首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The pharmacokinetics and the influence of food on the kinetic profile and bioavailability of doxycycline was studied after a single intravenous (i.v.) and oral dose of 10.0 mg/kg body weight in 7-week-old broiler chickens. Following i.v. administration the drug was rapidly distributed in the body with a distribution half-life of 0.21 +/- 0.01 h. The elimination half-life of 6.78 +/- 0.06 h was relatively long and resulted from both a low total body clearance of 0.139 +/- 0.007 L/h.kg and a large volume of distribution of 1.36 +/- 0.06 L/kg. After oral administration to fasted chickens, the absorption of doxycycline was quite fast and substantial as shown by the absorption half-life of 0.39 +/- 0.03 h, the maximal plasma concentration of 4.47 +/- 0.16 micrograms/mL and the time to reach the Cmax of 1.73 +/- 0.06 h. The distribution and the final elimination of the drug were slower than after i.v. administration. The absolute bioavailability was 73.4 +/- 2.5%. The presence of food in the intestinal tract reduced and extended the absorption (t1/2a = 1.23 +/- 0.21 h; Cmax = 3.07 +/- 0.23 micrograms/mL; tmax = 3.34 +/- 0.21 h). The absolute bioavailability was reduced to 61.1% +/- 4.4%.  相似文献   

2.
A pharmacokinetic and bioavailability study of spectinomycin was conducted in healthy broiler chickens following administration of a single (50 mg/kg bw) intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) dose and oral doses of 50 and 100 mg/kg bw. Following i.v. administration, the elimination half-life (t1/2beta), mean residence time (MRT), volume of distribution at steady-state (Vd(ss)), volume of distribution based on the terminal phase (Vd(z)) and total body clearance (ClB) were 1.46+/-1.10 h, 1.61+/-1.05 h, 0.26+/-0.009 L/kg, 0.34 (0.30-0.38) L/kg and 2.68+/-0.017 mL/min/kg respectively. After i.m. and s.c. dosing, the Cmax was 152.76+/-1.08 and 99.77+/-1.04 microg/mL, achieved at 0.25 (0.25-0.50) and 0.25 (0.25-1.00) h, the t1/2beta was 1.65+/-1.07 and 2.03+/-1.06 h and the absolute bioavailability (F) was 136.1% and 128.8% respectively. A significant difference in Cmax (5.13+/-0.10, 14.26+/-1.12 microg/mL), t1/2beta (3.74+/-1.07, 8.93+/-1.13 h) and ClB/F (22.69+/-0.018, 10.14+/-0.018 mL/min/kg) were found between the two oral doses (50 and 100 mg/kg bw respectively), but there were no differences in the tmax [2.00 (2.00-4.00), 2.00 (2.00-2.00) h] and Vd(z)/F [6.95 (6.34-9.06), 7.98 (4.75-10.62) L/kg). The absolute bioavailability (F) of spectinomycin was 11.8% and 26.4% after oral administration of 50 and 100 mg/kg bw respectively.  相似文献   

3.
The bioavailability of amprolium (APL) was measured after intravenous (i.v.) and oral (p.o.) administration to chickens. Twelve healthy chickens weighing 1.28–1.41 kg received a dose of 13 mg APL/kg intravenously, and 13 or 26 mg APL/kg orally in both a fasted and a nonfasted condition in a Latin square design. Plasma samples were taken from the subwing vein for determination of APL concentration by HPLC method. The data following intravenous and oral administration were best fitted by 2-compartment and 1-compartment models, respectively, using weighted nonlinear least squares regression. The half-life beta t ½β, volume of distribution ( V d) and total body clearance ( Cl ) after intravenous administration were 0.21 h, 0.12 L/kg and 1.32 L/h.kg, respectively. The elimination half-life ( t ½ Kel) after oral administration was 0.292–0.654 h which is 1.5–3.2 times longer than after intravenous administration, suggesting the presence of a 'flip-flop' phenomenon in chickens. The maximum plasma concentration ( C max) of 13 mg/kg APL administered orally to chickens during fasting was significantly (about four times) higher than that during nonfasting ( P < 0.05). Bioavailability during nonfasting was from 2.3 to 2.6%, and 6.4% during fasting.  相似文献   

4.
The pharmacokinetics of amikacin (AMK) were investigated after intravenous (i.v.) and intramuscular (i.m.) administration of 7.5 mg/kg bw in 6 healthy lactating sheep. After i.v. AMK injection (as a bolus), the elimination half-life (t1/2beta), the volume of distribution (Vd,area), the total body clearance (ClB) and the area under the concentration-time curve (AUC) were 1.64 +/- 0.06 h, 0.19 +/- 0.02 L/kg, 1.36 +/- 0.1 ml/min per kg and 94.09 +/- 6.95 (microg.h)/ml, respectively. The maximum milk concentration of AMK (Cmax), the area under the milk concentration-time curve (AUCmilk) and the ratio AUCmilk/AUCserum were 1.18 +/- 0.22 microg/ml, 22.45 +/- 3.21 (micro.h)/ml and 0.24 +/- 0.02, respectively. After i.m. administration of AMK the t1/2beta, Cmax, time of Cmax (tmax) and absolute bioavailability (Fabs) were 1.29 +/- 0.1 h, 16.97 +/- 1.54 microg/ml, 1.0 +/- 0 h and 64.88% +/- 6.16%, respectively. The Cmax, AUCmilk and the ratio AUCmilk/AUCserum were 0.33 microg/ml, 1.67 (microg.h)/ml and 0.036, respectively.  相似文献   

5.
The pharmacokinetic properties of pentoxyfylline and its metabolites were determined in healthy chickens after single intravenous and oral dosage of 100 mg/kg pentoxyfylline. Plasma concentrations of pentoxyfylline and its metabolites were determined by a validated high-performance liquid chromatographic method. After intravenous (i.v.) and oral (p.o.) administration, the plasma concentration-time curves were best described by a one-compartment open model. The mean elimination half-life (t(1/2el)) of pentoxyfylline was 1.05 h, total body clearance 1.90 L/h x kg, volume of distribution 2.40 L/kg and the mean residence time was 2.73 h, after i.v. administration. After oral dosing, mean maximal plasma concentration of pentoxyfylline was 4.01 microg/mL and the interval from p.o. administration until maximum concentration was 1.15 h. The mean oral bioavailability was found to be 28.2%. Metabolites I, IV and V were present in chicken plasma after both i.v. and p.o. administration, with metabolite V being the most dominant.  相似文献   

6.
Indomethacin (INDO) is a nonsteroidal antiinflammatory drug widely used since the 1970s. The pharmacokinetic behavior of INDO (2 mg/kg) has been studied after intravenous (i.v.) and oral administration to broiler chickens. After i.v. administration, a first fast distribution phase and a later and slower elimination phase were observed. The elimination half-life and mean residence time (MRT) obtained were 1.0 hr and 0.8 hr, respectively. After oral administration, a flip-flop phenomenon was observed giving an elimination half-life and MRT approximately three times and six times higher, respectively, than the i.v. administration. The plasma concentrations after oral administration were sustained during 8-10 hr, giving an antinflammatory cover over the dose producing 50% of maximal effect during this time period.  相似文献   

7.
The intravenous, intramuscular and oral pharmacokinetics of ibuprofen in broiler chickens were investigated. In a preliminary study, plasma ibuprofen concentration-time profiles, following i.v. (25 mg/kg) dosing were best described by a 2-compartment model. After intravenous administration, the volume of distribution at steady-state ( V d(ss)), the total systemic clearance ( Cl B), the elimination half-life (t1/2p) and the MRT were 0.303 L/kg, 482.3 ml/h-kg, 2.71 h and 1.02 h, respectively. After intramuscular administration of ibuprofen, the t max and C max were 0.37 h, and 42.2μg/mL, respectively, with an estimated bioavailability of 46.7%. After oral administration of ibuprofen, the t max and C max were 0.31 h and 23.91 μg/mL, respectively, with an estimated bioavailability of 24.2%. This is a preliminary study, examining the use of ibuprofen in broiler chickens, and should be followed by tissue residue and efficacy studies in different disease states.  相似文献   

8.
The pharmacokinetic data of nalidixic acid were investigated in normal and E. coli infected chickens. The highest serum concentration were reached after 2 hours with t0.5 (ab) of (1.706 +/- 0.1 min in normal and 2.030 +/- 0.11 min in diseased) and (1.72 +/- 0.11 min in normal and 1.416 +/- 0.044 in diseased chickens) following oral and intramuscular administration, respectively. The elimination half-life t0.5 (beta) were (2.514 in normal and 2.35 hr in diseased) and (2.567 hr in normal and 2.672 hr in diseased) respectively. Following intravenous injection the kinetic of nalidixic acid followed two compartments open model with t0.5 of (6.27 and 9.15 hr), Vd (0.45 and 0.79 L/kg), Cltot (8.86 and 13.32 ml/kg/min) in normal and E. coli infected chickens, respectively. Administration of nalidixic acid twice daily for 5 successive days in a dose level of 25 mg/kg b. wt. by oral and intramuscular routes showed a cumulative behaviour.  相似文献   

9.
The pharmacokinetics of ketoprofen were determined after an intravenous (i.v.) and intramuscular (i.m.) dose of 2.0 mg/kg body weight in five camels (Camelus dromedarius) using gas chromatography/mass spectrometry (GC/MS). The data obtained (median and range) following i.v. administration was as follows: the elimination half-life (t(1/2beta)) was 4.16 (2.65-4.29) h, the steady state volume of distribution (Vss) was 130.2 (103.4-165.3) mL/kg, volume of distribution (area method) (Vd(area)) was 321.5 (211.4-371.0) mL/kg, total body clearance (Cl) was 1.00 (0.88-1.08) mL/min x kg and renal clearance was 0.01 (0.003-0.033) mL/min x kg. Following i.m. administration, the drug was rapidly absorbed with peak serum concentration of 12.2 (4.80-14.4) microg/mL at 1.50 (1.00-2.00) h. The systemic availability of ketoprofen was complete. The apparent half-life was 3.28 (2.56-4.14) h. A hydroxylated metabolite of ketoprofen was identified by (GC/MS) under electron impact (EI) and chemical ionization (CI) scan modes. The detection times for ketoprofen and hydroxy ketoprofen in urine after an intravenous (i.v.) dose of 3.0 mg/kg body weight was 24.00 and 70.00 h, respectively. Serum protein binding of ketoprofen at 20 microg/mL was extensive; (99.1+/-0.15%).  相似文献   

10.
The pharmacokinetics of florfenicol and its active metabolite florfenicol amine were investigated in rabbits after a single intravenous (i.v.) and oral (p.o.) administration of florfenicol at 20 mg/kg bodyweight. The plasma concentrations of florfenicol and florfenicol amine were determined simultaneously by an LC/MS method. After i.v. injection, the terminal half-life (t(1/2lambdaz)), steady-state volume of distribution, total body clearance and mean residence time of florfenicol were 0.90 +/- 0.20 h, 0.94 +/- 0.19 L/kg, 0.63 +/- 0.06 L/h/kg and 1.50 +/- 0.34 h respectively. The peak concentrations (C(max)) of florfenicol (7.96 +/- 2.75 microg/mL) after p.o. administration were observed at 0.90 +/- 0.38 h. The t(1/2lambdaz) and p.o. bioavailability of florfenicol were 1.42 +/- 0.56 h and 76.23 +/- 12.02% respectively. Florfenicol amine was detected in all rabbits after i.v. and p.o. administration. After i.v. and p.o. administration of florfenicol, the observed Cmax values of florfenicol amine (5.06 +/- 1.79 and 3.38 +/- 0.97 microg/mL) were reached at 0.88 +/- 0.78 and 2.10 +/- 1.08 h respectively. Florfenicol amine was eliminated with an elimination half-life of 1.84 +/- 0.17 and 2.35 +/- 0.94 h after i.v. and p.o. administration respectively.  相似文献   

11.
The disposition kinetics of tylosin was studied in goats after intravenous (i.v.) or intramuscular (i.m.) injection of 15 mg/kg body wt. Following i.v. injection, tylosin was rapidly and widely distributed with a distribution half-life of 0.2 h and volume of distribution of 1.7 l/kg. It was slowly eliminated with a mean elimination half-life of 3.04 h and a total body clearance rate of 6.8 ml/kg/min. Following i.m. injection, tylosin was slowly absorbed (tau 1/2 ab of 1.82 h). Tylosin concentration in serum was greater than 1 microgram/ml after 1 h and persisted up to 12 h post-injection. The peak concentration (Cmax 2.38 micrograms/ml) was obtained after 4.19 h. The systemic bioavailability of tylosin injected intramuscularly was 72.6% and the serum protein bound fraction was 37.59% of the total drug. Tylosin was excreted in milk and urine at concentrations much higher than that in serum. Low concentrations of tylosin were reported in ruminal juice of goats. In conclusion tylosin should be injected every 14 h to obtain an appreciable concentration in serum, milk and urine.  相似文献   

12.
A study on the bioavailability and pharmacokinetics of florfenicol was conducted in six healthy dogs following a single intravenous (i.v.) or oral (p.o.) dose of 20 mg kg(-1) body weight (b.w.). Florfenicol concentrations in serum were determined by a high-performance liquid chromatography/mass spectrometry. Plasma concentration-time data after p.o. or i.v. administration were analyzed by a non-compartmental analysis. Following i.v. injection, the total body clearance was 1.03 (0.49) L kg(-1)h(-1) and the volume of distribution at steady-state was 1.45 (0.82) L kg(-1). Florfenicol was rapidly distributed and eliminated following i.v. injection with 1.11 (0.94)h of the elimination half-life. After oral administration, the calculated mean C(max) values (6.18 microg ml(-1)) were reached at 0.94 h in dogs. The elimination half-life of florfenicol was 1.24 (0.64) h and the absolute bioavailability (F) was achieved 95.43 (11.60)% after oral administration of florfenicol. Florfenicol amine, the major metabolite of florfenicol, was detected in all dogs after i.v. and p.o. administrations.  相似文献   

13.
The minimal inhibitory concentration (MIC) of flumequine for 249 Salmonella, 126 Escherichia coli, and 22 Pasteurella multocida isolates recovered from clinical cases of neonatal calf diarrhoea, pneumonia and sudden death was less than or equal to 0.78 microgram/ml. The pharmacokinetics of flumequine in calves was investigated after intravenous (i.v.), intramuscular (i.m.) and oral administration. The two-compartment open model was used for the analysis of serum drug concentrations measured after rapid i.v. ('bolus') injection. The distribution half-life (t1/2 alpha) was 13 min, elimination half-life (t1/2 beta) was 2.25 h, the apparent area volume of distribution (Vd(area)), and the volume of distribution at steady state (Vd(ss)) were 1.48 and 1.43 l/kg, respectively. Flumequine was quickly and completely absorbed into the systemic circulation after i.m. administration of a soluble drug formulation; a mean peak serum drug concentration (Cmax) of 6.2 micrograms/ml was attained 30 min after treatment at 10 mg/kg and was similar to the concentration measured 30 min after an equal dose of the drug was injected i.v. On the other hand, the i.m. bioavailability of two injectable oily suspensions of the drug was 44%; both formulations failed to produce serum drug concentrations of potential clinical significance after administration at 20 mg/kg. The drug was rapidly absorbed after oral administration; the oral bioavailability ranged between 55.7% for the 5 mg/kg dose and 92.5% for the 20 mg/kg dose. Concomitant i.m. or oral administration of probenecid at 40 mg/kg did not change the Cmax of the flumequine but slightly decreased its elimination rate. Flumequine was 74.5% bound in serum. Kinetic data generated from single dose i.v., i.m. and oral drug administration were used to calculate practical dosage recommendations. Calculations showed that the soluble drug formulation should be administered i.m. at 25 mg/kg every 12 h, or alternatively at 50 mg/kg every 24 h. The drug should be administered orally at 30 and 60 mg/kg every 12 and 24 h, respectively. Very large, and in our opinion impractical, doses of flumequine formulated as oily suspension are required to produce serum drug concentrations of potential clinical value.  相似文献   

14.
The pharmacokinetics of diclofenac was investigated in sheep given diclofenac alone (1mgkg(-1), i.v. or i.m.) and in combination with enrofloxacin (5mgkg(-1), i.v.). The plasma concentration-time data following i.v. administration of diclofenac was best described by a two compartment open pharmacokinetic model. The elimination half-life (t(1/2beta)), area under concentration-time-curve (AUC), volume of distribution (Vd(area)), mean residence time (MRT) and total body clearance (Cl(B)) were 1.03+/-0.18h, 12.17+/-1.98microg h ml(-1), 0.14+/-0.02Lkg(-1), 1.36+/-0.16h and 0.10+/-0.02Lkg(-1)h(-1), respectively. Following i.m. administration of diclofenac alone and in conjunction with enrofloxacin, the plasma concentration-time data best fitted to a one compartment open model. The t(1/2beta), AUC, Vd(area), MRT and Cl(B) were 1.33+/-0.10h, 7.32+/-1.01microg h mL(-1), 0.13+/-0.01Lkg(-1) and 0.07+/-0.01Lkg(-1)h(-1), respectively. Co-administration of enrofloxacin did not affect Vd(area) and MRT but absorption rate constant (K(a)), beta, t1/2Ka, t1/2beta, AUC, AUMC, Cl(B) and bioavailability (F) were significantly increased. This may be due to direct inhibition of cytochrome P(450) isozymes by enrofloxacin. A dose of 1.4mgkg(-1) of diclofenac administered every 6h may be appropriate for use in sheep.  相似文献   

15.
The plasma pharmacokinetics of danofloxacin and enrofloxacin in broiler chickens was investigated following single intravenous (i.v.) or oral administration (p.o.) and the steady-state plasma and tissue concentrations of both drugs were investigated after continuous administration via the drinking water. The following dosages approved for the treatment of chickens were used: danofloxacin 5 mg/kg and enrofloxacin 10 mg/kg of body weight. Concentrations of danofloxacin and enrofloxacin including its metabolite ciprofloxacin were determined in plasma and eight tissues by specific and sensitive high performance liquid chromatography methods. Pharmacokinetic parameter values for both application routes calculated by noncompartmental methods were similar for danofloxacin compared to enrofloxacin with respect to elimination half-life (t1/2: approximately 6-7 h), mean residence time (MRT; 6-9 h) and mean absorption time (MAT; 1.44 vs. 1.20 h). However, values were twofold higher for body clearance (ClB; 24 vs. 10 mL/min. kg) and volume of distribution at steady state (VdSS; 10 vs. 4 L/kg). Maximum plasma concentration (Cmax) after oral administration was 0.5 and 1.9 micrograms/mL for danofloxacin and enrofloxacin, respectively, occurring at 1.5 h for both drugs. Bioavailability (F) was high: 99% for danofloxacin and 89% for enrofloxacin. Steady-state plasma concentrations (mean +/- SD) following administration via the drinking water were fourfold higher for enrofloxacin (0.52 +/- 0.16 microgram/mL) compared to danofloxacin (0.12 +/- 0.01 microgram/mL). The steady-state AUC0-24 h values of 12.48 and 2.88 micrograms.h/mL, respectively, derived from these plasma concentrations are comparable with corresponding area under the plasma concentration-time curve (AUC) values after single oral administration. For both drugs, tissue concentrations markedly exceeded plasma concentrations, e.g. in the target lung, tissue concentrations of 0.31 +/- 0.07 microgram/g for danofloxacin and 0.88 +/- 0.24 microgram/g for enrofloxacin were detected. Taking into account the similar in vitro activity of danofloxacin and enrofloxacin against important pathogens in chickens, a higher therapeutic efficacy of water medication for enrofloxacin compared to danofloxacin can be expected when given at the approved dosages.  相似文献   

16.
The aim of this investigation was to examine the pharmacokinetics and mammary excretion of erythromycin administered to lactating ewes (n = 6) by the intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) routes at a dosage of 10 mg/kg. Blood and milk samples were collected at pre-determined times, and a microbiological assay method was used to measure erythromycin concentrations in serum and milk. The concentration-time data were analysed by compartmental and non-compartmental kinetic methods. The serum concentration-time data of erythromycin were fit to a two-compartment model after i.v. administration and a one-compartment model with first-order absorption after i.m. and s.c. administration. The elimination half-life (t(1/2beta)) was 4.502 +/- 1.487 h after i.v. administration, 4.874 +/- 0.296 h after i.m. administration and 6.536 +/- 0.151 h after s.c. administration. The clearance value (Cl tot) after i.v. dosing was 1.292 +/- 0.121 l/h/kg. After i.m. and s.c. administration, observed peak erthyromycin concentrations (Cmax) of 0.918 +/- 0.092 microg/ml and 0.787 +/- 0.010 microg/ml were achieved at 0.75 and 1.0 h (Tmax) respectively. The bioavailability obtained after i.m. and s.c. administration was 91.178 +/- 10.232% and 104.573 +/- 9.028% respectively. Erythromycin penetration from blood to milk was quick for all the routes of administration, and the high AUC milk/AUC serum (1.186, 1.057 and 1.108) and Cmax-milk/Cmax-serum ratios reached following i.v., i.m. and s.c. administration, respectively, indicated an extensive penetration of erythromycin into the milk.  相似文献   

17.
The bioavailability and pharmacokinetic disposition of florfenicol in broiler chickens were investigated after intravenous (i.v.), intramuscular (i.m.) and oral administrations of 15 and 30 mg/kg body weight (b.w.). Plasma concentrations of florfenicol were determined by a high performance liquid chromatographic method in which plasma samples were spiked with chloramphenicol as internal standard. Plasma concentration-time data after i.v. administration were best described by a two-compartment open model. The elimination half-lives were 168 +/- 43 and 181 +/- 71 min, total body clearance 1.02 +/- 0.17 and 1.02 +/- 0.16 L x kg/h, the volume of distribution at steady-state 4.99 +/- 1.11 and 3.50 +/- 1.01 L/kg after i.v. injections of 15 and 30 mg/kg b.w., respectively. Plasma concentration-time data after i.m. and oral administrations were adequately described by a one-compartment model. The i.m. bioavailability and the oral bioavailability of florfenicol were 95, 98 and 96, 94%, respectively, indicating that florfenicol was almost absorbed completely after i.m. and oral administrations of 15 and 30 mg/kg b.w.  相似文献   

18.
The pharmacokinetics and systemic bioavailability of amoxycillin were investigated in clinically healthy, broiler chickens (n = 10 per group) after single intravenous (i.v.), intramuscular (i.m.), and oral administrations at a dose of 10 mg/kg body weight. The plasma concentrations of amoxycillin were determined using high-performance liquid chromatography (HPLC) and the data were subjected to compartmental and non-compartmental kinetic analyses. Following single i.v. injection, all plasma amoxycillin data were described by a two compartment-open model. The elimination half-lives of amoxycillin were 1.07 h, 1.09 h and 1.13 h after single i.v., i.m. and oral administration, respectively. The total body clearance (Cl(B)) of amoxycillin was 0.80 (L/h)/kg and the volume of distribution calculated as V(d(area)) was 1.12 L/kg, respectively after i.v. administration. Substantial differences in the resultant kinetic data were obtained by comparing the plasma concentration profiles after i.m. injection with that after oral administration. The systemic i.m. bioavailability of amoxycillin was higher (77.21%) than after oral (60.92%) dosing. In vitro, the mean plasma protein binding of amoxycillin amounted to 8.27%. Owing to high clearance of amoxycillin in birds in our study, a plasma level was maintained above 0.25 microg/ml for only 6 h after i.m. and oral routes of administration and consequently frequent dosing may be necessary daily.  相似文献   

19.
This study investigated the disposition kinetics and plasma availability of erythromycin in broiler chickens after single intravenous (i.v.), intramuscular (i.m.), subcutaneous (s.c.) and oral administrations (p.o.) of 30 mg kg(-1) b. wt. Tissue residue profiles were also studied after multiple intramuscular, subcutaneous, and oral administration of 30 mg kg(-1) b. wt., twice daily for three consecutive days. Plasma and tissue concentrations of erythromycin were determined using microbiological assay methods with Micrococcus luteus as the test organism. Following intravenous injection, plasma concentration-vs-time curves were best described by a two compartment open model. The decline in plasma drug concentration was bi-exponential with half-lives of (t(1/2alpha)) 0.19 h and (t(1/2beta)) 5.3 h for distribution and elimination phases, respectively. After intramuscular, subcutaneous and oral administration erythromycin at the same dose was detected in plasma at 10 min and reached its minimum level 8 h post-administration. The peak plasma concentration (Cmax) were 5.0, 5.3, and 6.9 microg x ml(-1) and were attained at 1.7, 1.4, and 1.3 h (Tmax), respectively. The elimination half-lives (T(1/2el)) were 3.9, 2.6, and 4.1 h and the mean residence times (MRT) were 3.5, 3.2, and 3.6 h, respectively. The systemic bioavailabilities were 92.5, 68.8, and 109.3%, respectively. In vitro protein binding percent of erythromycin in broiler plasma was ranged from 21 to 31%. The limit of quantification (LOQ) for the assay was 0.03 microg x ml(-1) in plasma and tissues. The tissue level concentrations were highest in the liver, and decreased in the following order: plasma > kidney > lung > muscle and heart. No erythromycin residues were detected in tissues and plasma after 24 h except in liver and kidney where it persisted during 48 h following intramuscular and oral administrations.  相似文献   

20.
Pharmacokinetics of tinidazole in the horse   总被引:1,自引:0,他引:1  
Serum tinidazole concentrations were monitored in five clinically healthy adult horses after intravenous (i.v.) and oral administration of the drug (15 mg/kg and 25 mg/kg, respectively). After i.v. administration, the mean residence time was 7.0 h, the elimination half-life 5.2 h and the body clearance rate 1.6 ml/min/kg. The distribution volume was found to be 660 ml/kg. After oral administration, the mean residence time was 8.5 h, the absorption half-life 1.1 h and the bioavailability essentially 100%. In view of the in-vitro sensitivities of various anaerobic bacteria, a dosage of 10-15 mg/kg of tinidazole, orally, at 12-h intervals, can be recommended for the treatment of anaerobic infections in horses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号