首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

BACKGROUND

Aedes aegypti is a vector of several important human pathogens. Control efforts rely primarily on pyrethroid insecticides for adult mosquito control, especially during disease outbreaks. A. aegypti has developed resistance nearly everywhere it occurs and insecticides are used. An important mechanism of resistance is due to mutations in the voltage‐sensitive sodium channel (Vssc) gene. Two mutations, in particular, S989P + V1016G, commonly occur together in parts of Asia.

RESULTS

We have created a strain (KDR:ROCK) that contains the Vssc mutations S989P + V1016G as the only mechanism of pyrethroid resistance within the genetic background of Rockefeller (ROCK), a susceptible lab strain. We created KDR:ROCK by crossing the pyrethroid‐resistant strain Singapore with ROCK followed by four backcrosses with ROCK and Vssc S989P + V1016G genotype selections. We determined the levels of resistance conferred to 17 structurally diverse pyrethroids, the organochloride DDT, and oxadiazines (VSSC blockers) indoxacarb (proinsecticide) and DCJW (the active metabolite of indoxacarb). Levels of resistance to the pyrethroids were variable, ranging from 21‐ to 107‐fold, but no clear pattern between resistance and chemical structure was observed. Resistance is inherited as an incompletely recessive trait. KDR:ROCK had a > 2000‐fold resistance to DDT, 37.5‐fold cross‐resistance to indoxacarb and 13.4‐fold cross‐resistance to DCJW.

CONCLUSION

Etofenprox (and DDT) should be avoided in areas where Vssc mutations S989P + V1016G exist at high frequencies. We found that pyrethroid structure cannot be used to predict the level of resistance conferred by kdr. These results provide useful information for resistance management and for better understanding pyrethroid interactions with VSSC. © 2017 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.  相似文献   

2.
BACKGROUND: Trialeurodes vaporariorum Westwood is an important pest of protected crops in temperate regions of the world. Resistance to pyrethroid insecticides is long established in this species, but the molecular basis of the mechanism(s) responsible has not previously been disclosed. RESULTS: Mortality rates of three European strains of T. vaporariorum to the pyrethroid bifenthrin were calculated, and each possessed significant resistance (up to 662‐fold) when compared with a susceptible reference strain. Direct sequencing revealed three amino acid substitutions in the para‐type voltage‐gated sodium channel (the pyrethroid and DDT target site) of bifenthrin‐resistant T. vaporariorum at positions previously implicated with pyrethroid or DDT resistance (M918L, L925I and T929I) in other related species. CONCLUSION: This study indicates that resistance to bifenthrin in T. vaporariorum is associated with target‐site insensitivity, and that the specific mutations in the sodium channel causing resistance may differ between localities. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
Dengue is one of the most important vector-borne diseases worldwide and is a public health problem in Mexico. Most programs in dengue endemic countries rely on insecticides for Aedes control. In Mexico, pyrethroid insecticides (mainly permethrin and deltamethrin) have been extensively used over a decade as adulticides and represented a strong selection for insecticide resistance for dengue vectors in several parts of the country. We studied the type, frequency and distribution of insecticide resistance mechanisms in Aedes aegypti from six municipalities in the state of Guerrero selected on the basis of historically intense chemical control and a high risk for dengue transmission. Ae. aegypti eggs were collected from October 2009 to January 2010 using ovitraps. F1 adults, emerged from these collections, were exposed to permethrin, deltamethrin and DDT in WHO diagnostic tests and showed high resistance levels to both pyrethroids and DDT. This was consistent with the presence of increased metabolic enzyme activities and target site insensitivity due to kdr mutations. Biochemical assays showed elevated esterase and glutathione S-transferase activities in the six municipalities. The V1016I kdr mutation on the IIS6 domain of the sodium channel gene was present in an overall frequency of 0.80. A second mutation, F1534C on the IIIS6 domain of the same gene was also detected, being the first report of this mutation in Guerrero. The multiple resistance mechanisms present in Ae. aegypti from Guerrero state represent a warning for the efficacy of the pyrethroid usage and consequently for the success of the dengue control program.  相似文献   

4.
Knockdown resistance (kdr) is a target-site resistance mechanism that confers nerve insensitivity to DDT and pyrethroid insecticides. In the housefly, Musca domestica, molecular cloning of the para-type sodium channel gene has revealed two amino acid mutations that are associated with kdr and super-kdr resistance phenotypes. Both mutations are located in the domain II region of the channel; Leu1014 to Phe in the hydrophobic segment IIS6 and Met918 to Thr in the IIS4-IIS5 linker. To investigate whether these mutations also occur in other insects, we have designed degenerate primers based on conserved sequences in the domain II region of the sodium channel and used these to PCR amplify this region from insecticide-susceptible strains of eight diverse insect species representing four different insect Orders: Helicoverpa armigera, Plutella xylostella, Spodoptera littoralis (Lepidoptera), Blattella germanica (Dictyoptera), Tribolium castaneum (Coleoptera), Myzus persicae, Aphis gossypii and Phorodon humuli (Hemiptera). The primers amplified closely related para-type sodium channel sequences from each insect with a minimum of 85% amino acid identity between species. All of the sequences contained ‘susceptible’ Leu and Met residues at the positions associated with kdr and super-kdr resistance in the housefly. Recent results detailing the presence of a kdr-type Leu to Phe mutation in pyrethroid-resistant strains of two important agricultural pests, P. xylostella and M. persicae, are discussed. ©1997 SCI  相似文献   

5.
A resistance management programme comparing rotations, mosaics and single use of insecticides for residual house-spraying against the insect vectors of malaria is being carried out in Southern Mexico. The area was chosen because of its prior history of insecticide use, relatively sedentary vector, and physical features of the area which limit inward migration of insects to the study area. A high level of resistance to DDT and low levels of organophosphorus (OP), carbamate and pyrethroid resistance were detected by WHO discriminating-dose assays in field populations of Anopheles albimanus in the pre-spray period in the region where this resistance management project is being undertaken. After the first year of spraying, resistance, as measured by a discriminating-dose assay, was still at a high level for DDT and had risen for all the other insecticides. Biochemical assays showed that DDT resistance was primarily caused by elevated levels of glutathione S-transferase (GST) activity leading to increased rates of metabolism of DDT to DDE. The numbers of individuals with elevated GST and DDT resistance were well correlated, suggesting that this is the only major DDT resistance mechanism in this population. The carbamate resistance in this population was conferred by an altered acetylcholinesterase (AChE) mechanism. The level of resistance in bioassays correlated well with the frequency of individuals homozygous for the altered AChE allele. This suggests that the level of resistance conferred by this mechanism in its heterozygous state is below the level of detection of the bioassay. The low levels of OP and pyrethroid resistance could be conferred by either the elevated esterase or monooxygenase enzymes. The esterases, however, are elevated only with p-nitrophenyl acetate (PNPA), and are unlikely to be causing broad-spectrum OP resistance. The altered AChE mechanism may also be contributing to the OP but not the pyrethroid resistance. There were significant differences in some resistance gene frequencies for insects obtained by different indoor and outdoor trapping methods. To determine whether the different sampling methods were effectively sampling the same interbreeding population, RAPD analysis of insects obtained by different collection methods in different villages was undertaken. There was no observed variability in the RAPD patterns for the different mosquito samples with a number of primers. ©1997 SCI  相似文献   

6.
BACKGROUND: To evaluate the insecticide susceptibility status of Aedes aegypti (L.) in Colombia, and as part of the National Network of Insecticide Resistance Surveillance, 12 mosquito populations were assessed for resistance to pyrethroids, organophosphates and DDT. Bioassays were performed using WHO and CDC methodologies. The underlying resistance mechanisms were investigated through biochemical assays and RT‐PCR. RESULTS: All mosquito populations were susceptible to malathion, deltamethrin and cyfluthrin, and highly resistant to DDT and etofenprox. Resistance to lambda‐cyhalothrin, permethrin and fenitrothion ranged from moderate to high in some populations from Chocó and Putumayo states. In Antioquia state, the Santa Fe population was resistant to fenitrothion. Biochemical assays showed high levels of both cytochrome P450 monooxygenases (CYP) and non‐specific esterases (NSE) in some of the fenitrothion‐ and pyrethroid‐resistant populations. All populations showed high levels of glutathione‐S‐transferase (GST) activity. GSTe2 gene was found overexpressed in DDT‐resistant populations compared with Rockefeller susceptible strain. CONCLUSIONS: Differences in insecticide resistance status were observed between insecticides and localities. Although the biochemical assay results suggest that CYP and NSE could play an important role in the pyrethroid and fenitrothion resistance detected, other mechanisms remain to be investigated, including knockdown resistance. Resistance to DDT was high in all populations, and GST activity is probably the main enzymatic mechanism associated with this resistance. The results of this study provide baseline data on insecticide resistance in Colombian A. aegypti populations, and will allow comparison of changes in susceptibility status in this vector over time. Copyright © 2011 Society of Chemical Industry  相似文献   

7.
Permethrin resistance in the human head louse, Pediculus capitis De Geer (Anopulura: Pediculidae), has been reported worldwide, is associated with the knockdown phenotype, and elicits cross-resistance to DDT and the pyrethrins. Two point mutations, T929I and L932F, in the voltage-sensitive sodium channel α-subunit gene are responsible for permethrin resistance as a resistant haplotype (kdr-like). We have optimized a serial invasive signal amplification reaction (SISAR) protocol for the detection of these mutations using PCR amplified DNA fragments. SISAR distinguished all genotypes with high accuracy in a head louse population from Texas that was heterogeneous in terms of permethrin sensitivity. Using SISAR, resistance-conferring mutations are detected in a high throughput format, facilitating the efficient monitoring of permethrin resistance allele frequency in field populations.  相似文献   

8.
Synergists were used to diagnose possible mechanisms of permethrin resistance in permethrin-selected strains of the tobacco budworm, Heliothis virescens (F.). In addition to permethrin, these strains of the tobacco budworm were resistant to α-cyano-pyrethroid insecticides, organophosphorus insecticides and DDT. The monooxygenase-inhibiting prop-2-ynyl aryl ethers were the only effective synergists of permethrin among 16 candidates tested. The most effective synergist was 1,2,4-trichloro-3-(2-propynyloxy)benzene. Piperonyl butoxide, a common monooxygenase-inhibiting synergist in other species and tobacco budworm strains, was inactive. These results suggested the presence and contribution of an unusual monooxygenase in the enzymatic detoxication of permethrin. DDT cross-resistance, which was not synergized, and broad pyrethroid cross-resistance supported previous evidence for target site insensitivity as a second pyrethroid-resistance mechanism in these strains. The actions of S,S,S-tributyl phosphorotrithioate (TBPT) and triphenyl phosphate (TPP) suggested that hydrolytic detoxication, important in methyl parathion-resistance tobacco budworm strains, had little or no role in conferring pyrethroid resistance in these strains.  相似文献   

9.
昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究进展   总被引:1,自引:1,他引:0  
随着拟除虫菊酯类杀虫剂在卫生和农业害虫防治中的广泛应用,昆虫对此类杀虫剂产生抗性的报道越来越多。目前已明确昆虫对拟除虫菊酯类杀虫剂的抗性机制包括表皮穿透率下降、靶标抗性以及代谢抗性,其中代谢抗性机制较为普遍,而且其与昆虫对多种杀虫剂的交互抗性关系密切。目前,随着基因组、转录组以及蛋白质组学等新技术的发展及应用,昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制研究也取得了很多新进展。昆虫体内细胞色素P450酶(P450s)、羧酸酯酶(CarE)及谷胱甘肽S-转移酶(GSTs)等重要解毒酶系的改变均与昆虫对拟除虫菊酯类杀虫剂的代谢抗性有关,其中这3类解毒酶的活性及相关基因表达量的变化是昆虫对此类杀虫剂产生代谢抗性的主要原因。明确昆虫对拟除虫菊酯类杀虫剂的代谢抗性机制,对合理使用此类杀虫剂及延缓抗药性的产生均具有重要意义。本文在总结拟除虫菊酯类杀虫剂代谢路径及相关生物酶研究概况的基础上,综述了近年来有关昆虫对此类杀虫剂代谢抗性机制研究的主要进展。  相似文献   

10.
The DDT-resistant housefly strain, Fe, known to resist DDT by biochemical oxidation, is also resistant to carbamate insecticides and has a high in vitro microsomal epoxidase activity. The purpose of this investigation was to determine whether the DDT resistance, associated with chromosome V, is also responsible for the resistance to carbamates and for the high epoxidase levels. Genetic procedures for segregating the R factors were employed using a multimarker insecticide susceptible strain designated acbco. The technique involved backcrossing the F1 hybrid of the resistant and susceptible parents to the susceptible parent. The genotypes with a single R chromosome from the Fc parent were retained for further development as substrains and for toxicological and biochemical studies.These studies revealed that both resistance to the carbamate insecticide, propoxur, and the high in vitro microsomal epoxidation of aldrin were lost during the genetic isolation of the R factors. However, the resistance to DDT, associated with chromosome V, was present in the substrain carrying this chromosome from the Fc parent. All of the substrains were induced five- to seven-fold, by feeding phenobarbital at 1% in the diet for 3 days.Additional substrains synthesized from the substrains carrying chromosomes II and V or III and V from the Fc parent did not possess sufficient propoxur resistance or aldrin epoxidase activity to account for that present in the R parent.The interpretation of these rseults is that neither the carbamate resistance nor the microsomal epoxidase of the Fc strain is due to the factor which oxidizes DDT. Furthermore, the factor responsible for the high microsomal epoxidase activity is not due to a single chromosome such as chromosome II which is the case in other housefly strains with high oxidase activities.  相似文献   

11.
为明确黑龙江省西部草原蝗虫对杀虫剂的抗性,实现对草原蝗虫的高效节药治理,采用点滴法于2010年和2013年检测当地优势种大垫尖翅蝗Epacromius coerulipes不同种群对10种常规杀虫剂的敏感性,并测定3种增效剂对杀虫剂的增效作用。结果显示,与相对敏感基线相比,2010年大垫尖翅蝗肇源、林甸和杜蒙种群对有机磷类杀虫剂马拉硫磷、三唑磷和辛硫磷均未产生抗性,抗性比在1.09~3.32之间;对拟除虫菊酯类杀虫剂高效氯氰菊酯、氰戊菊酯的抗性比在3.57~6.86之间,处于敏感性下降和低抗水平;对其他5种杀虫剂氟虫腈、丁烯氟虫腈、阿维菌素、苦参碱和印楝素比较敏感,抗性比在0.88~1.44之间。2013年肇源种群对辛硫磷的抗性水平稍有增加,对拟除虫菊酯类杀虫剂的抗性比上升至9.43~9.57,但仍处于低抗水平。停止使用有机磷类和拟除虫菊酯类杀虫剂3年,大垫尖翅蝗对其的低水平抗性可以恢复到敏感水平;在拟除虫菊酯类杀虫剂中混用增效醚,有机磷类杀虫剂中混用磷酸三苯酯,增效作用显著,对抗性种群的增效比达到3.48以上,可以明显降低用药量。表明黑龙江省西部草原蝗虫对各类常用杀虫剂未产生高水平抗性,对大部分杀虫剂较敏感,且混用增效剂可以有效延长杀虫剂的使用寿命,有效控制草原和农牧交错地带农作物的草原蝗虫。  相似文献   

12.
麦蚜是为害小麦的一类重要害虫,广泛分布于我国各小麦种植区.2016年-2018年我国麦蚜总体偏重发生,严重影响小麦产量和品质,造成巨大的经济损失.拟除虫菊酯类杀虫剂是防治麦蚜的主要杀虫剂类型之一,但由于化学农药的长期使用,麦蚜对拟除虫菊酯类杀虫剂产生了不同程度的抗性.本文综述了拟除虫菊酯类杀虫剂作用机制、麦蚜对拟除虫菊...  相似文献   

13.
Abstract

Organochlorine, organophosphate (o.p.) and carbamate insecticides have been extensively used in Australia to combat Lucilia cuprina Wied. the main initiator of fly-strike of sheep occurring wherever sheep are run on the continent. The improved mules operation, mid-season crutching and insecticides are important in the management of Merino sheep. Insecticides are particularly valuable against body strike, especially in young sheep, in years with intermittent rain during the warmer months. Resistance to larvicides developed in the blowfly over a period of 10y from 1957. The time between the introduction of various insecticides and development of resistance is considered and a comparison made between the emergence of resistance problems to the newer synthetic insecticides in the housefly in Denmark, and in the blowfly in Australia. To provide a complete history of insecticides against the blowfly reference is made to arsenicals, to which there was no suspicion of resistance until low order cross resistance was diagnosed in o.p.-carbamate resistant strains. Some seven years after their introduction DDT and γ BHC were replaced by cyclodiene insecticides in 1954/1955. Reasons are advanced to explain the non-emergence of resistance to DDT and BHC in that period. Resistance to dieldrin and aldrin developed in late 1957 after which diazinon was introduced. The resistance has a typical BHC/dieldrin resistance spectrum and is due to a semi-dominant gene which has persisted in the field in the absence of pressure from cyclodiene insecticides. Non-specific resistance to o.p. insecticides developed in two steps. Low order resistance, diagnosed in 1965, was supplemented by an additional resistance mechanism in 1966, three alleles on two chromosomes are involved. The carbamate, butacarb, was effective against o.p. resistant strains of the blowfly when introduced in the 1966/67 season. In 1967, resistance to butacarb was diagnosed and rapidly became widespread. For the past three fly seasons larvae have been used to monitor resistance levels to o.p. and carbamate insecticides; resistance factors to both these classes of insecticide are significantly higher in larvae than adult females. Resistance levels to o.p. insecticides have stabilised. By contrast resistance levels to butacarb have doubled. A combined o p.-carbamate resistance generally applies in field samples. Larvae from o.p.-carbamate resistant strains form artificial strikes earlier than susceptible larvae, particularly on sheep treated with butacarb. It is concluded that registered o.p. insecticides, but not butacarb, will still give considerable protection against fly-strike, providing the maximum levels of o.p. resistance, reached in laboratory selection programmes, are not exceeded in the field. Investigation into o.p. resistance in the species suggests that the resistance mechanisms place their carriers at a disadvantage in the absence of selection pressure. Measures to minimise the amount of insecticide used against the blowfly are therefore strongly advocated—these include: the improved mules operation, mid season crutching and good animal husbandry.  相似文献   

14.
Although insecticide resistance is a widespread problem for most insect pests, frequently the assessment of resistance occurs over a limited geographic range. Herein, we report the first widespread survey of insecticide resistance in the USA ever undertaken for the house fly, Musca domestica, a major pest in animal production facilities. The levels of resistance to six different insecticides were determined (using discriminating concentration bioassays) in 10 collections of house flies from dairies in nine different states. In addition, the frequencies of Vssc and CYP6D1 alleles that confer resistance to pyrethroid insecticides were determined for each fly population. Levels of resistance to the six insecticides varied among states and insecticides. Resistance to permethrin was highest overall and most consistent across the states. Resistance to methomyl was relatively consistent, with 65–91% survival in nine of the ten collections. In contrast, resistance to cyfluthrin and pyrethrins + piperonyl butoxide varied considerably (2.9–76% survival). Resistance to imidacloprid was overall modest and showed no signs of increasing relative to collections made in 2004, despite increasing use of this insecticide. The frequency of Vssc alleles that confer pyrethroid resistance was variable between locations. The highest frequencies of kdr, kdr-his and super-kdr were found in Minnesota, North Carolina and Kansas, respectively. In contrast, the New Mexico population had the highest frequency (0.67) of the susceptible allele. The implications of these results to resistance management and to the understanding of the evolution of insecticide resistance are discussed.  相似文献   

15.
Pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae) is a major univoltine pest of oilseed rape in many European countries. Winter oilseed rape is cultivated on several million hectares in Europe and the continuous use of pyrethroid insecticides to control pollen beetle populations has resulted in high selection pressure and subsequent development of resistance. Resistance to pyrethroid insecticides in this pest is now widespread and the levels of resistance are often sufficient to result in field control failures at recommended application rates. Recently, metabolic resistance mediated by cytochrome P450 monooxygenases was implicated in the resistance of several pollen beetle populations from different European regions. Here, we have also investigated the possible occurrence of a target-site mechanism caused by modification of the pollen beetle para-type voltage-gated sodium channel gene. We detected a single nucleotide change that results in an amino acid substitution (L1014F) within the domain IIS6 region of the channel protein. The L1014F mutation, often termed kdr, has been found in several other insect pests and is known to confer moderate levels of resistance to pyrethroids. We developed a pyrosequencing-based diagnostic assay that can detect the L1014F mutation in individual beetles and tested more than 350 populations collected between 2006 and 2010 in 13 European countries. In the majority of populations tested the mutation was absent, and only samples from two countries, Denmark and Sweden, contained pollen beetles heterozygous or homozygous for the L1014F mutation. The mutation was first detected in a sample from Denmark collected in 2007 after reports of field failure using tau-fluvalinate, and has since been detected in 7 out of 11 samples from Denmark and 25 of 33 samples from Sweden. No super-kdr mutations (e.g. M918T) known to cause resistance to pyrethroids were detected. The implications of these results for resistance management strategies of pollen beetle populations in oilseed rape crops are discussed.  相似文献   

16.
据资料表明 ,目前大部分的农业、卫生害虫都已对一种或多种农药产生不同程度的抗性 ,而且几乎涉及所有类型农药 [1 ] 。如何通过科学用药来抑制或延缓抗性种群的抗性发展 ,成为我们今后抗性治理的重点和难点。针对敏感和抗性初始频率较低的种群所采用的轮用、混用以及使用增效剂等用药策略对有一定抗性水平的抗性种群是否仍然奏效 ?针对这一问题 ,作者以对溴氰菊酯已产生中等抗性 ( R/ S=2 8.2 4)和高等抗性 ( R/ S=5 4.1 2 )的家蝇为试虫 ,采用轮用 (换用辛硫磷 )、混用 (辛硫磷与溴氰菊酯的混剂 )、使用增效剂(溴氰菊酯与增效磷混剂 )三…  相似文献   

17.
Samples of housefly (Musca domestica) field populations were collected from Danish livestock farms in 1997. The tolerance of the first‐generation offspring was determined for a number of insecticides. Dose‐response values were obtained by topical application for the pyrethroids bioresmethrin and pyrethrum, both synergised with piperonyl butoxide, and the organophosphate dimethoate. The organophosphates azamethiphos and propetamphos and the carbamate methomyl were tested in discriminating dose feeding bioassays. Resistance was low to moderate in most of the populations for most of the compounds tested, but this study also revealed the existence of high resistance to pyrethroid, organophosphate and carbamate insecticides in some populations. The resistance factors at LD50 for bioresmethrin/piperonyl butoxide ranged between 2 and 98, and for pyrethrum/piperonyl butoxide between 2 and 29. Our results indicate that pyrethroid resistance in Denmark is increasing, since four of the 21 farms showed more than 100‐fold resistance at LD95, a level of resistance only observed once before. Resistance factors at LD50 for dimethoate ranged from 9 to 100, and showed two distinct trends: populations with either decreasing or increasing resistance. Resistance to azamethiphos was found to be widespread and high. Although two strains with high methomyl and propetamphos resistance were observed, methomyl and propetamphos resistance is moderate and appears not to be increasing. © 2001 Society of Chemical Industry  相似文献   

18.
The susceptibility to pyrethroid, organochlorine, organophosphorus and carbamate insecticides, of 20 strains of houseflies (Musca domestica L.) collected in the Middle East and North Africa, was assessed by topical application. No resistance to pyrethroids was found but most flies were resistant to DDT, gamma-HCH, organophosphorus and carbamate insecticides. Numerical factors of resistance for a susceptible and two different resistant strains, obtained using different bioassay techniques, were compared. High mortality (≥95%) was achieved with ‘resisted’ insecticides in tests with space sprays, but only low, variable mortality resulted from deposit tests. If this occurs under practical field conditions, moderately resistant populations of flies could be controlled by using space sprays containing comparatively high concentrations of active ingredient, but increased levels of deposit would be ineffective.  相似文献   

19.
Contact with organophosphorus, carbamate, organochlorine and pyrethroid insecticides caused accelerated water loss from all major parts of the integument of the housefly. The response appeared to be specific in that only insecticides, and not their truly non-toxic analogues, had this effect, specificity being also reflected in resistance and in synergistic and antagonistic responses. As an insecticide dispersed laterally in the integument the effect spread to more distant parts, including the intestinal and tracheal systems, its arrival in the tracheal system coinciding with a reduction in the rate of respiration. It is suggested that this reaction of the integument to contact with insecticides is the primary cause of eventual death. Interference with the water balance in the tracheal system affects the normal exchange of the respiratory gases and thus proper respiratory control, to which the insect reacts with symptoms of excitation and paralyses. Degeneration of vital tissues following the loss of water is probably ultimately responsible for the death of the insect.  相似文献   

20.
The electrical activity of abdominal nerves of the housefly, Musca domestica L., was used as a bioassay to study nerve sensitivity to DDT and deltamethrin in susceptible (Cooper) and resistant (kdr, super-kdr) strains. By this technique the resistant strains were less sensitive (approximately 10 000-fold) than Cooper, but the bioassay could not distinguish between super-kdr and kdr in their responses to either compound and so could not account for the greater resistance shown by flies with super-kdr above kdr flies when these insecticides are applied topically. Although factors other than nerve insensitivity may be involved, the compounds were applied to the preparation in aqueous saline solutions at, or close to, their solubility limits and this could have masked differences in responses of nerves from the resistant strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号