首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pharmacokinetics of danofloxacin was studied following intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) administration of 6 mg/kg to healthy rabbits. Danofloxacin concentration were determined by high-performance liquid chromatography assay with fluorescence detection. Minimal inhibitory concentrations (MICs) assay of danofloxacin against 30 strains of Staphylococcus aureus from several European countries was performed in order to compute pharmacodynamic surrogate markers. The danofloxacin plasma concentration versus time data after i.v. administration could best be described by a two-compartment open model. The disposition of i.m. and subcutaneously administered danofloxacin was best described by a one-compartment model. The terminal half-life for i.v., i.m. and s.c. routes was 4.88, 6.70 and 8.20 h, respectively. Clearance value after i.v. dosing was 0.76 L/kg.h. After i.m. administration, the absolute bioavailability was mean (+/-SD) 102.34 +/- 5.17% and the Cmax was 1.87 mg/L. After s.c. administration, the absolute bioavailability was mean (+/-SD) 96.44 +/- 5.95% and the Cmax was 1.79 mg/L. Danofloxacin shows a favourable pharmacokinetics profile in rabbits reflected by parameters such as a long half-life and a high bioavailability. However, in consideration of the low AUC/MIC indices obtained, its use by i.m. and s.c. route against the S. aureus strains assayed in this study cannot be recommended given the risk for selection of first mutant subpopulations.  相似文献   

2.
The pharmacokinetic behaviour of marbofloxacin, a new fluoroquinolone antimicrobial agent developed exclusively for veterinary use, was studied in mature horses (n = 5) after single-dose i.v. and i.m. administrations of 2 mg/kg bwt. Drug concentrations in plasma were determined by high performance liquid chromatography (HPLC) and data obtained were subjected to compartmental and noncompartmental kinetic analysis. This compound presents a relatively high volume of distribution (V(SS) = 1.17 +/- 0.18 l/kg), which suggests good tissue penetration, and a total body clearance (Cl) of 0.19 +/- 0.042 l/kgh, which is related to a long elimination half-life (t(1/2beta) = 4.74 +/- 0.8 h and 5.47 +/- 1.33 h i.v. and i.m. respectively). Marbofloxacin was rapidly absorbed after i.m. administration (MAT = 33.8 +/- 14.2 min) and presented high bioavailability (F = 87.9 +/- 6.0%). Pharmacokinetic parameters are not significantly different between both routes of administration (P>0.05). After marbofloxacin i.m. administration, no adverse reactions at the site of injection were observed. Serum CK activity levels 12 h after administration increased over 8-fold (range 3-15) compared with pre-injection levels, but this activity decreased to 3-fold during the 24 h follow-up period. Based on the value of surrogate markers to predict clinical success, Cmax/MIC ratio or AUC/MIC ratio, single daily marbofloxacin dose of 2 mg/kg bwt may not be effective in treating infections in horses caused by pathogens with an MIC > or = 0.25 microg/ml. However, if we use a classical antimicrobial efficacy criteria, marbofloxacin can reach a high plasma peak concentration and maintain concentrations higher than MICs determined for marbofloxacin against most gram-negative veterinary pathogens throughout the administration period. Taking into account the fact that fluoroquinolones are considered to have a concentration-dependent effect and a long postantibiotic effect against gram-negative bacteria, a dose of 2 mg/kg bwt every 24 h could be adequate for marbofloxacin in horses.  相似文献   

3.
Pharmacokinetics of marbofloxacin in horses   总被引:3,自引:0,他引:3  
Marbofloxacin is a fluoroquinolone antibiotic expected to be effective in the treatment of infections involving gram-negative and some gram-positive bacteria in horses. In order to design a rational dosage regimen for the substance in horses, the pharmacokinetic properties of marbofloxacin were investigated in 6 horses after i.v., subcutaneous and oral administration of a single dose of 2 mg/kg bwt and the minimal inhibitory concentrations (MIC) assessed for bacteria isolated from equine infectious pathologies. The clearance of marbofloxacin was mean +/- s.d. 0.25 +/- 0.05 l/kg/h and the terminal half-life 756 +/- 1.99 h. The marbofloxacin absolute bioavailabilities after subcutaneous and oral administration were 98 +/- 11% and 62 +/- 8%, respectively. The MIC required to inhibit 90% of isolates (MIC90) was 0.027 microg/ml for enterobacteriaceae and 0.21 microg/ml for Staphylococcus aureus. The values of surrogate markers of antimicrobial efficacy (AUIC, Cmax/MIC ratio, time above MIC90) were calculated and the marbofloxacin concentration profiles simulated for repeated administrations. These data were used to determine rational dosage regimens for target bacteria. Considering the breakpoint values of efficacy indices for fluoroquinolones, a marbofloxacin dosage regimen of 2 mg/kg bwt/24 h by i.v., subcutaneous or oral routes was more appropriate for enterobacteriaceae than for S. aureus.  相似文献   

4.
REASONS FOR PERFORMING STUDY: Although the efficacy of dexamethasone for the treatment of recurrent airway obstruction (RAO) has been documented, the speed of onset of effect and duration of action are unknown, as is the efficacy of orally administered dexamethasone with or without fasting. OBJECTIVES: To document the time of onset of effect and duration of action of a dexamethasone solution i.v. or orally with and without fasting. METHODS: Protocol 1 used 8 RAO-affected horses with airway obstruction in a crossover design experiment that compared the effect of i.v. saline and dexamethasone (0.1 mg/kg bwt) on pulmonary function over 4 h. Protocol 2 used 6 similar horses to compare, in a crossover design, the effects of dexamethasone i.v. (0.1 mg/kg bwt), dexamethasone per os (0.164 mg/kg bwt) with and without prior fasting, and dexamethasone per os (0.082 mg/kg) with fasting. RESULTS: Dexamethasone i.v. caused significant improvement in lung function within 2 h with a peak effect at 4-6 h. Dexamethasone per os was effective within 6 h with peak effect at 24 h at a dose of 0.164 mg/kg bwt prior to feeding. The duration of effect was, for all dexamethasone treatments, statistically significant for 30 h when compared to saline and tended to have a longer duration of effect when used orally. Dexamethasone per os at a dose of 0.164 mg/kg bwt to fed horses had mean effects comparable to dexamethasone at a dose of 0.082 mg/kg bwt per os given to fasted horses, indicating that feeding decreases bioavailability. CONCLUSIONS: Dexamethasone administered i.v. has a rapid onset of action in RAO-affected horses. Oral administration of a bioequivalent dose of the same solution to fasted horses is as effective as i.v. administration and tends to have longer duration of action. Fasting horses before oral administration of dexamethasone improves the efficacy of treatment. POTENTIAL RELEVANCE: Oral administration to fasted horses of a dexamethasone solution intended for i.v. use provides an effective treatment for RAO-affected animals.  相似文献   

5.
Pharmacokinetics of danofloxacin 18% in lactating sheep and goats   总被引:1,自引:0,他引:1  
The pharmacokinetics of danofloxacin administered at 6 mg/kg bodyweight by the intravenous and subcutaneous (s.c.) routes were determined in sheep and goats. Milk concentrations were also determined following s.c. administration. Plasma and milk concentrations of danofloxacin were measured using high-performance liquid chromatography. The plasma concentration-time curves were analysed by noncompartmental methods. Danofloxacin had a similar large volume of distribution at steady state in sheep and goats of 2.19 +/- 0.28 and 2.43 +/- 0.13 L/kg, and a similar body clearance of 0.79 +/- 0.15 and 0.98 +/- 0.13 L/kg.h, respectively. Following s.c. administration, danofloxacin achieved a similar maximum concentration in sheep and goats of 1.48 +/- 1.54 and 1.05 +/- 0.09 mg/L, respectively at 1.6 h and had a mean residence time of 4.93 +/- 0.79 and 4.51 +/- 0.44 h, respectively. Danofloxacin had an absolute bioavailability of 93.6 +/- 13.7% in sheep and 97.0 +/- 15.7% in goats and a mean absorption time of 2.07 +/- 0.75 and 2.01 +/- 0.53 h, respectively. Mean danofloxacin concentrations in milk after s.c. administration to sheep were approximately 10 times higher than plasma at 12 h postdose and remained eight times higher at 24 h postdose. In goats, mean concentration of danofloxacin in milk were approximately 13 times higher than plasma at 12 h postdose and remained four times higher at 24 h postdose. Thus, danofloxacin 18% administered s.c. to lactating ewes and goats at a dose rate of 6 mg/kg was characterized by extensive absorption, high systemic availability and high distribution into the udder resulting in higher drug concentrations being achieved in milk than in plasma.  相似文献   

6.
OBJECTIVE: To characterize the pharmacokinetics of lamivudine (3TC) in cats. ANIMALS: 6 sexually intact 9-month-old barrier-reared domestic shorthair cats. PROCEDURE: Cats were randomly alloted into 3 groups, and lamivudine (25 mg/kg) was administered i.v., intragastrically (i.g.), and p.o. in a 3-way crossover study design with 2-week washout periods between experiments. Plasma samples were collected for 12 hours after drug administration, and lamivudine concentrations were determined by high-performance liquid chromatography. Maximum plasma concentrations (Cmax), time to reach Cmax (Tmax), and bioavailability were compared between i.g. and p.o. routes. Area under the curve (AUC) and terminal phase half-life (t(1/2)) among the 3 administration routes were also compared. RESULTS: Plasma concentrations of lamivudine declined rapidly with a t(1/2) of 1.9 +/- 0.21 hours, 2.6 +/- 0.66 hours, and 2.7 +/- 1.50 hours after i.v., i.g., and p.o. administration, respectively. Total body clearance and steady-state volume of distribution were 0.22 +/- 0.09 L/h/kg and 0.60 +/- 0.22 L/kg, respectively. Mean Tmax for i.g. administration (0.5 hours) was significantly shorter than Tmax for p.o. administration (1.1 hours). The AUC after i.v., i.g., and p.o. administration was 130 +/- 55.2 mg x h/L, 115 +/- 97.5 mg x h/L, and 106 +/- 94.9 mg x h/L, respectively. Lamivudine was well absorbed after i.g. and p.o. administration with bioavailability values of 88 +/- 45% and 80 +/- 52%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Cats had a shorter t(1/2) but slower total clearance of lamivudine, compared with humans. Plasma concentrations of lamivudine were maintained above the minimum effective concentration for inhibiting FIV replication by 50% (0.14 microM [0.032 microg/mL] for wild-type FIV clinical isolate) for at least 12 hours after i.v., i.g., or p.o. administration.  相似文献   

7.
OBJECTIVE: To characterize the pharmacokinetics of zidovudine (AZT) in cats. ANIMALS: 6 sexually intact 9-month-old barrier-reared domestic shorthair cats. PROCEDURE: Cats were randomly alloted into 3 groups, and zidovudine (25 mg/kg) was administered i.v., intragastrically (i.g.), and p.o. in a 3-way crossover study design with 2-week washout periods between experiments. Plasma samples were collected for 12 hours after drug administration, and zidovudine concentrations were determined by high-performance liquid chromatography. Maximum plasma concentrations (Cmax), time to reach Cmax (Tmax), and bioavailability were compared between i.g. and p.o. routes. Area under the curve (AUC) and terminal phase half-life (t(1/2)) among the 3 administration routes were also compared. RESULTS: Plasma concentrations of zidovudine declined rapidly with t(1/2) of 1.4 +/- 0.19 hours, 1.4 +/- 0.16 hours, and 1.5 +/- 0.28 hours after i.v., i.g., and p.o. administration, respectively. Total body clearance and steady-state volume of distribution were 0.41 +/- 0.10 L/h/kg and 0.82 +/- 0.15 L/kg, respectively. Mean Tmax for i.g. administration (0.22 hours) was significantly shorter than Tmax for p.o. administration (0.67 hours). The AUC after i.v. and p.o. administration was 64.7 +/- 16.6 mg x h/L and 60.5 +/- 17.0 mg x h/L, respectively, whereas AUC for the i.g. route was significantly less at 42.5 +/- 9.41 mg x h/L. Zidovudine was well absorbed after i.g. and p.o. administration with bioavailability values of 70 +/- 24% and 95 +/- 23%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Cats had slower clearance of zidovudine, compared with other species. Plasma concentrations of zidovudine were maintained above the minimum effective concentration for inhibiting FIV replication by 50% (0.07 microM [0.019 microg/mL] for wild-type FIV clinical isolate) for at least 12 hours after i.v., i.g., or p.o. administration.  相似文献   

8.
A pharmacokinetic and bioavailability study of spectinomycin was conducted in healthy broiler chickens following administration of a single (50 mg/kg bw) intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) dose and oral doses of 50 and 100 mg/kg bw. Following i.v. administration, the elimination half-life (t1/2beta), mean residence time (MRT), volume of distribution at steady-state (Vd(ss)), volume of distribution based on the terminal phase (Vd(z)) and total body clearance (ClB) were 1.46+/-1.10 h, 1.61+/-1.05 h, 0.26+/-0.009 L/kg, 0.34 (0.30-0.38) L/kg and 2.68+/-0.017 mL/min/kg respectively. After i.m. and s.c. dosing, the Cmax was 152.76+/-1.08 and 99.77+/-1.04 microg/mL, achieved at 0.25 (0.25-0.50) and 0.25 (0.25-1.00) h, the t1/2beta was 1.65+/-1.07 and 2.03+/-1.06 h and the absolute bioavailability (F) was 136.1% and 128.8% respectively. A significant difference in Cmax (5.13+/-0.10, 14.26+/-1.12 microg/mL), t1/2beta (3.74+/-1.07, 8.93+/-1.13 h) and ClB/F (22.69+/-0.018, 10.14+/-0.018 mL/min/kg) were found between the two oral doses (50 and 100 mg/kg bw respectively), but there were no differences in the tmax [2.00 (2.00-4.00), 2.00 (2.00-2.00) h] and Vd(z)/F [6.95 (6.34-9.06), 7.98 (4.75-10.62) L/kg). The absolute bioavailability (F) of spectinomycin was 11.8% and 26.4% after oral administration of 50 and 100 mg/kg bw respectively.  相似文献   

9.
The aim of this investigation was to examine the pharmacokinetics and mammary excretion of erythromycin administered to lactating ewes (n = 6) by the intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) routes at a dosage of 10 mg/kg. Blood and milk samples were collected at pre-determined times, and a microbiological assay method was used to measure erythromycin concentrations in serum and milk. The concentration-time data were analysed by compartmental and non-compartmental kinetic methods. The serum concentration-time data of erythromycin were fit to a two-compartment model after i.v. administration and a one-compartment model with first-order absorption after i.m. and s.c. administration. The elimination half-life (t(1/2beta)) was 4.502 +/- 1.487 h after i.v. administration, 4.874 +/- 0.296 h after i.m. administration and 6.536 +/- 0.151 h after s.c. administration. The clearance value (Cl tot) after i.v. dosing was 1.292 +/- 0.121 l/h/kg. After i.m. and s.c. administration, observed peak erthyromycin concentrations (Cmax) of 0.918 +/- 0.092 microg/ml and 0.787 +/- 0.010 microg/ml were achieved at 0.75 and 1.0 h (Tmax) respectively. The bioavailability obtained after i.m. and s.c. administration was 91.178 +/- 10.232% and 104.573 +/- 9.028% respectively. Erythromycin penetration from blood to milk was quick for all the routes of administration, and the high AUC milk/AUC serum (1.186, 1.057 and 1.108) and Cmax-milk/Cmax-serum ratios reached following i.v., i.m. and s.c. administration, respectively, indicated an extensive penetration of erythromycin into the milk.  相似文献   

10.
The pharmacokinetics (PK) of azithromycin after i.v. and i.m. injection at a single dosage of 20 mg/kg bodyweight was studied in sheep. Blood samples were collected from the jugular vein until 120 h after dosing for both routes. Plasma concentrations of azithromycin were determined by bioassay. The plasma concentration-time data of azithromycin best fitted a three-compartment model after i.v. administration and a two-compartment model with first-order absorption after i.m. administration. The elimination half-life (t(1/2lambdaz)) was 47.70 +/- 7.49 h after i.v. administration and 61.29 +/- 13.86 h after i.m. administration. Clearance value after i.v. dosing was 0.52 +/- 0.08 L/kg.h. After i.m. administration a peak azithromycin concentration (C(max)) of 1.26 +/- 0.19 mg/L was achieved at 1.24 +/- 0.31 h (t(max)). Area under the curve (AUC) were 38.85 +/- 5.83 mg.h/L and 36.03 +/- 1.52 mg.h/L after i.v. and i.m. administration respectively. Bioavailability obtained after i.m. administration was 94.08 +/- 11.56%. The high tolerability of this i.m. preparation and the favourable PK behaviour such as the long half-life and high bioavailability make azithromycin likely to be effective in sheep.  相似文献   

11.
The plasma pharmacokinetics of danofloxacin and enrofloxacin in broiler chickens was investigated following single intravenous (i.v.) or oral administration (p.o.) and the steady-state plasma and tissue concentrations of both drugs were investigated after continuous administration via the drinking water. The following dosages approved for the treatment of chickens were used: danofloxacin 5 mg/kg and enrofloxacin 10 mg/kg of body weight. Concentrations of danofloxacin and enrofloxacin including its metabolite ciprofloxacin were determined in plasma and eight tissues by specific and sensitive high performance liquid chromatography methods. Pharmacokinetic parameter values for both application routes calculated by noncompartmental methods were similar for danofloxacin compared to enrofloxacin with respect to elimination half-life (t1/2: approximately 6-7 h), mean residence time (MRT; 6-9 h) and mean absorption time (MAT; 1.44 vs. 1.20 h). However, values were twofold higher for body clearance (ClB; 24 vs. 10 mL/min. kg) and volume of distribution at steady state (VdSS; 10 vs. 4 L/kg). Maximum plasma concentration (Cmax) after oral administration was 0.5 and 1.9 micrograms/mL for danofloxacin and enrofloxacin, respectively, occurring at 1.5 h for both drugs. Bioavailability (F) was high: 99% for danofloxacin and 89% for enrofloxacin. Steady-state plasma concentrations (mean +/- SD) following administration via the drinking water were fourfold higher for enrofloxacin (0.52 +/- 0.16 microgram/mL) compared to danofloxacin (0.12 +/- 0.01 microgram/mL). The steady-state AUC0-24 h values of 12.48 and 2.88 micrograms.h/mL, respectively, derived from these plasma concentrations are comparable with corresponding area under the plasma concentration-time curve (AUC) values after single oral administration. For both drugs, tissue concentrations markedly exceeded plasma concentrations, e.g. in the target lung, tissue concentrations of 0.31 +/- 0.07 microgram/g for danofloxacin and 0.88 +/- 0.24 microgram/g for enrofloxacin were detected. Taking into account the similar in vitro activity of danofloxacin and enrofloxacin against important pathogens in chickens, a higher therapeutic efficacy of water medication for enrofloxacin compared to danofloxacin can be expected when given at the approved dosages.  相似文献   

12.
The respiratory stimulant lobeline has been used in equine clinical practice to increase inspiratory and expiratory airflow rates at rest in order to facilitate investigation of both lower and upper airway function. Some of the responses to lobeline in the pony have been reported, but the detailed time course, effect of dose, possible side effects and reproducibility associated with lobeline administration have not been described in the horse. Respiratory airflow rates and oesophageal pressure were measured with a Fleisch No. 5 pneumotachometer and lightweight facemask and a microtip pressure transducer catheter, respectively. The output of the Fleisch pneumotachometer was calibrated for flow rates up to +/- 70 l/s. Seven mature horses with no clinical signs of respiratory disease were studied. Investigations were conducted to determine: (1) the responses to different doses of lobeline (0.15, 0.20, 0.25 and 0.30 mg/kg bwt) as a rapid i.v. bolus (6 horses); (2) arterial blood gases during and after lobeline administration (0.20 mg/kg bwt; 3 horses); and (3) the reproducibility of lobeline-stimulated hyperpnoea (5 horses; 2 doses of 0.20 mg/kg bwt lobeline, 15 min apart). All horses tolerated the lobeline-stimulated hyperpnoea well, although one always coughed or snorted at the onset. Mild tremor was noted following the highest dose in several horses. Apnoea of approximately 40 s was common after the hyperpnoea. Both tidal volume (VT) and frequency (fR) increased with lobeline dose. During peak hyperpnoea at a dose of 0.30 mg/kg bwt, peak inspired flow rate (PIF), peak expired flow rate (PEF) and minute ventilation (VE) were mean +/- s.e. 41+/-5 l/s, 61+/-10 l/s and 920+/-99 l/min, respectively. The hyperpnoea also caused marked changes in arterial PaO2, PaCO2 and pHa at 90 s after lobeline (0.20 mg/kg bwt) administration (mean +/- s.e. 146.0+/-6.9 mmHg, 20.6+/-0.8 mmHg and 7.707+/-0.020, respectively) compared to at rest (mean +/- s.e. 104.0+/-4.0 mmHg, 50.6+/-2.8 mmHg and 7.432+/-0.012). Dynamic lung compliance (Cdyn) was unaltered by lobeline administration. The lobeline-induced hyperpnoea was highly reproducible, with no significant difference in any of the parameters during 2 stimulations 15 min apart. Lobeline induced highly reproducible responses without any apparent adverse effects and may be useful in the investigation of pulmonary function in healthy horses and those with airway disease.  相似文献   

13.
REASON FOR PERFORMING STUDY: Good results have been obtained with a human amiodarone (AD) i.v. protocol in horses with chronic atrial fibrillation (AF) and a pharmacokinetic study is required for a specific i.v. amiodarone treatment protocol for horses. OBJECTIVES: To study the efficacy of this pharmacokinetic based i.v. AD protocol in horses with chronic AF. METHODS: Six horses with chronic AF were treated with an adapted AD infusion protocol. The protocol consisted of 2 phases with a loading dose followed by a maintenance infusion. In the first phase, horses received an infusion of 6.52 mg AD/kg bwt/h for 1 h followed by 1.1 mg/kg bwt/h for 47 h. In the second phase, horses received a second loading dose of 3.74 mg AD/kg bwt/h for 1 h followed by 1.31 mg/kg bwt/h for 47 h. Clinical signs were monitored, a surface ECG and an intra-atrial electrogram were recorded. AD treatment was discontinued when conversion or any side effects were observed. RESULTS: Three of the 6 horses cardioverted successfully without side effects. The other 3 horses did not convert and showed adverse effects, including diarrhoea. In the latter, there were no important circulatory problems, but the diarrhoea continued for 10-14 days. The third horse had to be subjected to euthanasia because a concomitant Salmonella infection worsened the clinical signs. CONCLUSION: The applied treatment protocol based upon pharmacokinetic data achieved clinically relevant concentrations of AD and desethylamiodarone. POTENTIAL RELEVANCE: Intravenous AD has the potential to be an alternative pharmacological treatment for AF in horses, although AD may lead to adverse drug effects, particularly with cumulative dosing.  相似文献   

14.
A comparative pharmacokinetic study was conducted in rainbow trout (Salmo gairdneri) and African catfish (Clarias gariepinus) following intravenous (i.v.) and intramuscular (i.m.) administration of oxytetracycline (OTC) at a dose rate of 60 mg/kg body weight. Trout and catfish were kept in aerated tap water in tanks at constant temperatures of 12 degrees C and 25 degrees C, respectively. The two- and three-compartment open models adequately described plasma drug disposition in African catfish and rainbow trout respectively, following i.v. OTC administration. Compared to catfish (COP = 86 +/- 10 micrograms/ml) an eightfold higher extrapolated zero time concentration was obtained in trout (COP = 753 +/- 290 micrograms/ml). A significant difference was observed with respect to the relatively large apparent distribution volumes (Vd(area] after i.v. OTC administration (trout, mean value: 2.1 l/kg; catfish, mean value: 1.3 l/kg). The mean final elimination half-lives of both fish species were greater than previously reported in mammals (trout, 89.5 h; catfish, 80.3 h). A mean maximum plasma concentration (Cmax = 56.9 micrograms/ml) was obtained in trout at 4 h after i.m. administration of OTC. In catfish a lower Cmax of 43.4 micrograms/ml was determined at about 7 h. No significant difference was observed with respect to bioavailability following i.m. administration of OTC (trout, 85%; catfish, 86%).  相似文献   

15.
Enrofloxacin was administered i.v. to five adult mares at a dose of 5 mg/kg. After administration, blood and endometrial biopsy samples were collected at regular intervals for 24 h. The plasma and tissue samples were analyzed for enrofloxacin and the metabolite ciprofloxacin by high-pressure liquid chromatography. In plasma, enrofloxacin had a terminal half-life (t(1/2)), volume of distribution (area method), and systemic clearance of 6.7 +/- 2.9 h, 1.9 +/- 0.4 L/kg, and 3.7 +/- 1.4 mL/kg/min, respectively. Ciprofloxacin had a maximum plasma concentration (Cmax) of 0.28 +/- 0.09 microg/mL. In endometrial tissue, the enrofloxacin Cmax was 1.7 +/- 0.5 microg/g, and the t(1/2) was 7.8 +/- 3.7 h. Ciprofloxacin Cmax in tissues was 0.15 +/- 0.04 microg/g and the t(1/2) was 5.2 +/- 2.0 h. The tissue:plasma enrofloxacin concentration ratios (w/w:w/v) were 0.175 +/- 0.08 and 0.47 +/- 0.06 for Cmax and AUC, respectively. For ciprofloxacin, these values were 0.55 +/- 0.13 and 0.58 +/- 0.31, respectively. We concluded that plasma concentrations achieved after 5 mg/kg i.v. are high enough to meet surrogate markers for antibacterial activity (Cmax:MIC ratio, and AUC:MIC ratio) considered effective for most susceptible gram-negative bacteria. Endometrial tissue concentrations taken from the mares after dosing showed that enrofloxacin and ciprofloxacin both penetrate this tissue adequately after systemic administration and would attain concentrations high enough in the tissue fluids to treat infections of the endometrium caused by susceptible bacteria.  相似文献   

16.
OBJECTIVE: To determine the pharmacokinetics and pharmacodynamics of danofloxacin in goats and the concentrations required to induce bacteriostasis, bactericidal activity, and bacterial elimination. ANIMALS: 6 healthy British Saanen goats. PROCEDURE: Danofloxacin (1.25 mg/kg of body weight) was administered i.v. and i.m. in a cross-over design with 14 days between treatments. A tissue cage was used for evaluation of drug distribution into transudate and exudate. The ex vivo antibacterial activity of danofloxacin in serum, exudate, and transudate against a caprine isolate of Mannheimia haemolytica was determined. Pharmacokinetic and pharmacodynamic data were integrated to determine the ratio of the area under the concentration versus time curve to the minimum inhibitory concentration of danofloxacin (AUIC). RESULTS: Elimination half-lives of danofloxacin in serum were 4.67 and 4.41 hours after i.v. and i.m. administration, respectively. Volume of distribution was high after administration via either route, and bioavailability was 100% after i.m. administration. Rate of penetration into exudate and transudate was slow, but elimination half-lives from both fluids were approximately twice that from serum. Drug concentrations in serum, exudate, and transudate for 9 to 12 hours after administration induced marked ex vivo antibacterial activity. For serum, AUIC24h values required for bacteriostasis, bactericidal effect, and bacterial elimination were 22.6, 29.6, and 52.4, respectively. Similar values were obtained for exudate and transudate. CONCLUSIONS AND CLINICAL RELEVANCE: Integration of danofloxacin pharmacokinetic and pharmacodynamic data obtained in goats may provide a new approach on which to base recommendations for therapeutic dosages.  相似文献   

17.
The pharmacokinetic properties and bioavailability of cyclooxygenase (COX)-2 selective nonsteroidal anti-inflammatory drug nimesulide were investigated in female goats following intravenous (i.v.) and intramuscular (i.m.) administration at a dose of 4 mg/kg BW. Blood samples were collected by jugular venipuncture at predetermined times after drug administration. Plasma concentrations of nimesulide were determined by a validated high-performance liquid chromatography method. Plasma concentration-time data were subjected to compartmental analysis and pharmacokinetic parameters for nimesulide after i.v. and i.m. administration were calculated according to two- and one-compartment open models respectively. Following i.v. administration, a rapid distribution phase was followed by the slower elimination phase. The half-lives during the distribution phase (t1/2alpha) and terminal elimination phase (t1/2beta) were 0.11+/-0.10 and 7.99+/-2.23 h respectively. The steady-state volume of distribution (Vd(ss)), total body clearance (ClB) and mean residence time (MRT) of nimesulide were 0.64+/-0.13 L/kg, 0.06+/-0.02 L/h/kg and 11.72+/-3.42 h respectively. After i.m. administration, maximum plasma concentration (Cmax) of nimesulide was 2.83+/-1.11 microg/mL attained at 3.6+/-0.89 h (tmax). Plasma drug levels were detectable up to 72 h. Following i.m. injection, the t1/2beta and MRT of nimesulide were 1.63 and 1.73 times longer, respectively, than the i.v. administration. The bioavailability of nimesulide was 68.25% after i.m. administration at 4 mg/kg BW. These pharmacokinetic data suggest that nimesulide given intramuscularly may be useful in the treatment of inflammatory disease conditions in goats.  相似文献   

18.
The frusemide dose-response for attenuation of exercise-induced pulmonary capillary hypertension was studied in 7 healthy, exercise-conditioned Thoroughbred horses using previously described haemodynamic procedures. Four different doses of frusemide were tested: 250 mg regardless of bodyweight (amounting to 0.56 +/- 0.03 mg/kg bwt), 1.0 mg/kg bwt, 1.5 mg/kg bwt and 2.0 mg/kg bwt. Frusemide was administered i.v., 4 h before exercise. Haemodynamic data were obtained at rest and during treadmill exercise performed at 14.2 m/s on a 3.5% uphill grade; this workload elicited maximal heart rate of horses. Airway endoscopy was performed post exercise to detect exercise-induced pulmonary haemorrhage (EIPH). In standing horses, frusemide administration resulted in a significant (P<0.05) decrease in mean pulmonary arterial, pulmonary capillary and pulmonary artery wedge pressures, but significant differences among the various frusemide doses were not observed. In the control experiments, exercise caused significant increments in the right atrial as well as pulmonary arterial, wedge, and capillary pressures, and all horses experienced EIPH. Following frusemide administration, the exercise-induced rise in right atrial and pulmonary vascular pressures was significantly attenuated, but significant differences between the frusemide doses of 250 mg, 1.0 mg/kg, and 1.5 mg/kg were not discerned and all horses remained positive for EIPH. Although a further significant (P<0.05) attenuation of the exercise-induced rise in pulmonary capillary blood pressure occurred when frusemide dose increased from 250 mg to 2.0 mg/kg bwt, all horses still experienced EIPH. It is concluded that a linear response to increasing frusemide dosage in terms of attenuation of the pulmonary capillary hypertension does not exist in strenuously exercising Thoroughbred horses.  相似文献   

19.
The pharmacokinetics of amikacin were studied in healthy mature female chickens (n = 6). Single doses of amikacin were injected as an i.v. bolus (10 mg/kg) and i.m. (20 mg/kg) into the same birds with a 30-day rest period between treatments. Amikacin was determined by the fluorescence polarization immunoassay method. The i.v. pharmacokinetics could be described by a two-compartment model with a t1/2 alpha of 0.150 +/- 0.064 h and a t1/2 beta of 1.44 +/- 0.34 h. The total body clearance was 0.109 +/- 0.017 1/h/kg and the volume of distribution at steady-state was 0.193 +/- 0.060 l/kg. Following a single i.m. injection, the peak plasma concentration (Cmax) was 50.79 +/- 4.05 micrograms/ml and occurred at 0.50 +/- 0.26 h. The i.m. extent of absorption was 91.2 +/- 17.6%. Simultaneous modeling of i.v. and i.m. results provided estimates of an absorption half-life of 0.480 +/- 0.158 h. The i.m. pharmacokinetics after repeated administration were studied following the tenth dose (20 mg/kg, every 8 h). The Cssmax was 38.58 +/- 6.96 micrograms/ml and occurred at 0.79 +/- 0.37 h, and the biological half-life of amikacin was 1.86 +/- 0.47 h. The multiple dosing yielded peak concentrations of 39 micrograms/ml and trough concentrations of 3.26 micrograms/ml. Based on these data, the recommended amikacin dosage in chickens is 20 mg/kg body weight every 8 h.  相似文献   

20.
REASONS FOR PERFORMING STUDY: It has been reported that i.v. flecainide has a high efficacy for the treatment of experimentally-induced acute atrial fibrillation (AF) in horses and that its use is associated with minimal toxic side effects. OBJECTIVES: The objectives were to study the efficacy of i.v. flecainide as a treatment for atrial fibrillation in horses with naturally-occurring AF. METHODS: Ten horses with naturally-occurring AF were treated with 2 mg/kg bwt flecainide i.v. at a rate of 0.2 mg/kg bwt/min. In 3 horses, the infusion was continued at 0.05-0.10 mg/kg bwt/min until a total dose of 3.0 mg/kg bwt had been administered. Heart rate, QRS duration and average interval between fibrillation waves were measured before, during and following flecainide infusion. If conversion to normal sinus rhythm was not achieved, horses were treated with quinidine sulphate per os at a dose of 22 mg/kg bwt given every 2 h. RESULTS: None of the horses with chronic AF (n = 9) converted to sinus rhythm with flecainide i.v. The only horse treated successfully had acute AF of 12 days' duration. The QRS duration and fibrillation cycle length increased significantly (P = 0.006 and 0.002, respectively) during and following flecainide infusion. Heart rate did not increase significantly over time however, 3 horses developed heart rates in excess of 100 beats/min. Two horses developed a potentially dangerous ventricular dysrhythmia during the first 15 mins of treatment. Quinidine sulphate given per os restored sinus rhythm in 8 out of 9 horses, with minimal adverse effects. CONCLUSIONS: Although flecainide might be efficacious in cases of acute AF, it was not possible to restore sinus rhythm in horses with naturally-occurring chronic AF at the dosages used in this study. In 2 horses, 2.0 mg/kg bwt flecainide was associated with potentially dangerous dysrhythmias. POTENTIAL CLINICAL RELEVANCE: Intravenous administration of 2 mg/kg bwt flecainide is unlikely to convert chronic AF in horses and could induce dangerous dysrhythmias.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号