首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A series of water absorbent porous modified polyacrylonitrile (PAN) fibers were prepared using the blends of PAN and various molecular weight of polyethylene glycol (PEG) by wet-spinning process and water bath post-treatment. The chemical structure and morphologies of the modified PAN fibers were studied. The water transportation, water retention, moisture absorption and mechanical properties of the fibers were discussed. Results show that there is no residual PEG in modified PAN fibers after drawing process in hot water bath and post-treatment. With the increase in PEG molecular weight, the fiber surface grooves become deeper, the inner pore size increases, while the mechanical properties decrease. The water absorbing and transferring capabilities of the modified PAN fibers can be improved in varying degrees due to the different pore structures left by series molecular weight of PEG removing.  相似文献   

2.
Polyacrylonitrile (PAN) precursor fibers were modified for different periods of time using hydrogen peroxide aqueous solution. A variety of tests were employed to characterize the fibers. The modification could induce cyclization and oxidation in the precursor fibers, as reflected by the changes in length and diameter of the fibers, and the results of Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Compared with the unmodified fiber, the modified fibers released less heat during a heating process similar to stabilization of PAN precursor fiber. Also, the modified fibers showed lower characteristic temperatures on differential scanning calorimetry (DSC) thermograms, and lower onset temperature of weight loss on thermal gravimetry (TG) curves. The modified fibers had more surface defects and hence exhibited lower tenacity and tensile modulus. Compared with the unmodified fibers, however, the modified fibers had smoother surface and fewer defects after stabilization. The strain decreased with increasing temperature under a constant tension for all the fibers. At the temperatures above 200 °C, the shrinkage of the fibers decreased with the increase of modification time, because a certain degree of cyclization and oxidation occurred in modified fibers, making them shrink less in the temperature range equivalent to stabilization.  相似文献   

3.
Ployacrylonitrile (PAN) nanofibers were formed by electrospinning. Amidoxime ployacrylonitrile (AOPAN) nanofibers were prepared by reaction with hydroxylamine hydrochloride, which were used as the matrix for metal ions chelation. FTIR spectra of the PAN nanofibers and AOPAN nanofibers were recorded for analysis of the surface chemical structures. The AOPAN conventional fibers were also prepared for comparison, and surface morphologies of the modified PAN conventional fibers and PAN nanofibers were observed by FESEM. Metal ions concentrations were calculated by AAS. The chelated isothermal process and kinetics parameters of the modified PAN nanofibers and PAN conventional fibers were studied in this work. Results indicated that the saturated coordinate capacity of AOPAN nanofibers to Cu2+, Cd2+ was 3.4482 and 4.5408 mmol/g (dry fiber) respectively, nearly two times higher than that of AOPAN conventional fibers. Besides, the desorption rate of Cu2+ and Cd2+ from metal chelated AOPAN nanofibers was 87 and 92 % respectively in 1 mol/l nitric acid solution for 60 min. The isothermal processes were found to be in conformity with Langmuir model.  相似文献   

4.
Carbon fibers and precursor polyacrylonitrile (PAN) fibres that contain either silica or hydroxyapatite particles, imbedded during the spinning process, were studied in this paper. The modified PAN fibers were thermally stabilized using a multi-stage process in the temperature range between 150 to 280 °C in an oxidative environment. Subsequent carbonization leading to obtain carbon fibers was carried on at 1000 °C in an argon atmosphere. The changes of properties of composite precursor fibers taking place during stabilization and carbonization processes were investigated by the combination of Differential Scanning Calorimetry, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy equipped with energy dispersive X-ray spectrometer and ultrasonic methods. Mechanical properties, such as tensile strength, static Young’s modulus, elongation at fracture were analyzed at each stage of thermal stabilization process. Additionally some traditional measurements like fiber diameter and mass were studied. Ceramic powders added to the spinning solution were present also in composites fibers after stabilization and carbonization process. Such modification allows to avoid the post-treatment operations, for example by coating or covering with films, which were usually necessary in order to obtain bioactive character of implants. Modification of carbon fibers using calcium phosphate or silica can lead to the development of a new materials for the manufacturing of implants which can establish direct chemical bonds with bone tissue after implantation.  相似文献   

5.
The radial structure of polyacrylonitrile (PAN) copolymer fibers was investigated quantitatively by etching layer by layer in an improved permanganic etchant; meanwhile the effect of the etchant on the fiber surface was taken into consideration. The aggregated structure (crystal size, crystallinity, orientation and density) and thermal stability of each circumferential layer of PAN fibers were determined in detail according to a model proposed in the study. A denser layer with a thickness of about 1 µm was observed in the subsurface (2 µm from the PAN fiber surface), possessing a greater crystal size and crystallinity as well as a relatively higher thermal stability than other layers. This layer was considered to be a barrier for the diffusion of oxygen into PAN fibers during the stabilization and accelerated the formation of a core-shell structure in the resulting carbon fibers.  相似文献   

6.
Polymer organic-inorganic hybrid nanofibers constitute a new class of materials in which the polymeric nanofibers are reinforced by uniformly dispersed inorganic particles having at least one dimension in nanometer-scale. In the present study, polyacrylonitrile (PAN) and PAN/Na-montmorillonite (PAN/Na-MMT) nanofibers were conducted via electrospinning process. Electrospun PAN and PAN/Na-MMT fibers with the respective mean fiber diameter of about 220 and 160 nm were prepared. The influence of the clay-montmorillonite on the morphology and diameter of nanofibers was investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) techniques. The microscopic techniques propose that the PAN/Na-MMT composite nanofibers show lower mean fiber diameter than the neat PAN nanofibers. Besides, the difference in nanoclay-content has a slight effect on the distribution of fibers diameter. Thermogravimetric analysis (TGA) results suggest that introduction of clay-nanomaterials improves the thermal characteristics of fibers.  相似文献   

7.
Porous polyacrylonitrile (PAN) fiber mat was prepared by electrospinning PAN in N,N-dimethylformide solution with poly(methyl methacrylate) (PMMA) as pore-forming agent. Then, the porous PAN fiber mat was chemical modified by the tetraethylenepentamine to acquire aminated porous polyacrylonitrile (APPAN) fiber mat. Common aminated PAN fiber mat was also prepared for comparison. The surface morphologies of the APPAN and PAN fiber mat were characterized by scanning electron microscopy (SEM) and the corresponding specific surface areas were also measured. FT-IR/ATR spectra of the APPAN and PAN fiber mat were recorded for analysis of the surface chemical structures. The Cr(VI) absorption results demonstrated that the porous structure in the fiber could obviously increase the absorption capacity of the fiber mat.  相似文献   

8.
Electrical conductive nanocomposite fibers were prepared with polyaniline (PANI), polyacrylonitrile (PAN) and multi-walled carbon nanotubes (MWCNTs) via electrospinning. The morphology and electrical conductivity of the PANI/PAN/MWCNTs nanocomposite fibers were characterized by scanning electron microscope (SEM) and Van De Pauw method. Electrical conductivity of nanocomposite fibers increased from 1.79 S·m?1 to 7.97 S·m?1 with increasing the MWCNTs content from 3.0 wt% to 7.0 wt%. Compared with PANI/PAN membranes, the mechanical property of PANI/PAN/MWCNTs nanocomposites fiber membranes decreased. The microwave absorption performance of composite films was analyzed using waveguide tube, which indicated that with the thickness increasing the value of RL reduced from ?4.6 to ?5.9 dB.  相似文献   

9.
The concept of phase separation was coupled with electrospinning to induce polyacrylonitrile (PAN) and polystyrene (PS) bicomponent electrospun fibers that, upon removal of the phase-separated PS domains by solvent extraction, became nanoporous. Electrospinning of PAN (Mw 150 kDa) with 5 % w/w PS (Mw 250 kDa) at a 10 % w/w total concentration in N,N-dimethylformamide (DMF) produced fibers with stable morphology and average diameters from 1130±680 to 890±340 nm by FESEM. The nanoporous fibers made from a 95/5 w/w PAN/PS bicomponent precursor had internal pores of about 20∼110 nanometers. Pore sizes of the porous PAN fibers were decreased to approximately ∼25 nm after oxidation and carbonization thermal treatment because of fiber shrinkage during the thermal treatment. The fibers retained a high density of pores after the thermal treatment.  相似文献   

10.
The surface of para-aramid fiber was modified by phosphoric acid solutions (H3PO4) based on an orthogonal experimental design and analysis method. Statistical results indicate that treatment temperature is the most significant variable in the modification processing, while treatment time was the least important factor. The structure and morphology of the modified fiber were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction instrument (XRD), and scanning electron microscope (SEM). The results showed that some polar groups were introduced into the molecular structure of aramid fibers and the physical structure of the treated fibers was not etched obviously. The interfacial properties of aramid fiber/epoxy composites were investigated by the single fiber pull-out test (SFP), and the mechanical properties of aramid fibers were investigated by the tensile strength test. The results showed that the interfacial shear strength (IFSS) of aramid/epoxy composites was remarkably improved and the breaking strength of aramid fibers was not affected appreciably after surface modification.  相似文献   

11.
Sodium alginate (SA) and krill protein (AKP) were blended to obtain composite solution, and functional SA/AKP composite fibers were prepared via wet spinning. To further improve the salt tolerance, SA/AKP composite fibers were modified with copper sulfate aqueous solution as secondary coagulation bath because of the strong adsorption to copper ions. The CSA/AKP composite fibers with high salt tolerance have been successfully prepared. The intermolecular interaction of SA/AKP composite system and the two-order structure of protein in the composite system were characterized by Fourier transform infrared spectroscopy (FT-IR). Besides, the crystallinity, morphology, mechanical properties, salt tolerance and water resistance and thermal stability of SA/AKP composites were investigated respectively. The results showed that the adsorption rate and the adsorption capacity of the composite solution to copper ion were significantly higher than those to calcium ion. Under the effect of secondary solidification by copper sulfate, the β-sheet chain of the composite fibers increased from 41.48 % to 49.21 %, the intramolecular hydrogen bond increased from 38.18 % to 44.26 %, the intermolecular hydrogen bond decreased from 59.84 % to 54.70 % and free hydroxyl slightly decreased. The water resistance of the modified composite fibers was improved by about 22 %; when the swelling time was 25 min, the salt resistance increased by about 150 %; the number of grooves on the surface of the composite fibers obviously increased, and the grooves on the surface of CSA/AKP composite fibers and the fiber section structure were much denser; Meanwhile, copper sulfate had some influence on the crystallization, thermal stability and mechanical properties of the composite fibers.  相似文献   

12.
The coating modification of polyacrylonitrile (PAN) fibers with boric acid to enhance the controllability of thermally oxidative stabilization process. The stabilization process, cross-section morphologies of oxidized and carbonized products were investigated by means of optical microscopy, SEM, XPS and in-situ thermal shrinkage indicator. The results indicated that the coating with boric acid on fiber surface was effective to avoid skin-core heterogeneity on the cross section and, in the stabilization process, that boric acid as a crosslinking agent to tie together the adjacent oxidative molecular chains was confirmed. It was suggested that the crosslinked structures should play an essential role in controlling the formation of uniform oxidized structures, which is favorable for tensile properties of carbon fibers.  相似文献   

13.
The Fe-montmorillonite (Fe-MMT) combined catalysis effects of Fe ion with barrier effects of silicate clays, was firstly synthesized by hydrothermal method, and then was modified by cetyltrimethyl ammonium bromide (CTAB). The organic-modified Fe-montmorillonite (Fe-OMT) was dispersed in the N, N-dimethyl formamide (DMF) and then compounded with polyacrylonitrile (PAN) solution which was dissolved in DMF. The composite solutions were electrospun to form PAN/Fe-OMT nanocomposite fibers. The influences of the Fe-OMT on the structure, morphology, thermal, flammability and mechanical properties of PAN nanocomposite fibers were respectively characterized by X-ray diffraction (XRD), High-resolution transmission electron microscopy (HRTEM), Scanning electron microscopy (SEM), Thermogravimetric analyses (TGA), Micro Combustion Calorimeter (MCC) and Electronic Single Yarn Strength Tester. It was found from XRD curves that there was not observable diffraction peak of silicate clay, indicating that the silicate clay layers were well dispersed within the PAN nanofibers. The HRTEM image indicated that the multilayer stacks of nanoclays could be found within the nanofibers and were aligned almost along the axis of the nanofibers. The SEM images showed that the diameters of nanocomposite fibers were decreased with the loading of the Fe-OMT. The TGA analyses revealed that the onset temperature of thermal degradation and charred residue at 700°C of PAN nanocomposite fibers were notably increased compared with the pure PAN nanofibers, contributing to the improved thermal stability properties. It was also observed from MCC analyses that the decreased peak of heat release rate (PHRR) of the PAN nanocomposite fibers reduced the flammability properties. The loadings of Fe-OMT increased the tensile strength of PAN nanocomposite fibers, but the elongation at break of PAN nanocomposite fibers was lower than that of the PAN nanofibers.  相似文献   

14.
Ramie fiber is one of the natural cellulose fibers that have undergone rapid development due to its good performance. This study confirmed that hydrogen peroxide and isopropyl alcohol can be used as very efficient agents for simultaneous removal of non-cellulosic substances and improvement of ramie fiber properties. The factors influencing the properties of modified fiber with combined chemicals were investigated. Optimum treatment conditions were achieved at 85 °C, 60 min, pH 11.0, hydrogen peroxide concentration 7 %, and isopropyl alcohol concentration 4 %. SEM, XRD, and FT-IR were used to elucidate the effects of preparation and modification. Results showed that fiber preparation and chemical modification process in the same bath solution could successfully remove most of the gummy materials. The treated fibers demonstrated improved softness, elongation, and fineness properties as compared to the alkali or peroxide method.  相似文献   

15.
In effort to improve the soft properties of ramie fiber, we synthesized a carboxylate-containing polymer for use as a modifying agent, and successfully modified the ramie fiber in a strong base with the carboxylate-containing polymer. We applied Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) to investigate the structures of the raw and modified ramie fibers, and further investigated the mechanical and dyeing properties of the raw and modified ramie fibers. The results showed that the surface of the ramie fiber underwent significant changes due to the grafting reaction of the carboxylate-containing polymer and fiber. After the chemical modification, the flexural strength and initial modulus of the modified ramie fiber decreased while tensile strength increased, indicating that the softness of the modified ramie fiber increased though its tensile resistance remained high. In addition, the fixation of reactive dyes on the modified ramie fiber was larger than that of the reactive dyes on the raw ramie fiber. Our observations of mechanical properties and dye fixation indicated that the carboxylate-containing polymer is an effective and efficient soft modifier.  相似文献   

16.
Using dimethyl sulfoxide (DMSO) as a solvent, the polyacrylonitrile/soy protein isolate/polyurethane (PAN/SPI/PU) blend solutions and wet-spun fibers were prepared. The rheological properties of the PAN/SPI/PU solution were investigated. Investigations of the structure and properties of the PAN/SPI/PU fibers involved Fourier transform infrared, enzymatic hydrolysis, scanning electron microscopy, mechanical properties, dye adsorption, contact angle, and moisture regain measurements. The results showed that all PAN/SPI/PU solutions possess pseudoplastic properties, and there are opposite effects of SPI and PU in the PAN/DMSO solution. The apparent viscosity, the amount of non-Newtonian fluid and the extent of structuralization of the PAN/DMSO solution increase with the addition of SPI, whereas these features all decrease with the addition of PU. The biodegrability, the absorption of acidic dye and the moisture regain increase with the proportional increase in weight of SPI in the fiber blend.  相似文献   

17.
The thermal stabilization stage of polyacrylonitrile (PAN) fibers is characterized by a steady and continuous reduction in fiber diameter and linear density values together with color changes from reddish brown to shiny black with increasing stabilization time. Thermally stabilized PAN fibers acquire infusible and nonburning characteristics prior to the carbonization stage. Structural characterization of thermally stabilized polyacrylonitrile fibers was carried out using an indepth analysis of equatorial X-ray diffraction traces. Curve fitting of X-ray diffraction traces provided accurate peak parameters which were subsequently used for the evaluation of apparent crystallinity, apparent crystallite size and X-ray stabilization index. The results showed the loss of crystallinity due to the amorphization processes together with a steady and continuous decrease in lateral crystallite size with increasing stabilization time. With the progress of thermal stabilization, a new amorphous phase with a crosslinked and aromatized structure is formed which is expected to withstand high carbonization temperatures. Mechanical properties of the thermally stabilized PAN precursor fibers were found to be adversely affected with the progress of stabilization time. Due to the influence of thermal degradation mechanisms heavily involving chain scission along the fiber axis direction, tensile strength and tensile modulus values were found to decrease by significant proportions with the prolonged stabilization times.  相似文献   

18.
Polyacrylonitrile (PAN) fiber was grafted with casein after alkaline hydrolysis and chlorination reactions of the original fiber. The structures and morphologies of the casein grafted fiber were characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray diffraction (XRD), and scanning electron microscope (SEM). Moisture absorption, specific electric resistance, water retention value, and mechanical properties were also investigated. The results showed that casein was grafted onto the surface of the PAN fiber and the grafted PAN fiber presented better hygroscopicity compared with the untreated fiber. With proper tensile strength, the modified fiber could still meet the requirement for wearing. A mechanism was proposed to explain the deposit of casein on the synthetic acrylic fiber.  相似文献   

19.
The spinnability in pre-gelled gel spinning of polyacrylonitrile (PAN) precursor fibers was investigated. The spinning solutions were aged at 25 °C for different times prior to fiber spinning. The pre-gelled spinning solution aged for 2.5 h was much more strain hardening than the ungelled one, which can increase the spinnability of the solution. The maximum take-up velocity of the first winding roller V 1m, which reflects the spinnability of the spinning solutions, was found to be largest when the aging time was 1.5 h. The spinnability increased with the increase of the air gap length and the lengthdiameter ratio L/D of the spinnerette. Once the L/D increased beyond 15, the spinnability hardly changed. The fibers spun from the spinning solution aged for 1.5 h had the best mechanical properties and favorable structure, showing that good spinnability favors the performance increase of resultant PAN precursor fibers.  相似文献   

20.
Biomaterial bridges constructed from electrospun fibers offer a promising alternative to traditional nerve tissue regeneration substrates. Aligned and unaligned polycaprolactone (PCL) electrospun fibers were prepared and functionalized with the extracellular matrix proteins collagen and laminin using covalent and physical adsorption attachment chemistries. The effect of the protein modified and native PCL nanofiber scaffolds on cell proliferation, neurite outgrowth rate, and orientation was examined with neuronlike PC12 cells. All protein modified scaffolds showed enhanced cellular adhesion and neurite outgrowth compared to unmodified PCL scaffolds. Neurite orientation was found to be in near perfect alignment with the fiber axis for cells grown on aligned fibers, with difference angles of less than 7° from the fiber axis, regardless of the surface chemistry. The bioavailability of PCL fibers with covalently attached laminin was found to be identical to that of PCL fibers with physically adsorbed laminin, indicating that the covalent chemistry did not change the protein conformation into a less active form and the covalent attachment of protein is a suitable method for enhancing the biocompatibility of tissue engineering scaffolds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号