首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, effects of lyophilization on the functional properties of acid modified and autoclaved corn starch preparations were investigated. RS contents and pasting properties of these starch preparations were also determined. Significant increases in solubility were observed as the hydrolysis level of the lyophilized samples increased. All of the acid-modified gelatinized–autoclaved–lyophilized samples had higher water binding values than those of native starch and heat treated oven-dried native starch. Acid-modified gelatinized–autoclaved–lyophilized samples (with storage at 95°C: GASL or without storage: GAL, before lyophilization) improved emulsion properties of soy protein solution significantly. Acid modification seems to be a prerequisite to achieve improving effect of lyophilization. While native starch did not contain any RS, the level increased to 8.1% due to gelatinization, autoclaving and oven-drying (Control 2). The RS content of Control 2 was higher than that of gelatinized–autoclaved–lyophilized native starch (N-GAL, 2.9%). The samples stored prior to lyophilization had higher RS contents as compared to the corresponding unstored samples. The highest RS content (12.4%) was observed in 2h-GASL sample. Cold viscosity was observed in the RVA curves of N-GASL, 2h-GASL, N-GAL and 2h-GAL samples. A possible mechanism/model is suggested to explain the lack or existence of a cold viscosity.  相似文献   

2.
Experimental gluten-free (GF) rice cookies were formulated with 100% rice flour (CTR) or by substituting 50% of rice flour with native waxy rice starch (WRS) or with three different resistant starch (RS) ingredients obtained from debranched, annealed or acid and heat-moisture treated WRS (RSa, RSb and RSc, respectively). Chemical composition, in vitro starch digestibility and physical and textural characteristics were carried out. Among cookies, RSa-cookies had the highest total dietary fibre content, the lowest rapidly digestible starch and the highest RS contents. All the three RS preparations have proved effective in increasing the proportion that tested as RS with respect to native WRS. However, the estimated RS loss for each applied RS ingredients caused by the baking process followed the order of RSa < RSc < RSb. Last, the lowest vitro glycaemic index value was measured for RSa-cookies. Among cookies, differences in colour and hardness were reported. The partial replacement of commercial rice flour with RSa could contribute to formulate GF cookies with higher dietary fibre content and likely slowly digestible starch properties more than equivalent amounts of RSb and RSc.  相似文献   

3.
Water suspensions of starch (with the concentration of 8 g/100 g) were prepared in a measuring vessel of a Brabender viscograph and heated to temperatures of 74, 76.5, 79, 81.5, 84, 86.5, 89, 91.5 or 94 °C under continuous stirring. The resultant solution was cooled and frozen, and then defrosted. Thermal characteristics of re-pasting, rheological properties of produced pastes, starch solubility in water and swelling power were determined.The heating and freezing of the wheat starch suspension induced changes in its properties, with tendency and extent of these changes depending on temperature of pre-heating. The thermal characteristics of the analyzed starches revealed three peaks that corresponded to transitions proceeding during solubilization of retrograded amylopectin and retrograded amylose and solubilization of amylose–lipid complexes. Retrogradation of amylose induced by starch pre-heating followed by its freezing affected also the consistency coefficient and yield stress of the pastes formed by the analyzed starches. Values of these rheological parameters were higher at higher temperatures of pre-heating, compared to the pastes prepared from native starch, and were changing accordingly to the determined second order polynomial function. Amylose retrogradation occurring during the production of starch preparations diminished their solubility in water and increased their swelling power compared to native starch.  相似文献   

4.
The optimum conditions for producing rice starch enriched in slowly digestible and resistant fractions by citric acid treatment determined by a response surface methodology (RSM) model equation, were: reaction temperature, 128.4 °C; reaction time, 13.8 h; and citric acid, 2.62 mmol/20 g starch. The slowly digestible and resistant starch fractions of the optimally acid-treated rice starch totalled 54.1%, which was 28.1% higher than the control. The slowly digestible and resistant fractions of the acid-treated rice starch did not differ significantly after heat treatment, whereas those of raw rice starch decreased by 49.6–63.8%, depending on the type of heat treatment (cooking at 100 °C or autoclaving). The slowly digestible fraction of the acid-treated starch increased by 8.9–14.2%. After autoclaving, the glucose response of the acid-treated starch was lower than untreated starch, but similar to that of Novelose 330. After heat treatment, the rate of blood glucose decrease was slower for the acid-treated starch than for Novelose 330. Compared to raw rice starch, the acid-treated starch exhibited increases in apparent amylose content, blue value, dextrose equivalent, cold-water solubility and transmittance, and decreases in wavelength of maximum absorbance, viscosity, and gel-forming ability.  相似文献   

5.
Normal corn, Hylon V and Hylon VII starches were partially degraded by acid-ethanol treatment and applied to heat-moisture treatment (HMT) for improving the enzymatic resistance of starch. The weight-average degree of polymerization (DPw) of acid-ethanol-treated (AET) corn starches ranged from 6.75 × 105 to 181, 4.48 × 105 to 121, and 1.94 × 105 to 111 anhydrous glucose units for normal corn, Hylon V and Hylon VII starches, respectively. Starch retained its granular structure after AET and HMT, recovery of starch granules after modifications were higher than 92%. Resistant starch (RS) content and boiling-stable RS content of corn starch increased after dual modification, and the increment increased with increasing duration of AET. The boiling-stable RS content of dual-modified starch increased from 1.5 to 9.2, 12.2 to 24.1, and 18.0 to 36.2% for normal corn, Hylon V and Hylon VII starches, respectively. Increments of RS content and boiling-stable RS content of dual-modified starches were significantly correlated (r2 > 0.700) with DPw of starch, revealing that the enzymatic resistance of dual-modified corn starch granules increased with decreasing molecular size of starch. Result also suggested that starch granules partially degraded with AET could improve the molecular mobility and ordering during the consequent HMT.  相似文献   

6.
In this study effects of extrusion cooking on enzyme resistant starch (RS) formation in high amylose corn starches (Hylon V and VII) and the functional properties of RS preparations were investigated. Native starches were extruded at 50, 60, 70% feed moisture contents, at constant screw speed (100 rpm) and barrel temperature (140 °C). Among these samples, the highest RS contents were observed at 60% feed moisture. Therefore, feed moisture in the second and third extrusion cycles was set at 60%. There were significant increases in RS contents of both Hylon V and Hylon VII after the second extrusion cycle (p < 0.05). After the third extrusion, the RS levels reached to 40.0 and 45.1% for Hylon V and Hylon VII, respectively. Substantial loss of birefringence in these samples indicated that the increases in RS were mainly due to RS3 formation. The RS samples produced by extrusion did not have high emulsion capacity, but the ones produced from Hylon VII had high emulsion stability. Although, decreases in L* and increases in b* values of extruded samples were significant as compared to respective native starches, the changes were not substantial. Therefore, their incorporation is not expected to cause major changes in the colour of end-products.  相似文献   

7.
Three rice starches from indica (TNuS19), japonica (TNu67) and waxy (TCW70) were used as samples to investigate the water mobility, viscoelasticity and textural properties of starch gels using pulsed nuclear magnetic resonance (PNMR), dynamic rheometer and texture analyzer. The spin–spin relaxation time (T2), showed water mobility of starch gels was detected with starch concentrations 10–30%. Generally, the TNuS19 and TNu67 at ≥20% showed two components (T2a and T2b) in water mobility, where T2a and T2b related to solid-like and liquid-like water molecules in starch gels, respectively. However, the TCW70 over the concentrations examined had only T2b component, higher than those of corresponding TNuS19 and TNu67. The storage (G′) and loss (G″) moduli of starch gels were in the order of TNuS19 > TNu67 > TCW70. Texture analyzer analysis indicated that TNuS19 had higher hardness, stickiness and adhesiveness than did the TNu67 and TCW70, and changed significantly with the starch concentration increase. The value of T2b was highly correlated with physical properties of starch gels, especially with dynamic rheological parameters. It is suggested that amylose content may play a major role to influence the water mobility of starch gels which affects the specific viscoelasticity and textural properties of starch gels.  相似文献   

8.
Rheology of cake batter is considered an important parameter determining cake quality. It is thus frequently used to investigate structural changes in the process of cake making. However, little is known about the relation between batter rheological properties and cake's final properties, concerning volume and texture. In order to explore this relation an extensive experiment covering broad recipe variability was performed using an advanced experimental design approach and subsequent statistical analysis. The mixture of standard with pregelatinized wheat flour had significant main and interaction effects on most responses characterizing cake batter. Leavening acids and mixing time affected only a few of them. The simultaneous influence of ingredients and mixing time was clearly described. Measuring the batter rheological properties immediately after mixing gave sufficient information to significantly estimate in advance the volume of the cakes together with their cohesiveness. This methodology could improve the design of new bakery products with desirable volume and texture.  相似文献   

9.
In this study, protease treatment of brown rice (BR) batters was investigated in order to evaluate its impact on the textural and baking properties of BR bread. The enzymatic treatment improved bread quality by significantly increasing specific volume (p < 0.05), while decreasing crumb hardness and chewiness (p < 0.05). Fundamental rheology and viscometry of batters revealed that protein hydrolysis induced lower complex modulus and initial viscosity, while phase angle was unaffected. Flour pasting properties were also affected, with a significant decrease in paste viscosity and breakdown (p < 0.05). Protein analysis of batters revealed that the enzymatic treatment induced the release of low molecular weight proteins from macromolecular protein complexes. In conclusion, a lower resistance to deformation of batters during proofing and in the early stages of baking as well as the preserved batter elasticity and the increased paste stability positively affected the breadmaking performance.  相似文献   

10.
Eleven maize landraces were evaluated for pozole quality. The microstructural, thermal and rheological properties of annealed starch granules determine most of the quality of pozole. Annealed starch in traditional nixtamalisation has an important role in increasing gelatinisation onset (To), peak (Tp) and final (Tf) temperatures; peak, setback and final viscosity as well as the stability of the starch granule, all of which significantly affect pozole quality. Annealed starch in Cacahuacintle nixtamal (pozole end-use) increased temperatures To, Tp and Tf by >5.2, >3.8 and >4.1 °C respectively, and narrowed the range Tf − To from 13.78 to 12.62 °C. The enthalpy was reduced from 6.76 to 5.85 J/g, while the nixtamal starch in tortilla maize landraces presented fewer annealing effects. The annealing effect in nixtamal starch seems to stabilize the starch granules and avoid their collapse, compared to native starch, as shown by the X-ray diffraction peak intensity and pattern that is similar to unprocessed maize. Starch in nixtamal changes from Type A to Type V pattern in pozole. Kernel physical parameters, although important, affected the quality to a lesser extent, with the exception of the flotation index. Cacahuacintle maize landrace showed the best quality and yield as well as a short pozole cooking time.  相似文献   

11.
Rice starch suspensions of 10% dry matter (DM) were treated by heat (0.1 MPa at 20–85 °C) or pressure/heat combinations (100–600 MPa at 20, 40 and 50 °C) for 15 min to investigate their gelatinization and rheological characteristics. The maximum swelling index of about 12 g water per gram of DM was obtained by thermal treatment at 85 °C, meanwhile, that of 7.0 g was observed by 600-MPa pressurization at 50 °C. The higher temperatures or pressures resulted in the higher degrees of gelatinization. Furthermore, treatments of 0.1 MPa at 85 °C, 500 MPa at 50 °C and 600 MPa at various temperatures caused complete gelatinization of rice starch. The consistency index (K) and storage modulus (G′) dramatically increased from 70 °C or 400 MPa. The G′ values were higher in pressure-treated samples than those in thermal-treated samples. Therefore, an application of pressure/heat combinations as a processing method to improve the quality of rice starch products would be possible.  相似文献   

12.
Aqueous starch suspensions (8 g/100 g) were prepared in a measuring flask of a Brabender viscograph and heated to temperatures of 74.0, 76.5, 79.0, 81.5, 84.0, 86.5, 89.0, 91.5 or 94.0 °C under continuous stirring. The resultant solution was cooled and frozen, and then defrosted and subjected to re-pasting in the Brabender viscograph.The heating and freezing of wheat starch suspension evoked changes in its properties, with the tendency and extent of these changes dependent on the pre-heating temperature. During re-pasting of the produced starch preparations in a Brabender viscograph, an increase occurred in particle size of the granules—and 8-fold increase in paste viscosity—compared with pastes produced from native starch. The viscosity of pastes was positively correlated with the size of formed gel sacks determined using a laser particle size analyzer. This was also found to depend on pre-heating temperature and changed according to a determined quadratic function. The strength of produced gels, measured with the oscillating–rotating viscometer, was higher than that of the gel produced from native starch and depended on the pre-heating temperature; however, these changes followed a determined quadratic function.  相似文献   

13.
The surface rheological properties of dough (components) were determined in order to estimate the effect of these properties on disproportionation and coalescence of gas bubbles in bread dough. Three different systems were studied as a model for the gas-dough interface: a diluted aqueous dough dispersion, gluten and wheat lipids spread on water. The surface dilational modulus, E, and tanϑ of these systems were determined as a function of frequency using a modified Langmuir trough. Values of E and tanϑ found were: 35–100 mN/m and 0·7–0–2, resp., for dough dispersions, 20–45 mN/m and 0·4–0·15, resp., for gluten, and 20–90 mN/m and 1·3–0·1, resp., for lipids in the frequency range tested at room temperature. On the assumption that the gas-dough interface is comparable either to the surface of the dough dispersions tested or to a water surface with spread gluten, it was shown that disproportionation of gas bubbles in dough can be retarded but not prevented. Wheat lipids present in the right concentration in the surface can prevent this foam stabilising mechanism to a larger extent. The surface dilational modulus as well as the surface tension during continuous expansion of dough dispersions were also determined at 45°C. The surface dilational modulus of a dough dispersion at 45°C was 7–25 mN/m, which was approximately 5 times smaller than at room temperature. Results of surface tension measurements during continuous expansion in a Langmuir trough showed that values for surface tension were only slightly higher than at equilibrium (ca. 2 mN/m) at 45°C and at deformation rates of the surface comparable to those at oven rise. These results suggest that thin dough films at higher temperatures will be less stable than at room temperature. Implications in relation with coalescence in dough are discussed. No significant differences in surface rheological properties of dough dispersions of wheats with different bread-making qualities were found in the sinusoidal oscillation tests nor in the continuous expansion tests. Surface rheological properties, therefore, appear not to be the main factor responsible for differences in baking quality amongst different wheats.  相似文献   

14.
Thermoplastic starch (TPS) was modified with ascorbic acid and citric acid by melt processing of native starch with glycerol as plasticizer in an intensive batch mixer at 160 °C. It was found that the molar mass decreases with acid content and processing time causing the reduction in melting temperature (Tm). As observed by the results of X-ray diffraction and DSC measurements, crystallinity was not changed by the reaction with organic acids. Tm depression with falling molar mass was interpreted on the basis of the effect of concentration of end-chain units, which act as diluents. FTIR did not show any appreciable change in starch chemical compositions, leading to the conclusion that the main changes observed were produced by the variation in molar mass of the material. We demonstrated that it is possible to decrease melt viscosity without the need for more plasticizer thus avoiding side-effects such as an increase in water affinity or relevant changes in the dynamic mechanical properties.  相似文献   

15.
The effect of two rice endosperm proteins, glutelin and globulin, on the physicochemical properties of rice starch and flour was investigated. Albumin, globulin, prolamin and glutelin were sequentially extracted from defatted rice flour with de-ionised water, 1.5 M NaCl, propan-2-ol and 0.1 M NaOH, respectively, followed by dialysis and lyophilisation. Globulin and glutelin were then added to pure rice starch at various concentrations, separately and together, and the pasting and textural properties of mixtures were analysed by the Rapid Visco Analyser (RVA) and TA-XT2 textural analyser, respectively. The presence of glutelin in rice starch caused an increase in pasting temperature but a decrease in the viscosity parameters of the starch paste. The concentration of glutelin was also positively correlated with the hardness and adhesive properties of the starch gel. The presence of globulin, on the other hand, resulted in a decrease in all the pasting and textural parameters except gel hardness and the changes were linearly correlated with the concentration of the protein for most of the physical parameters. When the two proteins were added to rice starch together, the outcomes in pasting and textural properties were generally dependent upon the relative concentrations of the two proteins, but were also influenced by the presence of the other two protein fractions, albumin and prolamin. The presence of globulin initially accelerated the rate of water absorption by starch during cooking while the presence of glutelin slowed it down, but in both cases, the ultimate amount of water absorbed was significantly lower than that by pure starch. The contrasting effects of the different protein fractions mean that it might be possible to manipulate the textural properties of rice starch and flour to achieve desirable sensory outcomes by varying the proportions of the protein fractions in product formulations.  相似文献   

16.
Rheological properties of gluten from three biscuit wheat cultivars (Triticum aestivum, L., cv. Reaper, Ritmo, Encore) were studied. The cultivars were grown in two seasons (1997–1999) with three different nitrogen levels, and nitrogen fertiliser was applied using three different strategies. Protein and gluten contents were significantly affected by the N level (P<0.001), but inter-cultivar differences were only significant in 1999, when growing conditions were restricted by environmental factors. The viscoelastic properties of gluten were characterised by creep recovery and oscillation testing. The results showed a significant inter-cultivar effect (P<0.001), with an additional effect from the N level (P<0.001). Increasing levels of nitrogen fertiliser increased the viscous properties of gluten, through an increase of maximum strain and recovery strain, and through a decrease of the storage (G′) and loss modulus (G′′), whereas the phase angle, δ, increased. This increase in viscous behaviour is suggested to be attributed to a higher gliadin/glutenin ratio in the gluten. The fertiliser application strategy did not influence the rheological properties significantly. Thus, high N fertiliser application in biscuit wheat cultivation may be beneficial to obtain rheological properties, which are suitable for biscuit making.  相似文献   

17.
The rice stem nematode Ditylenchus angustus causes “Ufra” disease in rice resulting in substantial yield losses. Although it is predominant in deep water rice in South and Southeast Asia, this nematode also infects irrigated and rainfed low land rice. This study evaluated rice genotypes (irrigated, rainfed, deep water and landraces) for resistance to the Bangladeshi population of D. angustus. The experiment was executed using artificial inoculation, in both rainfed and irrigated ecosystems. The rice varieties were first scored at 28 days post inoculation (dpi), and ranked based on the postinfectional reactions and severity of symptoms on a 0–16 rating scale. The susceptibility of the varieties was also evaluated at a later time point, i.e. 55 dpi, based on the percentage of tiller infections, using a disease index scoring system ranging from 0 to 9. Both screening methods showed a similar ranking of the varieties for susceptibility/resistance against this nematode. The experiment was initially conducted in plastic pots, and the promising varieties were analyzed further in field conditions. Out of the 85 varieties, one landrace named ‘Manikpukha’ proved to be highly resistant, while 6 other varieties showed resistance and 13 varieties showed moderately resistant responses under both pot and field conditions. The promising varieties found in the present investigation can be used in rice breeding programs as well as for further detailed studies to develop a sustainable ufra management strategy.  相似文献   

18.
Since strain hardening has been proposed as an important quality indicator of dough with respect to bread-making performance, a large body of experimental support for this concept has been published. Nevertheless, some questions remain with respect to the use of the concept of strain hardening. This is the subject of this review. Discussion points will include the most relevant indicator of strain hardening in relation to bread-making performance, methods to determine strain hardening and the benefits and limitations of using strain hardening as a parameter that characterises the bread-making performance of bread dough.  相似文献   

19.
20.
The determination of mash consistency proved to be difficult but is of great importance particularly with regard to process and quality control. Therefore, the aim of this study was to develop a new rheological method for precisely determining changes in mash consistency occurring during the mashing process. For that purpose, five mashes with various levels of unmalted oats (0–40%) have been analyzed using a Physica MCR rheometer equipped with a paddle-shaped rotor enabling mash particles to be kept in suspension throughout the rheological measurement. For validating this new method, a statistical comparison with the established Rapid Visco Analyser (RVA) has been carried out. For this purpose, the mash consistency curves have been described by regression functions with the aim to determine characteristic curve points mathematically correct. As a result, the start and end point of starch gelatinization/liquefaction have been well-defined. By calculating the coefficients of determination, good to very good linear correlations between respective curve values and adjunct levels have been found for both methods (MCR and RVA). By calculating the repeatability, however, it has been revealed that the precision of the MCR method is significantly better than that of the RVA method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号