首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An analytical procedure is described for determining residues of rotenone in fish muscle, fish offal, crayfish, freshwater mussels, and bottom sediments. Tissue samples were extracted with ethyl ether and extracts were cleaned up by gel permeation chromatography and silica gel chromatography. Sediment samples were extracted with methanol, acidified, partitioned into hexane, and cleaned up on a silica gel column. Rotenone residues were quantitated by liquid chromatography, using ultraviolet (295 nm) detection. Recoveries from sediment samples fortified with rotenone at 0.3 microgram/g were 80.8%, whereas recoveries from tissue samples fortified with 0.1 microgram/g ranged from 87.7 to 96.8%. Samples fortified with 0.3 microgram/g and stored at -10 degrees C for 6 months before analysis had recoveries ranging from 83.2 to 90.5%. Limits of detection were 0.025 microgram/g for sediments and 0.005 microgram/g for tissue samples.  相似文献   

2.
A simple and accurate analytical method for determination of polycyclic aromatic hydrocarbons (PAHs) in fish and shellfish is presented, which is considered to be useful for routine analyses and for screening purposes. The procedure involves alkaline digestion, extraction with n-hexane, silica gel column chromatography, and liquid chromatographic (LC) determination with fluorometric detection. During development of the analytical method for determination of PAHs, it was found that benzo[a]pyrene, a representative PAH, was decomposed easily by the analytical procedure, and this tendency was investigated for the experimental conditions used. Benzo[a]pyrene was decomposed by the coexistence of alkaline conditions, light, and oxygen; by peroxides in aged ethyl ether; and by oxygen when absorbed on silica gel. Thus, to obtain good recoveries and precise analytical results, these decomposition conditions must be avoided. The following precautions are recommended: protection from light through all analytical steps; addition of Na2S to alkaline digestion mixture as an antioxidant; complete removal of peroxides from ethyl ether just before use; quick column chromatography on silica gel; and prevention of air from contact with adsorbent. When this simple method was applied to fish and shellfish samples, very good recoveries of PAHs from fortified fish samples were obtained, and no serious interferences were observed in fish and shellfish extracts.  相似文献   

3.
A systematic method is proposed for determination and confirmation of aflatoxin M1 in cheese by liquid chromatography (LC). A sample of cheese is extracted with chloroform, cleaned up on 2 silica gel columns followed by a Sep-Pak C18 cartridge, and chromatographed on a 5 microns octadecyl silica column with fluorometric detection. The sample extract or standard is treated with n-hexane-trifluoroacetic acid (TFA) (4 + 1) for 30 min at 40 degrees C. Analysis by LC with TFA-treatment of the extract provides quantitative data. Multiple assays of 5 samples of Gouda cheese spiked with aflatoxin M1 at levels of 0.5, 0.1, and 0.05 ng/g showed average recoveries of 93.2, 91.6, and 92.4%, with coefficients of variation of 2.63, 3.97, and 4.52%, respectively. Assay of 5 naturally contaminated cheeses resulted in 0.051-0.448 ng/g of aflatoxin M1. Limit of quantitation is about 0.01 ng/g. The identity of aflatoxin M1 is confirmed by treating aflatoxin M1 or the M2a derivative with TFA-methanol (or ethanol) (3 + 1). The TFA-methanol reaction products of M2a could be detected quantitatively.  相似文献   

4.
A liquid chromatographic (LC) method was developed to determine sedecamycin, a 17-membered macrolide antibiotic used for treating swine dysentery, and its major metabolites (lankacidin C, lankacidinol A, and lankacidinol) in swine plasma and tissues. Plasma is directly extracted with ethyl acetate and analyzed by liquid chromatography without purification. Tissues are homogenized in a phosphate buffer containing sodium chloride, and then extracted with ethyl acetate. The extracts are subjected to silica gel-Florisil, double-layered column chromatography to remove endogenous interfering substances. The LC determination uses silica gel and ODS-silica as a stationary phase. The detection limits for sedecamycin and its metabolites were less than or equal to 0.05 ppm, and average recoveries and coefficients of variation (0.2-1 ppm range) were greater than 75% and less than 10%, respectively.  相似文献   

5.
Methods for determination of triaryl/alkylphosphates (TAPs) in water, fish, and sediment have been extended to determination of the diarylphosphate (DAP) degradation products. DAPs were extracted from water (adjusted to pH 0.5) by use of XAD-2 resin and determined by gas-liquid chromatography as butyl esters. Recovery of diphenylphosphate (DPP) and o-, m-, p-dicresylphosphates (DoCP, DmCP, DpCP) were greater than 95% in water samples fortified at 1, 10, and 50 micrograms/L. DAPs were extracted from fish with methanol and the extracts were cleaned up on reverse phase (C18) silica cartridges. Recoveries were greater than 87% for DPP, DoCP, DmCP, and DpCP in fish muscle fortified at 50, 100, and 500 ng/g. Sediments were refluxed with aqueous methanol and DAPs were recovered by use of XAD-2 resin. Recoveries of DAPs from sediments fortified at 50 and 100 ng/g were greater than 76%. Interferences (1-10 ng/g) from phosphorus or nitrogen-containing GLC peaks prevented sub- ng/g level analysis for DAPs in sediment and fish extracts.  相似文献   

6.
A sensitive, highly selective liquid chromatographic (LC) method is described which uses electrochemical (EC) reduction of the analyte in the determinative step. The method is capable of determining xanthomegnin in mixed animal feeds and grains at levels ranging from 15 to 1200 ng/g. The method can detect as little as 0.5 ng xanthomegnin injected on the LC column. Xanthomegnin is extracted with chloroform and 0.1M phosphoric acid. An aliquot of the crude extract is purified by silica gel column chromatography using a Sep-Pak silica gel cartridge. A novel feature of the method is that xanthomegnin is "backed off" the column by reversing the flow of the eluant through the column. LC is then used to separate xanthomegnin from other interfering substances. Xanthomegnin is detected by EC reduction at -0.16 V. Recoveries of xanthomegnin added to samples at levels ranging from 15 to 1200 ng/g averaged 79% with a coefficient of variation of 7.9%. Results also demonstrate that this LC system can separate the related metabolites viomellein and rubrosulphin from each other and from xanthomegnin and that the same EC detection system can be used to detect these metabolites.  相似文献   

7.
为降低烟熏即食鱼片中的苯并芘(BaP)含量,同时保留其感官特征和风味品质,开发熏烟在线筛滤技术,优化烟熏即食鱼片的加工工艺。本试验通过比较不同固相吸附材料(棉花、硅胶、分子筛、活性氧化铝)对烟熏即食鱼片品质的影响,采用高效液相色谱(HPLC)和气相色谱/质谱联用(GC/MS)对熏鱼的BaP和风味物质进行检测。比较不同固相吸附材料发现,当吸附剂为硅胶时,BaP含量下降至4.88 μg·kg-1,产品质地、色泽、熏香等感官评分较高,酚类等友好型挥发性物质得到保留。响应面优化后的烟熏鲟鱼片最佳工艺条件为硅胶25 g,烟熏时间30 min,烟熏温度85℃。本研究结果对健康烟熏食品的开发具有重要的参考意义。  相似文献   

8.
A simple automated extraction method for the determination of alkylphenolic compounds in fish tissue is reported. Pressurized fluid extraction is used to extract ground fish tissue, and the resulting extract is purified on aminopropyl silica (APS) extraction cartridges. With no further sample preparation, nonylphenol (NP) and its ethoxylates, up to nonylphenol pentaethoxylate, are quantitated using normal phase (APS Hypersil) high-performance liquid chromatography with fluorescence detection. The major advantage of this technique is elimination of the conventional gel permeation cleanup step, a lengthy procedure designed to remove fish lipids. Spiked recoveries with lake trout averaged 85% for the six NP and NP ethoxylates that were investigated. Tissue concentrations of NP and NP ethoxylates determined in fish from various locations of the Great Lakes region ranged from 18 to 2075 ng/g, wet weight.  相似文献   

9.
A liquid chromatographic (LC) method with fluorometric detection was developed to quantitatively determine residue levels of monensin, salinomycin, narasin, and lasalocid in beef liver tissue. The ionophores are extracted from the tissue, purified by both alumina and Sephadex LH-20 column chromatography, and then derivatized. Lasalocid was directly esterified with 9-anthryldiazomethane (ADAM), but monensin, salinomycin, and narasin were first acetylated with acetic anhydride and then esterified with ADAM. The ADAM derivatives were purified on a silica gel column and separated by LC using an RP C-8 5 micron column. A fluorescence detector set at 365 nm (excitation) and 418 nm (emission) was used to monitor the column effluent. The detection limits were 0.15 ppm, and the calibration curves were linear between 0.5 and 5.0 ppm for all 4 ionophores. Mean recoveries were 57, 70, 75, and 90% for lasalocid (5 ppm), monensin (2.5 ppm), salinomycin (2.5 ppm), and narasin (2.5 ppm), respectively. The ionophores were also separated and semiquantitated by using bioautography and thin layer chromatography with a vanillin spray.  相似文献   

10.
An accurate, sensitive method is described for the determination of monensin residue in chicken tissues by liquid chromatography (LC), in which monensin is derivatized with a fluorescent labeling reagent, 9-anthryldiazomethane (ADAM), to enable fluorometric detection. Samples are extracted with methanol-water (8 + 2), the extract is partitioned between CHCl3 and water, and the CHCl3 layer is cleaned up by silica gel column chromatography. Free monensin, obtained by treatment with phosphate buffer solution (pH 3) at 0 degrees C, is derivatized with ADAM and passed through a disposable silica cartridge. Monensin-ADAM is identified and quantitated by normal phase LC using fluorometric detection. The detection limit is 1 ppb in chicken tissues. Recoveries were 77.6 +/- 1.8% at 1 ppm, 56.7 +/- 7.1% at 100 ppb, and 46.5 +/- 3.7% at 10 ppb fortification levels in chicken. Gas chromatography-mass spectrometry is capable of confirming monensin methyl ester tris trimethylsilyl ether in samples containing residues greater than 5 ppm.  相似文献   

11.
A method based on a gel permeation chromatography (GPC) extraction procedure combined with an additional cleanup by solid-phase extraction (SPE) on silica gel and liquid chromatography-mass spectrometry (LC-MS) detection has been validated for the analysis of seven glycidyl esters (GEs) including glycidyl laurate, myristate, palmitate, stearate, oleate, linoleate, and linolenate in various edible oils. This method was conjointly developed and validated by two different laboratories, using two different detection systems, a LC time of flight MS (LC-ToF-MS) and a LC triple-quadrupole MS (LC-MS/MS). The extraction procedure allowed targeting low contamination levels due to a highly efficient matrix removal from the 400 mg oil sample loaded on the GPC column and is suitable for routine analysis as 24 samples can be extracted in an automated and reproducible way every 12 h. GPC extraction combined with SPE cleanup and LC-MS/MS detection leads to a limit of quantification in oil samples between 50 and 100 μg/kg depending on the type of glycidyl ester. Recoveries ranged from 68 to 111% (average = 93%). Quantification was performed by automated standard addition on extracts to compensate matrix effects artifacts. To control recoveries of each sample four isotopically labeled GEs ((13)C(3) or (13)C(4)) were included in the method.  相似文献   

12.
A sensitive method is described for determining dicamba at low micrograms/L levels in ground waters by capillary column gas chromatography with electron-capture detection (GC-EC); compound identity is confirmed by gas chromatography-mass spectrometry (GC-MS) using selected ion monitoring. Dicamba residue is hydrolyzed in KOH to form the potassium salt. The sample is then extracted with ethyl ether which is discarded. The aqueous phase is acidified to pH less than 1 and extracted twice with ethyl ether. The combined ethyl ether extracts are concentrated, and the residue is methylated using diazomethane to form the corresponding dicamba ester. The derivatized sample is cleaned up on a deactivated silica gel column. The methylated dicamba is separated on an SE-30 capillary column and quantitated by electron-capture or mass spectrometric detection. Average recoveries (X +/- SD) for ground water samples fortified with 0.40 microgram/L of dicamba are 86 +/- 5% by GC-EC and 97 +/- 7% by GC-MS detections. The EDL (estimated detection limit) for this method is 0.1 microgram dicamba/L water (ppb).  相似文献   

13.
A method was developed for detection of a variety of polar drug residues in eggs via liquid chromatography/tandem mass spectrometry (LC/MS/MS) with electrospray ionization (ESI). A total of twenty-nine target analytes from four drug classes-sulfonamides, tetracyclines, fluoroquinolones, and beta-lactams-were extracted from eggs using a hydrophilic-lipophilic balance polymer solid-phase extraction (SPE) cartridge. The extraction technique was developed for use at a target concentration of 100 ng/mL (ppb), and it was applied to eggs containing incurred residues from dosed laying hens. The ESI source was tuned using a single, generic set of tuning parameters, and analytes were separated with a phenyl-bonded silica cartridge column using an LC gradient. In a related study, residues of beta-lactam drugs were not found by LC/MS/MS in eggs from hens dosed orally with beta-lactam drugs. LC/MS/MS performance was evaluated on two generations of ion trap mass spectrometers, and key operational parameters were identified for each instrument. The ion trap acquisition methods could be set up for screening (a single product ion) or confirmation (multiple product ions). The lower limit of detection for screening purposes was 10-50 ppb (sulfonamides), 10-20 ppb (fluoroquinolones), and 10-50 ppb (tetracyclines), depending on the drug, instrument, and acquisition method. Development of this method demonstrates the feasibility of generic SPE, LC, and MS conditions for multiclass LC/MS residue screening.  相似文献   

14.
The normal phase liquid chromatographic (LC) method for determination of trans- and cis-isomers of vitamin K1 (phylloquinone) in infant formula described here uses an Apex silica column, isocratic elution, and UV absorption detection at 254 nm. Vitamin K1 is extracted quantitatively from the product matrix by pretreating the as-fed liquid with concentrated ammonium hydroxide and methanol, and then extracting it with a 2:1 mixture of dichloromethane and isooctane. The extract is cleaned up by silica open-column chromatography and concentrated for LC analysis. For trans-vitamin K1, the method precision is less than or equal to 3.3% RSD (relative standard deviation), and the spike recovery is 98 +/- 4%. For cis-vitamin K1, the precision is less than or equal to 12% RSD, determined at levels near the detection limit, and the spike recovery is 95 +/- 9%. The detection limit is 0.3 ng for both isomers at signal/noise = 3.  相似文献   

15.
A method is described for the simultaneous determination of nanogram amounts of dibutyltin and tributyltin compounds in biological and sediment samples. These compounds are converted to the corresponding chlorides with HCl, extracted with ethyl acetate-hexane (3 + 2) for biological samples and with hexane for sediment samples, and hydrogenated with sodium borohydride. The corresponding hydrides, Bu2SnH2 and Bu3SnH, are detected by electron-capture gas chromatography after cleanup by silica gel column chromatography. Detection limits are 1.0-2.0 and 0.5-1.0 ng/g, respectively, for biological and sediment samples.  相似文献   

16.
A method for extraction, cleanup, and simultaneous gas chromatographic detection of carbofuran, metalaxyl, and simazine in soils has been developed. Pesticide residues were extracted from soil with acetone containing 10% 0.2M HCl-KCl buffer (pH 2.0), cleaned up with methylene chloride-carbonate buffer (pH 10.7) solvent partitioning and solid-phase extraction on disposable silica gel columns, and quantitated with gas chromatography using a Supelcowax 10 megabore capillary column and a nitrogen-selective detector. Method limits of detection were 0.02 microgram/g for the 3 pesticides in surface soils (0-30 cm depths) and 0.02, 0.02, and 0.005 microgram/g in soils below 30 cm (subsoils) for carbofuran, metalaxyl, and simazine, respectively. Recoveries for carbofuran, metalaxyl, and simazine were 92.6 +/- 5.5, 93.6 +/- 5.0, and 88.4 +/- 6.7%, respectively, when soil samples were spiked with pesticide concentrations ranging from 0.02 to 2.0 micrograms/g.  相似文献   

17.
系统分析和比较了土壤、沉积物和植物样品中多环芳烃(PAHs)的提取与净化方法,阐述和对比了索氏提取法、超声波提取法、超临界流提取法、固相提取与固相微提取法、固液提取法、微波辅助提取法、快速溶剂提取法等提取方法以及定量浓缩净化法、硅胶柱层析净化法、费罗里土柱层析净化法、氧化铝净化法、固相萃取(SPE)净化法等净化方法。旨在通过比较目前的提取和净化方法,展望将来提取与净化方法发展的新方向。  相似文献   

18.
Chlorinated hydrocarbon pesticides can be quickly detected using commercially available thin layer chromatographic plates dipped in an acetone solution of silver nitrate. The limits of detection are functions of the pesticide, adsorbent, developing system, and concentration of the silver nitrate in acetone solution. On exposure to ultraviolet light, 0.002 microgram 2,4,5-T produced clear darkening within 30 min on precoated silica gel plates (polyvinyl alcohol binder) coated with a solution of 0.1% silver nitrate in acetone. For this system, a 60-min detection period was necessary for a 0.05% coating solution. On the silica gel plates (polyvinyl alcohol binder, 0.1% silver nitrate), 0.02 microgram lindane is detected within 75 min. For alumina plates (polyvinyl alcohol binder, 0.1% silver nitrate), 0.025 microgram aldrin is detected within 10 min. Darkening of this plate prohibits the detection of 0.012 microgram aldrin. On silica gel plates (polyvinyl alcohol binder, 0.1% silver nitrate), 0.015 microgram aldrin can be detected within 45 min. The method described provides sensitivities equal to or exceeding literature values.  相似文献   

19.
A method has been developed for the extraction, cleanup, derivatization, detection, and quantitation of hexachlorophene (HCP) residues from 2 types of plant storage tissue high in lipid content. Wet soybean or peanut tissue was homogenized and extracted with ethyl ether and chromatographed on silica gel to remove the neutral lipids. The cleaned up sample was methylated with diazomethane and the dimethoxyhexachlorophene was eluted from a second silical gel column and chromatographed on a 6' glass column packed with 3% OV-1 or 3% SE-30 on Gas-Chrom Q. The instrument detection limit for the 63Ni electron capture detector was less than 0.1 ng for dimethoxyhexachlorophene and about 1 ppb HCP residue in plant issue. Recovery of 10-420 ppb HCP added to tissue averaged 90.9 +/- 5.7%. Interfering substances were removed, column life was increased, peak sharpness was increased, and tailing of the parent compound was decreased by using appropriate column chromatography.  相似文献   

20.
A method is described for the determination of inorganic tin in biological samples by hydride generation-atomic absorption spectrometry (HG-AAS). A sample is extracted with ethyl acetate after addition of HCl and NaCl. The concentrated extract is passed through a silica gel column. The column is washed with ethanol, water, and 0.2N HCl successively, and then inorganic tin is eluted with 2N HCl and measured by HG-AAS. Recoveries from fish muscle spiked with 0.1 micrograms/g Sn4+ are 78.9 +/- 4.2% (average +/- standard deviation, n = 5). The detection limit is 0.01 micrograms/g as Sn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号