共查询到19条相似文献,搜索用时 62 毫秒
1.
农作物长势的定义与遥感监测 总被引:51,自引:24,他引:51
监测作物生长过程的状况与趋势,即长势监测是农业遥感更为重要的任务。其目的是:1)为田间管理提供及时的信息;2)早期估计产量。该文以冬小麦为例,根据实地调查与北方数省的资料,用作物的个体与群体特征定义作物长势,讨论了遥感监测的可能性,提出了基于植被指数与植被表面温度的长势遥感监测的评估模型与诊断模型的概念与算法。 相似文献
2.
基于无人机低空遥感的农作物快速分类方法 总被引:10,自引:9,他引:10
无人机以其高时效、高分辨率、低成本、低风险及可重复使用的优势,给遥感技术在各领域的应用提供了新的平台。为了提高无人机遥感中农田信息获取的时效性和精度,该文分析了无人机低空航飞获得的高空间分辨率农作物遥感影像特征,以冬小麦为研究对象,基于农作物波谱特征和NDVI变化阈值,提出了一种农作物快速分类提取方法,并与其他几种常用的遥感分类方法进行比较,探讨了其普适性。结果表明,该方法从无人机高分辨率影像中提取不同种类的农作物分类信息具有较高的正确率和普适性,兼具快速和低成本的特点,在海量农作物无人机航拍数据的信息提取上具有较广的应用。 相似文献
3.
基于综合指标的冬小麦长势无人机遥感监测 总被引:3,自引:7,他引:3
作物长势监测可以及时获取作物的长势信息,该文尝试建立新型长势指标,监测小麦总体长势情况。将反映小麦长势的叶面积指数(leaf area index,LAI)、叶片叶绿素含量、植株氮含量、植株水分含量和生物量5个指标按照均等权重综合成一个指标,综合长势指标(comprehensive growth index,CGI)。利用450~882 nm范围内单波段和任意两个波段构建归一化光谱指数(normalized difference spectral index,NDSI),比值光谱指数(ratio spectral index,RSI)和简单光谱指数(simple spectral index,SSI),计算CGI与光谱指数的相关性,筛选出相关性好的光谱指数,结合偏最小二乘回归(partial least squares regression,PLSR)建立反演模型。以CGI为指标,运用无人机高光谱影像对2015年小麦多生育期的长势监测。结果表明:1)冬小麦各生育期,总体上CGI与光谱指数的决定系数R~2均好于各项单独指标与相应光谱指数的R~2。仅孕穗期CGI和RSI(754,694)的R~2比叶绿素和RSI(486,518)的R~2低,开花期的CGI和R570的R~2比生物量和R834的R~2低以及灌浆期CGI和SSI(582,498)的R~2比植株含水量和SSI(790,862)的R~2低。2)拔节期,孕穗期,开花期,灌浆期和全生育期PLSR模型的建模R~2分别为0.70,0.72,0.78,0.78和0.61。拔节期,孕穗期和开花期的无人机CGI影像验证模型的均方根误差RMSE(root mean square error)分别为0.050,0.032和0.047。CGI与相应光谱指数的R~2高于单独各项指标与相应光谱指数的R~2,光谱指数能够很好反映CGI包含的信息。无人机高光谱影像反演CGI精度较高,能够判断出小麦总体的长势差异,可为监测小麦长势提供参考。 相似文献
4.
为了提高无人机遥感对冬小麦叶面积指数(leaf area index,LAI)反演模型的精度与泛化能力,该研究利用无人机搭载多光谱相机获取不同氮素处理和不同复种方式的冬小麦生长实测数据,结合PROSAIL辐射传输模型生成包含机理信息的模拟数据,基于不同组合方式建立了5种LAI反演混合数据集,结合多种机器学习方法,以期构建经验与机理相结合的LAI高精度反演模型。由于LAI反演受NIR波段反射率影响大,该研究筛选7种与NIR波段相关的植被指数提取冬小麦光谱特征,构建与混合数据集LAI的相关系数矩阵,进一步探究不同光谱特征对冬小麦LAI的影响程度。在此基础上,采用具有代表性和普适性的4种机器学习方法,即贝叶斯岭回归模型、线性回归模型、弹性网络模型和支持向量回归模型,构建不同冬小麦LAI反演模型,用以评估基于半经验半机理数据反演冬小麦LAI的可行性,进一步探索其对不同氮素水平和复种方式的冬小麦长势评估能力。结果表明:1)筛选的与NIR波段相关的植被指数与冬小麦LAI之间存在较强的相关性,其中归一化差异植被指数、增强植被指数、归一化差异红边指数、比值植被指数、红边叶绿素植被指数、土壤调节植被指数与LAI呈正相关,结构不敏感色素植被指数与LAI呈负相关;2)辐射传输模型中体现了冬小麦LAI影响太阳光线传播的机理,结果表明,与实测数据混合建立的模型,具有较强的鲁棒性和泛化能力。相比于其他3种模型,支持向量回归模型在各种数据组合下均取得了较好的LAI预测性能,在C1、C2、C3、C4这4种训练-测试组合的训练集中R2依次为0.86、0.87、0.88、0.91,RMSE依次为0.47、0.45、0.45、0.41;在测试集的R2依次为0.85、0.19、0.89、0.87,RMSE依次为0.45、1.31、0.49、0.50;3)使用支持向量机生成试验区LAI反演图,对4种氮素水平和2种复种方式的冬小麦长势评估,结果表明,适当的施加氮素处理能提高冬小麦LAI值,麦-豆复种方式下的冬小麦LAI值普遍高于麦-玉复种的LAI值。该研究为冬小麦LAI的反演提供了一种有效的方法,并为高效评估冬小麦长势研究提供了参考。 相似文献
5.
基于关键发育期的冬小麦长势遥感监测方法 总被引:1,自引:0,他引:1
利用遥感方法识别中国冬小麦关键发育期并基于识别发育期进行长势监测。通过冬小麦主产区271个气象站2005-2010年的农业气象资料和同期MODIS-EVI(增强植被指数)遥感资料,综合分析EVI时间序列与冬小麦返青、抽穗和成熟期的关系,使用最大变化斜率法、窗口转折点法和简单转折点法识别冬小麦关键发育期。然后基于遥感识别抽穗期数据,使用相邻年抽穗期EVI值比较方法对冬小麦2006-2010年长势进行遥感监测。遥感识别冬小麦主要发育期均方根均值为14.61d,平均绝对偏差均值为11.2d;冬小麦遥感长势监测结果显示基于识别抽穗期的遥感长势监测方法监测效果好于传统长势监测方法。 相似文献
6.
基于无人机遥感影像的大豆叶面积指数反演研究 总被引:16,自引:0,他引:16
作物叶面积指数的遥感反演是农业定量遥感研究热点之一,利用无人机遥感监测系统获取农作物光谱信息精确反演叶面积指数对精准农业生产与管理意义重大。本研究以山东省嘉祥县一带的大豆种植区为试验区,设计以多旋翼无人机为平台同步搭载Canon Power Shot G16数码相机和ADC-Lite多光谱传感器组成的无人机农情监测系统开展试验,分别获取大豆结荚期和鼓粒期的遥感影像。使用比值植被指数(RVI)、归一化植被指数(NDVI)、土壤调整植被指数(SAVI)、差值植被指数(DVI)、三角植被指数(TVI)5种植被指数,结合田间同步实测叶面积指数(leaf area index,LAI)数据,采用经验模型法分别构建了单变量和多变量LAI反演模型,通过决定系数(R2)、均方根误差(RMSE)和估测精度(EA)3个指标筛选出最佳模型。研究表明,有选择性地分时期进行农作物的叶面积指数反演是必要的,鼓粒期作为2个生育期中大豆LAI反演的最佳时期,其NDVI线性回归模型对大豆LAI的解释能力最强,R2=0.829,RMSE=0.301,反演大豆LAI最准确,EA=85.4%,生成的鼓粒期大豆LAI分布图反映了当地当时大豆真实长势情况。因此,以多旋翼无人机为平台同步搭载高清数码相机和多光谱传感器组成的无人机农情监测系统对研究大豆叶面积指数反演是可行性,可作为指导精准农业研究的一种新方法。 相似文献
7.
高效、快速、准确获取冬小麦长势信息在农业发展和经营决策中具有重要作用。该研究以冬小麦为对象,开展无人机冬小麦长势监测,获取冬小麦生物量、株高、叶绿素含量和植株含水率数据,基于变异系数法(Coefficient of Variation Method,CV)构建综合长势监测指标(Comprehensive Growth Monitoring Indicators,CGMICV),通过16种植被指数与CGMICV进行相关性分析,计算植被指数间的方差膨胀因子,筛选最优植被指数作为模型输入变量,采用偏最小二乘(Partial Least Squares Regression,PLSR)、随机森林(Random Forest,RF)、反向传播神经网络(Back Propagation Neural Networks,BPNN)及遗传算法(Genetic Algorithm,GA)优化的BPNN模型建立冬小麦长势反演模型,结合评价指标获得冬小麦最优长势反演模型,最终得到研究区冬小麦长势空间分布信息。研究结果表明:以变异系数法得到的冬小麦CGMICV相关性比单一指标的相关性有不同程度的提高;利用变异系数法结合BPNN得到的冬小麦长势最佳反演模型CGMICV-BPNN,其决定系数R2可达0.71,模型精度较传统赋权法提高了26.79%;采用GA优化后的BPNN模型的不稳定显著下降,其平均相对误差中位数下降了22.22%,决定系数R2也有所提高;研究区内半数以上的冬小麦长势集中于第Ⅲ等级,其所占比例为55.83%,其次集中于第Ⅰ等级,其所占比例为36.08%,研究区冬小麦整体长势较为稳定。研究结果可为冬小麦长势监测及区域作物生产监测提供重要参考。 相似文献
8.
基于无人机遥感影像的水稻种植信息提取 总被引:4,自引:5,他引:4
水稻是中国南方最主要的粮食作物,种植面积波动对国家粮食稳定有很大影响。通过无人机遥感试验获取多幅有重叠区域的图像,使用Agisoft photoscan软件拼接重构试验区的完整图像,利用多尺度分割方法将试验区域分割成若干对象,并基于统计方法提取对象的光谱特征、几何特征和纹理特征;然后,建立识别水稻地块的二分类Logistic回归模型,特征指标为形状指数、红色均值、红色标准偏差、最大化差异度量、灰度共生矩阵同质性和灰度共生矩阵非相似性。结果表明:模型辨识训练样本集的正确率为100%,辨识检验样本的正确率为97%,模型应用于辨识验证区域水稻田块,总体正确率为98%。最后基于累计像素方法测算水稻田块的面积,并与目视解译测算的结果对比,面积误差小于3.5%,研究方法识别水稻田块效果好,面积测算准确率高。因此,该研究对利用无人机遥感影像普查水稻种植信息具有一定的适用性。 相似文献
9.
10.
基于支持向量机回归的冬小麦叶面积指数遥感反演 总被引:4,自引:12,他引:4
利用单一植被指数反演叶面积指数(LAI)时,存在不同程度的饱和性且每种指数只能包含部分波段的信息,该文提出利用支持向量机回归的方法进行叶面积指数的反演,可以用更多的波段信息作为输入参数以提高LAI反演精度。选取冬小麦起身期、拔节期和灌浆期的实测光谱和叶面积指数数据,用统计回归的方法分别建立NDVI-LAI和RVI-LAI模型,用支持向量机回归(SVR)方法分别建立以NDVI、RVI以及蓝、绿、红和近红外4个波段数据作为输入参数的回归预测模型,即NDVI-SVR、RVI-SVR和NRGB-SVR模型。上述5个模型分别利用对应时期的环境星HJ-CCD数据进行验证。结果表明:NDVI和RVI与叶面积指数(LAI)的回归模型预测的结果与实测值的RMSE分别为0.98与0.97;预测精度分别为59.2%与59.3%。以NDVI和RVI结合实测叶面积指数(LAI)训练并预测的结果与实测值的均方根误差RMSE分别为0.71与0.83预测精度分别为70.4%与67.1%。以蓝(B)、绿(G)、红(R)以及近红外(NIR)波段作为输入参数回归并预测的RMSE值为0.42,预测精度为81.7%。通过支持向量机回归预测具有更好的拟合效果,可以输入更多波段信息,提高了叶面积遥感反演精度,对冬小麦的多个生育期均具有较好的适用性。 相似文献
11.
无人机遥感解析田间作物表型信息研究进展 总被引:7,自引:19,他引:7
田间作物表型信息是揭示作物生长发育规律及其与环境关系的重要依据,传统的田间试验取样和车载高通量平台测定作物性状参数的方法耗时耗力,且空间覆盖不全,限制了作物科学研究的快速发展,而以无人机为代表的近地遥感高通量表型平台凭借机动灵活、成本低、空间覆盖广的优势成为获取田间作物表型信息的重要手段。该文根据国内外无人机遥感平台解析作物表型信息的最新研究成果,针对不同传感器类型分析了无人机遥感解析作物表型信息的应用及其不足,总结了遥感定量反演作物表型信息的方法体系,展望了无人机载遥感技术在作物表型信息解析方面的应用前景。该项研究成果对推广无人机遥感平台获取田间作物表型信息、提高复杂农田环境作物长势信息的解析和辨识能力具有重要意义。 相似文献
12.
基于小波包变换的农作物分类无人机遥感影像适宜尺度筛选 总被引:1,自引:1,他引:1
为寻找适宜分类的空间尺度,该文提出一种基于小波包的空间尺度选择方法。该文以无人机航拍农作物影像为数据源,针对高空间分辨率遥感影像农作物分类问题,基于小波包变换对影像分类特征进行多尺度定量分析。将七种农作物影像样本进行小波包分解,从高频部分获取均值,方差,能量,能量差四种纹理信息,从低频部分获取光谱信息,构建分类特征矢量,通过作物样本之间的J-M距离,分析在不同小波包分解层样本之间的可分性,并进一步通过农作物面向对象分类精度和分割耗时评价适宜尺度。该文选择位于河北的涿州农场为研究区,利用无人机航空影像,对提出的方法进行试验验证,结果显示:小波包分解到第三、四层级时,即空间分辨率为0.32~0.64 m时,适宜农作物面向对象分类;在适宜尺度下,基于小波包分解的面向对象分类总体分类精度可达到89%,Kappa系数可达到0.85。研究结果可为高空间分辨率遥感农作物精细识别提供支撑。 相似文献
13.
基于无人机高光谱遥感的冬小麦叶面积指数反演 总被引:10,自引:12,他引:10
叶面积指数(leaf area index,LAI)是评价作物长势和预测产量的重要依据。光谱特征信息作为高光谱遥感的突出优势在追踪LAI动态变化方面极其重要;然而,围绕光谱特征信息所开展的无人机高光谱遥感反演作物LAI的相关研究鲜有报道。该文利用ASD Field Spec FR Pro 2500光谱辐射仪(ASD Field Spec FR Pro 2500 spectroradiometer,ASD)和Cubert UHD185 Firefly成像光谱仪(Cuber UHD185 Firefly imaging spectrometer,UHD185)在冬小麦试验田进行空地联合试验,基于获取的孕穗期、开花期以及灌浆期地面数据和无人机高光谱遥感数据,估测冬小麦LAI。该文选择同步获取的冬小麦冠层ASD光谱反射率数据作为评价无人机UHD185高光谱数据质量的标准,依次从光谱曲线变化趋势、光谱相关性以及目标地物光谱差异三方面展开分析,结果表明458~830 nm(第3~96波段)的UHD185光谱数据可靠,可使用其探测冬小麦LAI,这为今后无人机UHD185高光谱数据的使用提供了参考。该文研究对比分析了UHD185数据计算的红边参数和光谱指数与冬小麦LAI的相关性,结果表明:12种参数中比值型光谱指数RSI(494,610)与LAI高度正相关,是估测LAI的最佳参数;基于比值型光谱指数的对数形式lg(RSI)构建的线性模型展现出lg(RSI)与lg(LAI)较优的线性关系(决定系数R2=0.737,参与建模的样本个数n=103),且lg(LAI)预测值和lg(LAI)实测值高度拟合性(R2=0.783,均方根误差RMSE=0.127,n=41,P0.001);该研究为利用无人机高光谱遥感数据开展相关研究积累了经验,也为发展无人机高光谱遥感的精准农业应用提供了参考。 相似文献
14.
基于无人机影像的农情遥感监测应用 总被引:11,自引:21,他引:11
该文以中国农业科学院(万庄)农业高新技术产业园及周边地区4.2×3.1 km的范围为研究区域,利用无人机搭载RICOH GXR A12型相机进行了航拍试验,主要测试了定位定向系统(positioning and orientation system,POS)数据辅助下光束法区域网平差方法平面定位及面积测量精度,以及无人机影像的作物面积识别精度。结果表明,在无控制点约束条件下,直接采用POS数据进行光束法区域网平差后,以中误差表示的平面定位精度为X轴方向(东西方向)中误差为2.29 m,Y轴方向(南北方向)中误差为2.78 m,整体平面中误差3.61 m;采用3阶一般多项式模型进行几何精校正,X轴方向中误差为1.59 m,Y轴方向中误差为1.8965 m,整体平面中误差为2.32 m,符合《数字航空摄影测量空中三角测量规范》中对1∶10 000平地的平面精度要求,能够满足农作物面积遥感监测中作物面积调查定位精度的要求;采用监督分类和面向对象分类2种方法,对面积评价区域种植的春玉米、夏玉米、苜蓿和裸土4种地物类型进行分类,以差分GPS调查结果为评价标准,4种作物总体识别精度分别达到了88.2%(监督分类)和92.0%(面向对象分类),单独分类精度分别为88.9%、86.7%、93.0%、86.6%和90.35%、92.61%、94.93%、93.30%。研究结果说明了无人机遥感影像获取小范围、样方式分布的作物影像方面具有广泛的应用前景,推广后能够满足全国农作物地面样方对高空间分辨率影像的需求,可以部分替代现有人工GPS测量的作业方式。 相似文献
15.
基于无人机遥感植被指数优选的田块尺度冬小麦估产 总被引:1,自引:3,他引:1
田块尺度作物快捷精准估产对规模化农业经营管理具有重要意义。因此,急需选取最优植被指数和最佳无人机遥感作业时期,建立冬小麦无人机遥感估产模型,获取及时、快速、低成本的无人机遥感估产方法。该文以山东省滨州市典型规模化农田为研究对象,利用固定翼无人机遥感平台对冬小麦进行多期遥感观测与估产。基于2016年冬小麦返青拔节期、抽穗灌浆期和成熟期的无人机遥感影像数据集,采用最小二乘法,构建了基于不同植被指数与冬小麦实测产量的9种线性模型,并结合作物实测产量进行模型评价。多时相多种类植被指数的优选分析结果显示,抽穗灌浆期估产模型R~2最高,RMSE最低(n=34)。其中,模型R~2达到0.70的植被指数共6个,从高到低依次为EVI2、MSAVI2、SAVI、MTVI1、MSR和OSAVI;RMSE由低到高依次为EVI2、MSAVI2、SAVI、MTVI1、MSR和OSAVI。另外,该文进一步评价农田土壤像元对无人机遥感估产的影响,经过阈值滤波法处理后,返青拔节期估产模型的R~2(n=34)从约0.20提升至0.30以上,RMSE和MRE下降;抽穗灌浆期模型的RMSE降低,R~2(n=34)有所提升但不显著。综上所述,最佳无人机飞行作业时期为冬小麦抽穗灌浆期,最优植被指数为EVI2,土壤像元的滤除对抽穗灌浆期无人机遥感估产模型的影响不显著。因此,优化后的基于植被指数的无人机遥感估产模型,可以快速有效诊断和评估作物长势和产量,为规模化农业种植经营提供一种快捷高效的低空管理工具。 相似文献
16.
基于小型无人机遥感的玉米倒伏面积提取 总被引:8,自引:10,他引:8
该文使用2012年小型无人机遥感试验获取的红、绿、蓝彩色图像研究灌浆期玉米倒伏的图像特征和面积提取方法。研究首先计算和统计正常、倒伏玉米的30项色彩、纹理特征,然后比较特征的变异系数和相对差异评选出适宜区分正常、倒伏玉米的特征;通过分析发现,与红、绿、蓝色灰度比较,多项色彩、纹理特征的变异系数更大或不同类别间的相对差异更小,不适用于准确区分正常、倒伏玉米,最适于区分正常和倒伏玉米的特征是3项基于灰度共生矩阵的红、绿、蓝色均值纹理特征。分别基于色彩特征和评选出的纹理特征提取倒伏玉米面积,对比2种方法的误差发现,基于红、绿、蓝色均值纹理特征提取倒伏玉米面积的误差最小为0.3%,最大为6.9%,显著低于基于色彩特征提取方法的。该研究结果为应用无人机彩色遥感图像准确提取倒伏玉米面积提供了依据和方法。 相似文献
17.
基于无人机可见光影像的农田作物分类方法比较 总被引:4,自引:4,他引:4
大面积农田种植信息的准确获取是精准农业的基础。色彩空间转换、纹理分析和颜色指数等方法能够有效的增强和挖掘影像潜在的信息,对影像分类很有帮助,该文利用2016年9月获取的无人机影像对新疆兵团第八师149团的部分农田进行了作物类型的提取研究。首先对影像进行了色彩空间转换和灰度共生矩阵纹理滤波,得到了27项色彩与纹理特征,通过比较变异系数和差异系数认为亮度、饱和度和红色二阶矩可以作为最优分类特征。其次计算影像的过绿指数(excess green index,EXG)和可见光波段差异植被指数(visible-band difference vegetation index,VDVI),通过阈值对比确定了EXG指数可以有效的区分不同作物类型。最后对比以上2种方法计算得到的分类结果,表明基于色彩与纹理特征提取的作物类型的精度较高,将该方法应用于棉花、玉米和葡萄的分类,误差值分别为7.2%、4.75%和2.37%,明显高于基于颜色指数的提取方法,是一种行之有效的无人机数据作物分类方法。该研究虽未对更大区域做进一步探讨,但可为无人机应用于农田作物分类提供参考。 相似文献
18.
基于优化SIFT算法的无人机遥感作物影像拼接 总被引:1,自引:1,他引:1
针对作物遥感影像因对比度低所导致的使用尺度不变特征变换算法(scale-invariant feature transform,SIFT)提取特征点数目少,拼接效果不理想的情况,提出了一种基于图像锐化的自适应修改采样步长的非极小值抑制拼接算法,该算法在图像预处理中引入锐化滤波器对平滑后的图像进行卷积,增强图像细节,增加特征点提取数目,同时通过基于尺度的自适应修改采样步长,使图像特征点分布更加均匀,根据低对比度作物遥感影像的成像特性,采用非极小值抑制,提高图像匹配效率。在查找匹配点的过程中,引入最优节点优先算法(best-bin-first,BBF)查找最近邻与次近邻,采用随机抽样一致算法(random sample consensus,RANSAC)优选特征点。通过试验验证,该文改进后的算法相比于标准SIFT算法,在处理低空作物遥感影像时,特征点提取数目平均增加77.5%,特征点匹配对数平均增加15对,对于标准SIFT算法无法匹配的低对比度作物遥感影像,提取到了8对以上的匹配点对,满足了拼接条件。该改进算法相对于标准SIFT算法更适于低对比度遥感影像的拼接。 相似文献
19.
基于GPS与无人机遥感反演草地生物量的放牧场利用强度评估 总被引:1,自引:1,他引:1
天然草地是放牧畜牧业生产赖以生存的物质基础。为了评估天然草地利用情况,该文通过GPS获取牧群采食轨迹数据来估算采食强度,利用无人机遥感估算模型反演草地生物量的时空分布,将畜群采食强度与天然草地生物量进行融合,探索不同区域畜群的采食强度与草地生物量;分别将采食强度与生物量分类进行对比,根据两者的取值情况,获得各区域草地的利用情况,采食强度与天然草地生物量分类满足以下关系可得草地利用情况:若两者等级相等,则草地利用适中;若前者等级大于后者,则草地过度利用;若前者等级小于后者,则草地轻度利用。以新疆生产建设兵团第八师一五一团紫泥泉牧场为例,对研究区进行监测评估。结果表明,研究区中区域3被合理利用的草地面积最大,为612 m2,其他区域草地被不合理利用的面积占所在区域面积的50%以上。该方法对合理利用草地,实行划区轮牧,促进畜牧业健康发展具有重要意义。 相似文献