4% in control to 72.7% in 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1, which attained a mean cotton yield of 805 kg ha?1 over years. Application of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 was significantly superior in recording maximum rainwater-use efficiency (1.13 kg ha?1 mm?1) and SYI (30.5%). This treatment also gave maximum gross returns of Rs. 30272 ha?1 with benefit–cost ratio of 1.60 and maintained maximum organic carbon and available N, P, and K in soil over years. These findings are extendable to cotton grown under similar soil and agroclimatic conditions in any part of the world.  相似文献   

11.
Long-term effects of the different combinations of nutrient-management treatments were studied on crop yields of sorghum + cowpea in rotation with cotton + black gram. The effects of rainfall, soil temperature, and evaporation on the status of soil fertility and productivity of crops were also modeled and evaluated using a multivariate regression technique. The study was conducted on a permanent experimental site of rain-fed semi-arid Vertisol at the All-India Coordinated Research Project on Dryland Agriculture, Kovilpatti Centre, India, during 1995 to 2007 using 13 combinations of nutrient-management treatments. Application of 20 kg nitrogen (N) (urea) + 20 kg N [farmyard manure (FYM)] + 20 kg phosphorus (P) ha?1 gave the greatest mean grain yield (2146 kg ha?1) of sorghum and the fourth greatest mean yield (76 kg ha?1) of cowpea under sorghum + cowpea system. The same treatment maintained the greatest mean yield of cotton (546 kg ha?1) and black gram (236 kg ha?1) under a cotton + cowpea system. When soil fertility was monitored, this treatment maintained the greatest mean soil organic carbon (4.4 g kg?1), available soil P (10.9 kg ha?1), and available soil potassium (K) (411 kg ha?1), and the second greatest level of mean available soil N (135 kg ha?1) after the 13-year study. The treatments differed significantly from each other in influencing soil organic carbon (C); available soil N, P, and K; and yield of crops attained under sorghum + cowpea and cotton + black gram rotations. Soil temperature at different soil depths at 07:20 h and rainfall had a significant influence on the status of soil organic C. Based on the prediction models developed between long-term yield and soil fertility variables, 20 kg N (urea) + 20 kg N (FYM) + 20 kg P ha?1 could be prescribed for sorghum + cowpea, and 20 kg N (urea) + 20 kg N (FYM) could be prescribed for cotton + black gram. These combinations of treatments would provide a sustainable yield in the range of 1681 to 2146 kg ha?1 of sorghum, 74 to 76 kg ha?1 of cowpea, 486 to 546 kg ha?1 of cotton, and 180 to 236 kg ha?1 of black gram over the years. Beside assuring greater yields, these soil and nutrient management options would also help in maintaining maximum soil organic C of 3.8 to 4.4 g kg?1 soil, available N of 126 to 135 kg ha?1, available soil P of 8.9 to 10.9 kg ha?1, and available soil K of 392 to 411 kg ha?1 over the years. These prediction models for crop yields and fertility status can help us to understand the quantitative relationships between crop yields and nutrients status in soil. Because black gram is unsustainable, as an alternative, sorghum + cowpea could be rotated with cotton for attaining maximum productivity, assuring sustainability, and maintaining soil fertility on rain-fed semi-arid Vertisol soils.  相似文献   

12.
Results are presented from a 3 year investigation into nitrate leaching from isolated 0.4 ha grassland plots fertilized with 250, 500 and 900 kg N ha?1 a?1. Cumulative nitrate leaching over the 3 years was equivalent to 1.5%, 5.4% and 16.7% of the fertilizer applied at 250, 500 and 900 kg N ha?1 rates respectively. Over a whole drainage season, mean nitrate leachate concentrations at 250 kg N ha?1 did not exceed 4 mgl?1, although maximum values of 13.3 mgl?1 were observed. In contrast, at 900 kg N ha?1, the mean nitrate leachate concentration in two of the years exceeded 90 mgl?1. Mineral nitrogen balances constructed for the 1979 growing season indicated that leaching at 250 kg N ha?1 was low because net mineralization of soil organic nitrogen was small, and crop nitrogen uptake almost balanced fertilizer application. Although the pattern of nitrate leaching suggested that by-passing occurred in the movement of water down the soil profile, it was not possible to confirm this using simulation models of leaching. Possible reasons for this, including the occurrence of rapid water flow down gravitationally drained macropores, are discussed.  相似文献   

13.
Abstract

Four rates of straw (0, 4, 8 and 12 t ha?1 yr?1) were incorporated in a field experiment with continuous spring barley. The experiment was conducted on a sandy soil (5.5% clay) and a sandy loam soil (11.2% clay). After eight years, the straw incorporation was combined with catch-crop growing with and without winter application of animal slurry and also spring fertilization with mineral fertilizer (0, 50, 100 or 125 kg N ha?1 yr?1). The combined experiment was conducted for three lyears on the sandy soil and for four years on the sandy loam soil. The effects on barley dry matter yield and N uptake are presented together with the long-term effects of the straw incorporations on crop growth and soil C and N. Grain yield on the sandy loam was unaffected by straw incorporation. On the sandy soil the highest straw application rates reduced grain yield in the unfertilized barley. When the barley received mineral fertilizer at recommended levels (100 kg N ha?1 yr?1), grain yield on this soil was also unaffected by the high straw rates. Including a catch crop had a positive effect on the grain yield of barley on both soils. The total N uptake in grain and straw generally increased with straw application up to 8 t ha?1 yr?1. With the highest straw application rate (12 t ha?1 yr?1), the total N uptake decreased but still exceeded N uptake in barley grown with straw removal. The barley accumulated higher amounts of N when a catch crop was included. The total N uptake in the barley was significantly higher after animal slurry application. The extra N uptake, however, was much lower than the amounts of N applied with the slurry. Incorporation of straw had only a small influence on N uptake after slurry application. The straw, therefore, was not able to store the applied N during winter. In the two four-year periods before the combined experiment, grain yield on the sandy loam was generally negatively affected by straw incorporations. In the second period, N uptake began to show a positive effect of the straw. On the sandy soil, grain yield and N uptake during the whole period were generally positively affected by the straw incorporations except for the highest straw rate (12 t ha?1 yr?1). The sandy loam soil showed higher increases in C and N content after the repeated straw incorporations and catch-crop growing than the sandy soil. When application of animal slurry was combined with the catch crop, no further increases in soil C and N were found relative to soil where a catch crop was grown without slurry application. Large amounts of the N applied with the slurry may therefore have been lost by denitrification or nitrate leaching.  相似文献   

14.
Abstract. Three successive crops of winter wheat were grown on a sandy loam to test the residual effect of long‐term annual incorporation of spring barley straw at rates of 0, 4, 8 and 12 t ha?1, and ryegrass catch crops with or without additions of pig slurry. Soil receiving 4, 8 and 12 t ha?1 of straw annually for 18 years contained 12, 21 and 30% more carbon (C), respectively, than soil with straw removal, and soil C and nitrogen (N) contents increased linearly with straw rate. The soil retained 14% of the straw C and 37% of the straw N. Ryegrass catch‐cropping for 10 years also increased soil C and N concentrations, whereas the effect of pig slurry was insignificant. Grain yield in the first wheat crop showed an average dry matter (DM) increase of 0.7 t ha?1 after treatment with 8 and 12 t straw ha?1. In the two subsequent wheat crops, grain yield increased by 0.2–0.3 t DM ha?1 after 8 and 12 t straw ha?1. No grain yield increases were found after 4 t straw ha?1 in any of the three years. Previous ryegrass catch crops increased yields of wheat grain, but effects in the third wheat crop were significant only where ryegrass had been combined with pig slurry. Straw incorporation increased the N offtake in the first wheat crop. In the second crop, only 8 and 12 t straw ha?1 improved wheat N offtake, while the N offtake in the third wheat crop was unaffected. Ryegrass catch crops increased N offtake in the first and second wheat crop. Again, a positive effect in the third crop was seen only when ryegrass was combined with slurry. Long‐term, annual incorporation of straw and ryegrass catch crops provided a clear and relatively persistent increase in soil organic matter levels, whereas the positive effects on the yield of subsequent wheat crops were modest and transient.  相似文献   

15.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

16.
Catch crop strategy and nitrate leaching following grazed grass-clover   总被引:1,自引:0,他引:1  
Cultivation of grassland presents a high risk of nitrate leaching. This study aimed to determine if leaching could be reduced by growing spring barley (Hordeum vulgare L.) as a green crop for silage with undersown Italian ryegrass (Lolium multiflorum Lam.) compared with barley grown to maturity with or without an undersown conventional catch crop of perennial ryegrass (Lolium perenne L.). All treatments received 0, 60 or 120 kg of ammonium‐N ha?1 in cattle slurry. In spring 2003, two grass‐clover fields (3 and 5 years old, respectively, with different management histories) were ploughed. The effects of the treatments on yield and nitrate leaching were determined in the first year, while the residual effects of the treatments were determined in the second year in a crop of spring barley/perennial ryegrass. Nitrate leaching was estimated in selected treatments using soil water samples from ceramic cups. The experiment showed that compared with treatments without catch crop, green barley/Italian ryegrass reduced leaching by 163–320 kg N ha?1, corresponding to 95–99%, and the perennial ryegrass reduced leaching to between 34 and 86 kg N ha?1, corresponding to a reduction of 80 and 66%. Also, in the second growing season, leaching following catch crops was reduced compared with the bare soil treatment. It was concluded that the green barley/Italian ryegrass offers advantages not only for the environment but also for farmers, for whom it provides a fodder high in roughage and avoids the difficulties with clover fatigue increasingly experienced by Danish farmers.  相似文献   

17.
On acid sandy soils of Niger (West Africa) fertilizer N recovery by pearl millet (Pennisetum glaucum L.) is often more than 100 per cent in years with normal or above average rainfall. Biological nitrogen fixation (BNF) by N2-fixing bacteria may contribute to the N supply in pearl millet cropping systems. For a long-term field experiment comprising treatments with and without mineral fertilizer (F) and with and without crop residue application (CR) a N balance sheet was calculated over a period of six years (1983-1988). After six years of successive millet cropping total N uptake (36-77 kg N ha?1 yr?1) was distinctly higher than the amount of fertilizer N applied (30 kg N ha?1 yr?1). The atmospheric input of NH4-N and NO3-N in the rainwater was about 2 kg N ha?1 yr?1, 70 % in the form of NH4-N. Gaseous NH3 losses from urea (broadcast, incorporated) were estimated from other experiments to amount to 36 % of the fertilizer N applied. Nitrogen losses by leaching (15 to > 25 kg N ha?1 yr?1) were dependent on the treatment and on the quantity and distribution of single rainfall events (>50 mm). Decline in total soil N content (0-60 cm) ranged from 15 to 48 kg N ha?1 yr?1. The long-term N balance (1983-1988) indicated an annual net gain between 6 (+CR-F) and 13 (+CR+F) kg N ha?1 yr?1. For the control (-CR-F) the long-term N balance was negative (10 kg N ha?1 yr?1). In the treatment with crop residues only, the N balance was mainly determined by leaching losses, whereas in treatments with mineral fertilizer application the N balance depended primarily on N removal by the millet crop. The annual net gain in the N balance increased from 7 kg ha?1 with mineral fertilizer to 13 kg ha?1 in the combination mineral fertilizer plus crop residues. In both the rhizosphere and the bulk soil (0-15 cm), between 9 and 45% of the total bacterial population were N2-fixing (diazotrophic) bacteria. The increased N gain upon crop residue application was positively correlated with an increase in the number of diazotrophic and total bacteria. The data on bacterial numbers suggest that the gain of N in the longterm N balance is most likely due to an N input by biological nitrogen fixation. In addition, evidence exists from related studies that the proliferation of diazotrophs and total bacteria in the rhizosphere due to crop residue application stimulated root growth of pearl millet, and thus improved the phosphorus (P) acquisition in the P deficient soil.  相似文献   

18.
Mineral N accumulates in autumn under pastures in southeastern Australia and is at risk of leaching as nitrate during winter. Nitrate leaching loss and soil mineral N concentrations were measured under pastures grazed by sheep on a duplex (texture contrast) soil in southern New South Wales from 1994 to 1996. Legume (Trifolium subterraneum)‐based pastures contained either annual grass (Lolium rigidum) or perennial grasses (Phalaris aquatica and Dactylis glomerata), and had a control (soil pH 4.1 in 0.01 m CaCl2) or lime treatment (pH 5.5). One of the four replicates was monitored for surface runoff and subsurface flow (the top of the B horizon), and solution NO3 concentrations. The soil contained more mineral N in autumn (64–133 kg N ha?1 to 120 cm) than in spring (51–96 kg N ha?1), with NO3 comprising 70–77%. No NO3 leached in 1994 (475 mm rainfall). In 1995 (697 mm rainfall) and 1996 (666 mm rainfall), the solution at 20 cm depth and subsurface flow contained 20–50 mg N l?1 as NO3 initially but < 1 mg N l?1 by spring. Nitrate‐N concentrations at 120 cm ranged between 2 and 22 mg N l?1 during winter. Losses of NO3 were small in surface runoff (0–2 kg N ha?1 year?1). In 1995, 9–19 kg N ha?1 was lost in subsurface flow. Deep drainage losses were 3–12 kg N ha?1 in 1995 and 4–10 kg N ha?1 in 1996, with the most loss occurring under limed annual pasture. Averaged over 3 years, N losses were 9 and 15 kg N ha?1 year?1 under control and limed annual pastures, respectively, and 6 and 8 kg N ha?1 year?1 under control and limed perennial pastures. Nitrate losses in the wet year of 1995 were 22, 33, 13 and 19 kg N ha?1 under the four respective pastures. The increased loss of N caused by liming was of a similar amount to the decreased N loss by maintaining perennial pasture as distinct from an annual pasture.  相似文献   

19.
Abstract. Nitrate leaching was measured over the eight drainage seasons spanning the nine years from 1990–1998 on the 157‐year old Broadbalk Experiment at Rothamsted, UK. The weather pattern of two dry, three wet and three dry years was the dominant factor controlling nitrogen (N) loss. Both the concentration of nitrate in the drainage waters and the amount of N leached increased with the amount of N applied, mostly because of long‐term, differential increases in soil organic matter and mineralization. On average, losses of N by leaching were 30 kg ha?1yr?1 when no more than the optimum N application was applied and were typical of amounts leached from arable land in the UK. Losses increased significantly in both amounts and as the percentage of N applied for supra‐optimal applications of N and from autumn‐applied farmyard manure (FYM). Extra spring‐applied fertilizer was very effective at increasing yields on plots given FYM in the autumn but at the expense of leaching losses three times those from optimum fertilizer N applications. Losses increased after potatoes because they left significant amounts of mineral N in the soil, and decreased after forage maize because it used applied N more effectively. Losses measured 120 years ago from identical treatments were 74% greater than current losses because of today's larger yields and more efficient varieties and management practices. Average concentrations of nitrate in drainage waters did not exceed the EU limit of 11.3 mg NO3‐N l?1 until supra‐optimal amounts of N fertilizer (>150–200 kg ha?1yr?1) were applied in spring or FYM was applied in autumn. However some drainage waters from all plots, even those that have not received fertilizer for >150 years, exceeded the limit when rain followed a dry summer and autumn. Nitrate leaching into waters will remain a problem for profitable arable farming in the drier parts of Eastern England and Europe despite increased N use efficiency.  相似文献   

20.
《Journal of plant nutrition》2013,36(8):1561-1580
Abstract

The Magruder plots are the oldest continuous soil fertility wheat research plots in the Great Plains region, and are one of the oldest continuous soil fertility wheat plots in the world. They were initiated in 1892 by Alexander C. Magruder who was interested in the productivity of native prairie soils when sown continuously to winter wheat. This study reports on a simple estimate of nitrogen (N) balance in the Magruder plots, accounting for N applied, N removed in the grain, plant N loss, denitrification, non‐symbiotic N fixation, nitrate (NO3 ?) leaching, N applied in the rainfall, estimated total soil N (0–30 cm) at the beginning of the experiment and that measured in 2001. In the Manure plots, total soil N decreased from 6890 kg N ha?1 in the surface 0–30 cm in 1892, to 3198 kg N ha?1 in 2002. In the Check plots (no nutrients applied for 109 years) only 2411 kg N ha?1 or 35% of the original total soil organic N remains. Nitrogen removed in the grain averaged 38.4 kg N ha?1 yr?1 and N additions (manure, N in rainfall, N via symbiotic N fixation) averaged 44.5 kg N ha?1 yr?1 in the Manure plots. Following 109 years, unaccounted N ranged from 229 to 1395 kg N ha?1. On a by year basis, this would translate into 2–13 kg N ha?1 yr?1 that were unaccounted for, increasing with increased N application. For the Manure plots, the estimate of nitrogen use efficiency (NUE) (N removed in the grain, minus N removed in the grain of the Check plots, divided by the rate of N applied) was 32.8%, similar to the 33% NUE for world cereal production reported in 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号