首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three studies were conducted to determine and confirm the effective dosage rate of ceftiofur crystalline-free acid sterile suspension (CCFA-SS, 200 mg ceftiofur equivalents [CE]/ml), a long-acting ceftiofur formulation, for control and treatment of bovine respiratory disease (BRD). In each study, CCFA-SS was administered once by subcutaneous (SC) injection in the middle third of the posterior aspect of the ear. Study 1 was conducted using an intratracheal challenge with Mannheimia (formerly Pasteurella) haemolytica and dosages ranging from 0 to 8.8 mg CE/kg to select a dosage for further field testing. In Study 2, a single dose of CCFA-SS at 0.0, 4.4, or 6.6 mg CE/kg was administered when uniform clinical signs of BRD were present in feedlot cattle. Study 3 was conducted in several feedlots to evaluate the efficacy, practicality, and safety of CCFA-SS at 4.4 or 6.6 mg CE/kg compared with a placebo control or tilmicosin for preemptive control of BRD. In Study 1, the effective dose was determined to be 5.35 mg CE/kg; therefore, 4.4 and 6.6 mg CE/kg were selected as the dosages for further field testing. Administration of CCFA-SS at 4.4 or 6.6 mg CE/kg improved treatment success compared with negative controls (P < or =.05 for both doses) in Study 2. In Study 3, a single administration of 4.4 or 6.6 mg CE/kg was comparable to tilmicosin (P <.001) and was significantly better than placebo (P <.001) for the control of BRD. Using the ear as an administration site was acceptable under field conditions and was well tolerated by all animals. These studies demonstrated that a single administration of CCFA-SS by SC injection in the middle third of the posterior aspect of the ear at 4.4 or 6.6 mg CE/kg is effective, safe, and practical for preemptive control and treatment of the bacterial component of BRD in feedlot cattle. Administration in an inedible tissue results in a short withdrawal time and no injection-site trimming at slaughter.  相似文献   

2.
The objective of this work was to determine and confirm an effective dose of ceftiofur crystalline free acid sterile oil suspension (CCFA-SS, 100 mg ceftiofur equivalents (CE)/mL], a long-acting single-administration ceftiofur formulation, for the treatment of the bacterial component of bovine respiratory disease (BRD). Study 1 was a dose determination study that used an intratracheal Mannheimia haemolytica (Pasteurella haemolytica) challenge model to evaluate single-administration doses of CCFA-SS at 0.0, 1.1, 2.2, 3.3, 4.4 or 5.5 mg CE/kg body weight (BW) for the treatment of BRD. Data from this study were used to select doses for field testing in three multi-location clinical studies. In Study 2, the efficacy of a single administration dose of CCFA-SS at 4.4 mg CE/kg BW was compared with a negative control for the treatment of naturally occurring BRD in feedlot cattle. Treatments were administered when uniform clinical signs of BRD were present. Study 3 used a design similar to Study 2, and compared single-administration doses of CCFA-SS at 3.0 or 4.4 mg CE/kg BW with the positive-control tilmicosin (Micotil(R) 300 Injection, Elanco Animal Health) at 10 mg/kg BW. Study 4 compared the efficacy of single doses of CCFA-SS of 1.1-8.8 mg CE/kg BW with tilmicosin at 10 mg/kg BW. A total of 1176 cattle were included in these clinical studies. In Study 1, a dose of 4.55 mg CE/kg BW was determined to be effective. This was rounded to 4.4 mg CE/kg for field testing. In Study 2, a single dose of CCFA-SS at 4.4 mg CE/kg BW had a higher treatment success rate on day 14 (61%) than negative controls (26%, P < 0.01). However, in Study 3 this dose was judged to be at the beginning of an efficacious dose range for the treatment of BRD when compared with tilmicosin. In Study 4, day 28 treatment success rates were higher for CCFA-SS at 4.4-8.8 CE/kg BW than for tilmicosin (P=0.002) or the noneffective CCFA-SS dose of 1.1 mg CE/kg BW (P < 0.001). Based on decision criteria for Study 4, the effective dose was determined to be 4.4-5.5 mg CE/kg BW. These clinical studies demonstrated that a single dose of CCFA-SS (100 mg CE/mL) administered subcutaneously (s.c.) in the neck at 4.4-5.5 mg CE/kg BW is an effective treatment for BRD in feedlot cattle. However, this route of administration is no longer being considered for this formulation because of the ceftiofur residues that are present at the injection site for extended periods of time.  相似文献   

3.
Two 160-d feedlot experiments, each consisting of 20 Angus-Hereford steers (216 +/- 5 kg BW, Exp. 1; 258 +/- 5 kg BW, Exp. 2) and 20 Angus-Hereford heifers (208 +/- 5 kg BW, Exp. 1; 236 +/- 5 kg BW, Exp. 2), were used to investigate the effects of supplementing diets with either roasted soybeans (RSB, roasted at 127 degrees C for 10 min) or soybean meal (SBM) and implanting or not implanting with an estrogenic growth promoter (SYN; Synovex-S, 20 mg of estradiol benzoate plus 200 mg of progesterone or Synovex-H, 20 mg of estradiol benzoate plus 200 mg of testosterone) on performance. The cattle were fed a basal diet of 15% orchardgrass silage, 15% corn silage, and 70% corn-based concentrate. Treatments were 1) no SYN and fed a SBM-supplemented diet, 2) no SYN and fed a RSB-supplemented diet, 3) SYN and SBM, and 4) SYN and RSB. Cattle in the SYN groups were reimplanted at 80 d. Four additional Angus-Hereford steers were used in a digestion and nitrogen balance experiment conducted during the first half of Exp. 1. For the total 160-d feedlot experiments, DMI for RSB compared with SBM was lower (P < .01; 8.5 vs 9.2 kg/d, SEM = .07) and ADG/DMI tended to be higher (P < .10; 165 vs 157 g/kg, SEM = 1.3). Final BW of steers fed RSB was similar (P > .10) to that of steers fed SBM (473 vs 478 kg, SEM = 5.6), as was ADG (1.39 vs 1.43 kg/d, SEM = .02). Dry matter intake for SYN-implanted steers was higher (P < .01) than for steers not implanted (9.2 vs 8.5 kg/d). Likewise, final BW (491 vs 460 kg) and ADG (1.49 vs 1.33 kg/d) were higher (P < .01), and ADG/DMI (166 vs 157 g/kg) tended to be higher (P < .10), for SYN-implanted steers than for steers not implanted. During the more rapid muscle growth period (0 to 80 d), DMI for RSB compared with SBM was lower (P < .01; 7.8 vs 8.6 kg/d, SEM = .07) and ADG/DMI was similar (P > .10; 181 vs 172 g/kg, SEM = 1.8). Dry matter intake for SYN-implanted steers was higher (P < .05) than for steers not implanted (8.4 vs 8.0 kg/d), as was ADG/DMI (P < .01, 182 vs 171 g/kg). During this more rapid growth period, the supplement x implant interaction for ADG was significant (P < .05; 1.35, 1.36, 1.59, and 1.44 kg/d for Treatments 1, 2, 3, and 4, respectively, SEM = .04). There were no differences in digestibilities or N balance. The results suggest that there is no improvement in performance under feedlot conditions when RSB replaces SBM in the diet of beef cattle, and, in young cattle, RSB may reduce the response expected by an estrogenic growth promoter.  相似文献   

4.
The effect of Mannheimia haemolytica infection on the penetration of ceftiofur and desfuroylceftiofur metabolites into tissue chambers was studied in cattle after subcutaneous administration of ceftiofur crystalline free acid sterile suspension (CCFA-SS). Four tissue chambers were implanted subcutaneously in each of 12 calves. Approximately 45 days after implantation, two chambers were inoculated with M. haemolytica (10(6) colony-forming units per chamber) while the remaining two chambers were inoculated with sterile phosphate-buffered saline. Twenty-four hours after inoculation, CCFA-SS was administered subcutaneously in the middle third of the caudal ear pinna of each calf. Chamber fluid and blood samples were collected at predetermined times for 10 days following dosing and analyzed for ceftiofur and desfuroylceftiofur metabolites by high-performance liquid chromatography. Concentrations of ceftiofur and desfuroylceftiofur metabolites in plasma and tissue chamber fluid remained above a threshold of 0.2 microg/mL for at least 8 days. Infected tissue chamber fluid concentrations of ceftiofur and desfuroylceftiofur metabolites were significantly higher than those in non-infected tissue chamber fluid, which correlated with significantly higher total protein concentration in infected tissue chambers. These results indicate that single subcutaneous administration of CCFA-SS at 6.6 mg/kg can be expected to provide effective therapy of susceptible bacterial infections for a period of at least 1 week.  相似文献   

5.
Our objective was to determine the effect of repeated use of implants on feedlot performance and carcass characteristics of Holstein cattle. Holstein steers (n = 128) weighing an average of 211 kg were blocked by weight and randomly assigned to 16 pens. At the start of the trial (d 0), pens were assigned to one of four treatments: 1) nonimplanted control (C); 2) implant on d 0, 112, and 224 (T3); 3) implant on d 112 and 224 (T2); and 4) implant on d 224 (T1). Component TE-S implants (120 mg of trenbolone acetate and 24 mg of estradiol per implant) were used for all treatments during the 291-d feeding period. Over the course of the study, T2 and T3 cattle had greater ADG and final weights than C and T1 cattle (P < 0.05). Steers were harvested at a commercial abattoir on d 291. Hot carcass weights of T3 steers were greater than those of C and T1 steers (P < 0.05). Dressing percentage, adjusted 12th-rib fat, percentage of kidney, pelvic, and heart fat, yield grade, and longissimus color were not different among treatments (P > or = 0.26). Longissimus muscle areas (LMA) of T2 and T3 carcasses were larger than LMA of C (P < 0.01). No USDA Select carcasses were produced from C cattle, whereas the percentage of Select carcasses from implanted cattle ranged from 10 to 18%. Skeletal maturity advanced (P < 0.05) progressively with each additional implant. Steaks from T3 carcasses had a higher percentage of protein than controls (P < 0.05) and were less tender than all other treatments (P < 0.05). Repeated administration of combination trenbolone acetate and estradiol implants increased ADG and resulted in heavier carcasses with larger LMA. Administration of three successive implants decreased tenderness of Holstein beef, and resulted in more advanced skeletal maturity scores.  相似文献   

6.
A winter grazing/feedlot performance experiment repeated over 2 yr (Exp. 1) and a metabolism experiment (Exp. 2) were conducted to evaluate effects of grazing dormant native range or irrigated winter wheat pasture on subsequent intake, feedlot performance, carcass characteristics, total-tract digestion of nutrients, and ruminal digesta kinetics in beef cattle. In Exp. 1, 30 (yr 1) or 67 (yr 2) English crossbred steers that had previously grazed native range (n = 38) or winter wheat (n = 59) for approximately 180 d were allotted randomly within previous treatment to feedlot pens (yr 1 native range = three pens [seven steers/pen], winter wheat = two pens [eight steers/pen]; yr 2 native range = three pens [eight steers/pen], winter wheat = four pens [10 or 11 steers/pen]). As expected, winter wheat steers had greater (P < 0.01) ADG while grazing than did native range steers. In contrast, feedlot ADG and gain efficiency were greater (P < 0.02) for native range steers than for winter wheat steers. Hot carcass weight, longissimus muscle area, and marbling score were greater (P < 0.01) for winter wheat steers than for native range steers. In contrast, 12th-rib fat depth (P < 0.64) and yield grade (P < 0.77) did not differ among treatments. In Exp. 2, eight ruminally cannulated steers that had previously grazed winter wheat (n = 4; initial BW = 407 +/- 12 kg) or native range (n = 4; initial BW = 293 +/- 23 kg) were used to determine intake, digesta kinetics, and total-tract digestion while being adapted to a 90% concentrate diet. The adaptation and diets used in Exp. 2 were consistent with those used in Exp. 1 and consisted of 70, 75, 80, and 85% concentrate diets, each fed for 5 d. As was similar for intact steers, restricted growth of cannulated native range steers during the winter grazing phase resulted in greater (P < 0.001) DMI (% of BW) and ADG (P < 0.04) compared with winter wheat steers. In addition, ruminal fill (P < 0.01) and total-tract OM digestibility (P < 0.02) were greater for native range than for winter wheat steers across the adaptation period. Greater digestibility by native range steers early in the finishing period might account for some of the compensatory gain response. Although greater performance was achieved by native range steers in the feedlot, grazing winter wheat before finishing resulted in fewer days on feed, increased hot carcass weight, and improved carcass merit.  相似文献   

7.
The impact of respiratory disease during a 150-d feedlot finishing period on daily gain, carcass traits, and longissimus tenderness was measured using 204 steer calves. Feedlot health status was monitored in two ways. First, clinical signs of respiratory infection were evaluated each day; treatment with antibiotic was based on degree of fever (if rectal temperature exceeded 40 degrees C then calves were treated). Steers that were treated (n = 102) had lower (P<.05) final live weights, ADG, hot carcass weights (HCW), less external and internal fat, and more desirable yield grades. Steers that were treated had a higher prevalence of carcasses that graded U.S. Standard than steers that were never treated. Second, as an alternative index of health status, lungs of all steers were evaluated at the processing plant using a respiratory tract lesion classification system; this health index included presence or absence of preexisting pneumonic lesions in the anterioventral lobes plus activity of the bronchial lymph nodes (inactive vs active). Lung lesions were present in 33% of all lungs and were distributed almost equally between treated (37%) and untreated cattle (29%). Steers with lesions (n = 87) had lower (P<.05) daily gains, lighter HCW, less internal fat, and lower marbling scores than steers without lesions. Compared to steers with lesions but inactive bronchial lymph nodes (n = 78), steers with lung lesions plus active lymph nodes had lower (P<.01) ADG and dressing percentage. Longissimus shear force values for steaks aged 7 d were lower (P = .05) from steers without lung lesions than those for steaks from steers with lung lesions. Overall, morbidity suppressed daily gains and increased the percentage of U.S. Standard carcasses. Compared to health assessment by clinical appraisal (based on elevated body temperature), classification based on respiratory tract lesions at slaughter proved more reliable statistically and, thereby, more predictive of adverse effects of morbidity on production and meat tenderness.  相似文献   

8.
Five studies were conducted to evaluate the ability of growth-promoting implants containing a pellet of tylosin tartrate [Component®(Ivy Animal Health, Overland Park, KS) with Tylan® (Elanco Animal Health, Indianapolis, IN)] to prevent implant site abscesses in feedlot cattle. Component® with Tylan® implants contain an additional pellet with 29 mg tylosin tartrate as a local antibacterial. Component® with Tylan® was used in heifers and steers and was tested as the initial implant, administered on arrival at the feedlot, or as a re-implant, administered later during the feeding period. Cattle implanted with Component® with Tylan® had or tended to have fewer implant site abscesses. Both incidence and severity of defects were lower; the incidence of missing implants was reduced to nearly zero with Component® with Tylan®. In three studies in which performance was measured, Component® with Tylan® tended (P=0.07 in Study 2, P=0.06 in Study 4, and P=0.09 in Study 5) to improve ADG, and it improved (P=0.03) feed conversion efficiency in the only study in which it was measured (Study 4). Differences in hot carcass weights (HCW) with Component® with Tylan® (3.0, 2.7, and 2.4 kg in Study 2, 4, and 5, respectively) were also observed. Results of implant site evaluations conducted in feedyards as part of a quality assurance program confirm the research results regarding implant site abscesses.  相似文献   

9.
Using a monoclonal antibody raised against zeranol, a radioimmunoassay has been validated for the determination of zeranol residues in the faeces of treated steers. The limit of decision defined as the mean apparent concentration of zeranol in the faeces of untreated cattle + 3 SD was 1 ng/g faeces. In a trial in which 27 steers were implanted with zeranol (36 mg) at the base of the ear and six steers were sham implanted, the mean maximum concentration of zeranol in faeces was 5.8 ng/g on Day 15 following implanting, declining to 1.67 ng/g on Day 34 following implanting. During this period there was a marked variation between animals sampled on the same day following implanting. At no time during the trial did the apparent concentration of zeranol in the faeces of untreated animals rise above 0.91 ng/g, which is below the limit of decision for this assay.  相似文献   

10.
The relationship between feeding behavior and performance of 274 feedlot cattle was evaluated using Charolais cross steers from 2 consecutive years averaging 293 ± 41 kg for yr 1 (n = 115) and 349 ± 41 for yr 2 (n = 159). Steers were blocked by BW and assigned to 3 (yr 1) or 4 (yr 2) feedlot pens equipped with a radio frequency identification system (GrowSafe Systems). Each pen contained 5 feeding stalls that allowed individual animal access to a feed tub suspended on load cells. The system recorded animal identification, duration, and frequency of feedings as well as the amount of feed consumed during each visit. Daily variation in DMI (DVI), calculated as the absolute difference in DMI from one day to the next, as well as eating rate were determined for each steer. Barley-based diets were delivered to meet steer ad libitum intake over the 213- and 181-d feeding periods for yr 1 and 2 of the study, respectively. The backgrounding periods included the first 85 and 56 d of yr 1 and 2, respectively, in which steers were fed a 14 to 30% concentrate diet, whereas the finishing periods included the last 116 and 101 d of feeding in yr 1 and 2, respectively, with the diet consisting of 77.9% concentrate. Steers were weighed individually every 14 d. To relate feeding behavior to performance, steers were grouped by ADG and G:F and categorized as high, average, or low (based on 1 SD greater than and less than the mean). In the backgrounding and finishing periods of both years of the study, steers classified as having high ADG exhibited greater (P < 0.001) DVI than steers classified as having average or low ADG. Total daily DMI was also greater (P < 0.001) for steers in the high ADG group than those in the low ADG group. Overall, those steers with the greatest G:F also tended (P = 0.15) to have greater DVI than average or low G:F steers. Compared with average or low G:F steers, DMI by high G:F steers in both years of the study was less during backgrounding, finishing, and overall (P = 0.02). Bunk visits and bunk attendance duration were less frequent and shorter (P ≤ 0.01) overall for high compared with low G:F steers. In this study, steers with more variable eating patterns exhibited greater ADG and tended to have greater G:F, a finding that is contrary to industry perception.  相似文献   

11.
Fall-weaned crossbred steer calves (n = 300; 184 +/- 2.9 kg) received either no implant (Control) or were implanted with Synovex-C (SC = 10 mg estradiol benzoate + 100 mg progesterone), Synovex-S (SS = 20 mg estradiol benzoate + 200 mg progesterone), or Revalor-G (RG = 8 mg estradiol-17beta + 40 mg trenbolone acetate) to determine the effects of implants on weight gain during winter grazing on dormant tallgrass prairie, subsequent grazing and finishing performance, and carcass characteristics. Steers grazed two dormant tallgrass prairie pastures from October 16, 1996, until March 29, 1997 (164 d), and received 1.36 kg/d of a 25% CP supplement that supplied 100 mg of monensin/steer. Following winter grazing, all steers were implanted with Ralgro (36 mg zeranol) and grazed a common tallgrass prairie pasture until July 17 (110 d). After summer grazing, all steers were implanted with Revalor-S (24 mg estradiol-17beta + 120 mg trenbolone acetate), and winter implant treatment groups were equally allotted to four feedlot pens. Steers were harvested November 17, 1997, after a 123-d finishing period. Daily gains during the winter grazing phase averaged .28, .32, .32, or .35 kg/d, respectively, for Control, SC, SS, or RG steers and were greater (P < .01) for implanted steers than for Controls. Summer daily gains were similar (1.05 +/- .016 kg/d; P > or = .61) for all treatment groups. Feedlot daily gains were also similar (1.67 +/- .034 kg/d; P > or = .21), with implanted steers weighing 14 kg more than Control steers (P = .05) at harvest, despite similar management during summer grazing and feedlot phases. Control steers tended (P = .06) to have lower yield grades. There were no differences (P = .99) in marbling between implanted and nonimplanted steers. Steers implanted during the wintering phase had increased skeletal and overall (P < .01) carcass maturities compared with nonimplanted steers, which resulted in more "B" and "C" maturity carcasses. Because carcass maturity score affects quality grade, the increased maturities of implanted steers resulted in a $9.04 decrease in carcass value/100 kg (P < .01) compared with Controls. The results of this study indicate that growth-promoting implants are efficacious for cattle wintered on dormant native range despite low daily gains. This increased weight is maintained through the summer grazing and feedlot phases; however, the benefit of the increased weight may be offset by decreased carcass quality grade and value due to increased carcass maturity.  相似文献   

12.
Two hundred forty single-source, cross-bred steers (304 kg) were used to evaluate the effects of various water sulfate concentrations on performance, water intake, and carcass characteristics of feedlot steers. Cattle were stratified by weight and assigned within weight blocks to five water treatments. Averaged over time, actual water sulfate concentrations (+/- SEM) were 136.1 (+/- 6.3), 291.2 (+/- 15.3), 582.6 (+/- 16.9), 1,219.2 (+/- 23.7), and 2,360.4 (+/- 68.2) mg/L, respectively. Weather-related data were recorded. Increasing water sulfate concentration resulted in linear decreases in ADG (P < 0.01) and gain:feed ratio (P < 0.01) and a quadratic effect on water intake (P = 0.02) and tended to quadratically increase then decrease DMI (P = 0.13). Sulfate x period interactions were evident for DMI (P = 0.01), ADG (P < 0.01), and feed efficiency (P < 0.01). Time had quadratic effects on DMI, water intake, ADG, and feed efficiency (P < 0.01 for all models). Increasing water sulfate concentration resulted in linear decreases in final weight, hot carcass weight, and dressing percentage, a linear increase in longissimus muscle area, and a quadratic effect on fat thickness over the 12th rib and predicted yield grade (P < 0.05 for all dependent variables). Mean daily temperature explained 25.7% of the observed variation in water intake. Other factors that explained a significant (P < 0.01) amount of variation in water intake were BW, DMI, water sulfate concentration, barometric pressure, wind speed, and humidity. High water sulfate concentrations had a significant and deleterious effect on performance and carcass characteristics of feedlot steers. Increasing the sulfate concentration in water may have resulted in a functional water restriction early in the trial when ambient temperatures were greatest. However, toward the latter stages of the trial, cattle supplied higher-sulfate water had higher ADG and FE. These improvements later in the trial may represent compensatory gain associated with decreased ambient temperature and water requirements. Averaged over time, a water sulfate concentration of greater than 583 mg/L, equivalent to 0.22% of the diet, decreased feedlot performance.  相似文献   

13.
The effects of crossbreeding, cattle type and dietary energy level on semitendinosus muscle (ST) development, feedlot performance, daily carcass protein and fat gain and serum anabolic hormone concentrations were studied. Over 3 consecutive years, 176 feedlot steers representing four cattle types - unselected Hereford (UH), selected Hereford (SH), Angus x Hereford x Charolais (AHC) and Angus x Hereford x Holstein (AHH) - were fed either an all-corn silage (HS) or a high grain (HG) diet. Steers were slaughtered on day 1 and at the end of the feedlot trial, and ST muscles were removed rapidly. During years 2 and 3, single blood samples were obtained from steers on days 1, 29, 57, 113 and 169, and analyzed for insulin and growth hormone (GH). Steers fed HG had a higher (P less than .005) average daily gain (ADG) than steers fed HS, and cattle type had an effect (P less than .005) on ADG. Cattle type and HG affected (P less than .005) daily carcass protein and fat gain. Weight of ST muscle and total muscle RNA, DNA and protein content increased with frame size, and HS steers had heavier (P less than .05) ST muscles than the HG steers. Steers fed HG had higher (P less than .01) serum insulin concentrations than steers fed HS, but there were no consistent cattle type effects. Serum GH concentrations were not affected by cattle type or diet. Serum insulin concentrations, combined across diet and cattle types, were correlated (P less than .01) with ADG; however, serum GH, assessed on the same basis, was not related to ADG. Average daily protein and fat gain were positively related to serum insulin and were negatively related to serum GH.  相似文献   

14.
In each of 2 yr, 20 Holstein steers (185+/-7 kg initial BW) were allocated to each of three treatments: pastured for 4.5 mo on grass/legume pastures and then fed 80% corn diets (DM basis) until slaughter; pastured for 4.5 mo on grass/legume pastures with ad libitum access to molasses-based protein supplements and fed 80% corn diets until slaughter; and placed in a feedlot and fed only 80% corn diets until slaughter (FEEDLOT). Half of the steers in each treatment were initially implanted with Revalor-S and not reimplanted. Supplemented steers on pasture had greater (P < 0.05) ADG than unsupplemented steers, and FEEDLOT steers gained faster and were fatter (P < 0.05) after 4.5 mo. Implanted steers had greater (P < 0.05) ADG with no significant treatment x implant status effect. Supplement intake was variable and related to ambient temperature. During the feedlot phase, steers previously on pasture had greater DMI and ADG (P < 0.05) but were not more efficient than FEEDLOT steers. Percentage of USDA Choice carcasses, fat thickness, dressing percentage, yield grade, and final weight were greater (P < 0.05) for FEEDLOT steers than for steers on other treatments. Implanting increased ADG of all steers but did not affect carcass traits, carcass composition, or feedlot performance during the finishing phase. Holstein steers consuming supplemented and unsupplemented pasture before slaughter will be leaner, have lower carcass weights, and have generally lower quality grades than those fed exclusively in a feedlot when slaughtered at similar ages.  相似文献   

15.
The dose response of melengestrol acetate (MGA) on ADG (kg/d) and gain efficiency (gain/DMI, g/kg) was estimated in beef steers fed a finishing diet under commercial feedlot conditions. Melengestrol acetate is not approved for use in steers as a feed additive. The study design was five blocks of four pens (each pen was assigned a dose of MGA) with 166 to 200 steers per pen. Melengestrol acetate was fed to steers at 0 (n = 899, five pens), 0.1 (n = 900, five pens), 0.2 (n = 899, five pens), and 0.4 (n = 900, five pens) mg of MGA/steer daily. Pens within a block were slaughtered on the same day. Blocks 1 through 5 were fed MGA for 123, 122, 116, 124, and 138 d, respectively. The experimental unit was a pen of steers, and blocking was based on source of steers. The ADG was 1.81, 1.85, 1.80, and 1.83 kg/d for steers fed 0, 0.1, 0.2, and 0.4 mg MGA per day, respectively. For ADG, the dose was significant, but neither linear nor quadratic effects were significant. Compared with steers of the control group, ADG was greater for steers fed 0.1 mg MGA (P < 0.01). Feed efficiencies were 170, 173, 171, and 172 g/kg for steers fed 0, 0.1, 0.2, and 0.4 mg MGA/d, respectively; however, no effects of dose (P = 0.19) or linear (P = 0.21) or quadratic (P > 0.60) effects were observed. There was no evidence for either positive or negative effects of MGA on DMI, hot carcass weight, dressing percent, quality grade, yield grade, back fat thickness, marbling score, longissimus muscle area, and incidence of dark cutter carcasses in response to feeding MGA to steers at doses of 0.1, 0.2, and 0.4 mg daily. The incidence of buller behavior (0.43 to 1.11%) was low and did not permit an accurate test of the clinical observations that feeding MGA to steers decreases the occurrence of buller steers. Melengestrol acetate fed to finishing beef steers produced small improvements in growth performance (ADG, 2.2%) at the 0.1 mg MGA dose, but none of the doses examined produced improvement in carcass quality or yield grade measurements.  相似文献   

16.
Two feedlot studies were conducted to investigate the timing and duration of supplemental vitamin A withdrawal from feedlot cattle (Bos taurus) diets to reduce intramuscular adipose tissue vitamin A concentration and improve carcass quality. In Exp. 1, Angus crossbred steers (n = 84, BW = 211 ± 4 kg) were allotted to 4 treatments: no supplemental vitamin A for 227 d, no supplemental vitamin A for 112 d followed by 115 d of supplemental vitamin A, supplemental vitamin A for 112 d followed by no supplemental vitamin A for 115 d, or supplemental vitamin A for 227 d. In Exp. 2, Angus crossbred steers (n = 80, BW = 210 ± 5 kg) were allotted to 4 treatments: early weaning with or without supplemental vitamin A, and traditional weaning with or without supplemental vitamin A. In both experiments, serum vitamin A concentrations were greatest (P < 0.05) 56 d after cattle were weaned and placed in the feedlot, regardless of feedlot dietary vitamin A concentration. Hepatic vitamin A stores were dramatically decreased (P < 0.05) in the first 56 d and remained depressed as long as steers were not supplemented with vitamin A. At the end of the finishing period, vitamin A concentrations were less in intramuscular than subcutaneous adipose tissue. Growth was not affected by finishing cattle without supplemental dietary vitamin A (P > 0.10). Dietary vitamin A supplementation did not affect USDA yield grades. However, in Exp. 2, cattle without supplemental vitamin A had greater (P < 0.001) ether extractable lipid in the LM. Ether extractable lipid in the LM or marbling scores were enhanced when intramuscular adipose tissue vitamin A concentration was reduced in response to feeding diets without supplemental vitamin A.  相似文献   

17.
Two experiments evaluated effects of ractopamine hydrochloride (RAC) on performance, intake patterns, and acid-base balance of feedlot cattle. In Exp. 1, 360 crossbred steers (Brangus, British, and British x Continental breeding; initial BW = 545 kg) were used in a study with a 3 x 3 factorial design to study the effects of dose [0, 100, or 200 mg/(steer x d) of RAC] and duration (28, 35, or 42 d) of feeding of RAC in a randomized complete block design (9 treatments, 8 pens/treatment). No dose x duration interactions were detected (P > 0.10). As RAC dose increased, final BW (FBW; P = 0.01), ADG (P < 0.01), and G:F (P < 0.01) increased linearly. As duration of feeding increased, ADG increased quadratically (P = 0.04), with tendencies for quadratic effects for FBW (P = 0.06), DMI (P = 0.07), and G:F (P = 0.09). Hot carcass weight increased linearly (P = 0.02) as dose of RAC increased. Thus, increasing the dose of RAC from 0 to 200 mg/(steer x d) and the duration of feeding from 28 to 42 d improved feedlot performance, although quadratic responses for duration of feeding indicated little improvement as the duration was extended from 35 to 42 d. In Exp. 2, 12 crossbred beef steers (BW = 593 kg) were used in a completely random design to evaluate the effects of RAC [0 or 200 mg/(steer x d) for 30 d; 6 steers/treatment] on rate of intake, daily variation in intake patterns, and acid-base balance. To assess intake patterns, absolute values of daily deviations in feed delivered to each steer relative to the total quantity of feed delivered were analyzed as repeated measures. There were no differences (P > 0.10) in feedlot performance, urine pH, blood gas measurements, or variation in intake patterns between RAC and control cattle, but steers fed RAC had increased (P = 0.04) LM area, decreased (P = 0.03) yield grade, and increased (P < 0.10) time to consume 50 and 75% of daily intake relative to control steers. Our results suggest that feeding RAC for 35 d at 200 mg/(steer x d) provided optimal performance, and no effects on acid-base balance or variation in intake patterns of finishing steers were noted with RAC fed at 200 mg/(steer x d) over a 30-d period.  相似文献   

18.
Two experiments, each with a randomized complete block design, were conducted to evaluate the effects of feeding live cultures of Lactobacillus acidophilus plus Propionibacterium freudenreichii on performance and carcass characteristics of feedlot cattle. British and British x Continental steers (240 steers in each experiment; 12 pens/treatment in each study; average initial BW = 370 +/- 6 kg) were fed a 92% concentrate diet based primarily on steam-flaked corn. Four treatments were evaluated, which included a control diet (lactose carrier only) or diets containing 1 x 10(9) cfu/(steer x d) of P. freudenreichii (strain NP 24) with 1 x 10(7) (L), 1 x 10(8) (M), or 1 x 10(9) (H) cfu of L. acidophilus strain NP 51/(steer x d). Data were pooled for the 2 experiments. No differences (P > 0.10) were detected among treatments for final BW, final BW based on HCW, or DMI during various stages of the feeding period or overall. Likewise, no differences among treatments were observed for either ADG or carcass-adjusted ADG (P > 0.10), except for the tendency for a quadratic effect of NP 51 dose for the overall feeding period (P = 0.10), in which cattle fed M had a lower ADG than those fed L and H. Gain efficiency on a live BW basis was improved (P = 0.02) by NP 51 treatments compared with the control, with G:F responding quadratically to NP 51 dose for the overall feeding period (P = 0.05). In contrast to G:F based on live BW, carcass-adjusted G:F tended (P = 0.14) to decrease linearly with increasing NP 51 dose because the dressing percent tended (P = 0.12) to be less for steers fed direct-fed microbial compared with control cattle. Within the direct-fed microbial treatments, there also was a tendency (P = 0.13) for a linear decrease in the dressing percent as the NP 51 dose increased. No differences were observed in other carcass characteristics (P > 0.10), except tendencies for a quadratic increase in marbling score (P = 0.11) and percentage of USDA Choice cattle (P = 0.10). These data indicate that live cultures of L. acidophilus strain NP 51 plus P. freudenreichii strain NP 24 increased G:F of feedlot cattle fed steam-flaked corn-based diets by approximately 2%, but the effects depended on the dose of Lactobacillus.  相似文献   

19.
Crossbred steers (n = 1, 183, mean initial BW = 320 ± 33 kg) were used in an observational study to determine associations between implanting abnormalities and feedlot growth performance. Initial implant status (determined by palpation) was recorded during administration of a terminal implant. Status of the terminal implant was recorded 21 d after reimplant, post-mortem in a packing plant, and post-mortem in a laboratory. At each of the four examinations, implants were classified by palpation as either: 1) normal, 2) abscessed, 3) bunched pellets, 4) separated pellets, 5) partial retention, 6) total failed retention, 7) placed in the cartilage, 8) placed in the inner 1/3 of the ear, or 9) fluid-filled. Least square means for ADG were determined for both the initial period (d 0 to 59) and the terminal period (d 60 to harvest) using initial BW, reimplant BW, pen, health status, liver status, lung status, and implant status as covariates. Average daily gain for the initial period did not differ (P>0.40) across implant status. In the overall model, there was a trend (P<0.10) for d 60 to harvest ADG to be affected by implant status. In pair-wise least square means comparisons of implant defects, only missing implants, compared with normal implants or abscessed implants, showed less gain (P<0.05) in both laboratory and packing plant palpation models.  相似文献   

20.
One hundred forty-three Angus x Simmental crossbred steers (initial BW = 155.1 +/- 4.5 kg) were used in a 2-yr study (yr 1, n = 67; yr 2, n = 76) to determine the effects of weaning age, implant regimen, and the weaning age x implant regimen interaction on steer growth and performance, organ mass, carcass characteristics, and cooked beef palatability. Steers were early-weaned at an average age of 108 d (EW) or normally weaned at an average age of 202 d (NW) and allotted by weight to an aggressive or nonaggressive implant regimen. On their respective weaning dates, EW and NW steers were penned individually and fed a grain-based diet until they were slaughtered at a final BW of 546 kg. A subsample of steers (n = 2 per treatment) were slaughtered at 254 kg. At 254 kg, EW steers implanted with the aggressive implant regimen had 64% greater backfat depth than those implanted with the nonaggressive implant regimen; conversely, NW steers implanted with the aggressive implant regimen had 52% lower backfat depth than those implanted with the nonaggressive implant regimen (weaning status x implant regimen interaction; P < 0.01). A similar interaction was observed for empty visceral organ weights. Early-weaned steers were younger (354.7 vs 372.4 d; P < 0.01) at final slaughter but were in the feedlot longer (246.5 vs 169.6 d; P < 0.01) than NW steers, whereas the aggressive implant regimen decreased days fed (203.3 vs 212.7; P < 0.07) compared to the nonaggressive implant regimen. Overall ADG was greater for EW than for NW steers (1.61 vs 1.50 kg/d; P < 0.01) and for the aggressive compared with the nonaggressive implant regimen (1.59 vs 1.52 kg/d; P < 0.02). Early-weaned steers consumed less DM per day (7.4 vs 8.5 kg/d; P < 0.01) and were more efficient (0.217 vs 0.208 kg/kg; P < 0.02) but consumed more total DM (1,817 vs 1,429 kg; P < 0.01) than NW steers while in the feedlot. Implant regimen did not affect DMI (P > 0.37) or feed efficiency (P > 0.15). Weaning status did not affect carcass characteristics (P > 0.14), final empty body composition (P > 0.25), or final longissimus muscle composition (P > 0.18); however, steaks from EW steers had higher (P < 0.05) taste panel tenderness and juiciness ratings than steaks from NW steers. The aggressive implant regimen decreased yield grade (P < 0.02), but did not affect quality grade (P > 0.86) compared to the nonaggressive implant regimen. Placing early-weaned steers on an aggressive implant regimen is a viable management option.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号