首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
针对目前玉米免耕播种机镇压效果差、镇压强度施加不精准的问题,设计一种免耕播种机镇压力精准调节装置。该装置主要由柔性传力装置、镇压强度调节机构和镇压轮组成。对柔性传力装置进行力学分析,确定柔性传力装置的力学性能;对镇压轮进行受力分析,确定镇压轮工作过程,寻求土壤含水率、橡胶扭转角度、作业速度与土壤紧实度、作业阻力的关系。利用有限元法结合workbench软件对柔性传力装置进行仿真分析,得到扭矩与扭转角度的关系。并进行田间性能试验,采用正交试验考察土壤含水率、橡胶扭转角度、作业速度对镇压装置作业性能的影响,得到各因素的主次顺序为橡胶扭转角度、土壤含水率、作业速度,最优组合为土壤含水率17.093%、作业速度5.655 km/h、橡胶扭转角度15°,此时土壤紧实度为56.8 kPa,作业阻力为109.6 N。试验表明免耕播种机镇压力精准调节装置能够满足农艺要求。  相似文献   

2.
针对东北垄作地区春播时风大、雨少、温度高等造成的土壤水分蒸发快、缺苗严重等现象,借鉴现有镇压方式对种子周围土壤的压实研究,以蜗牛和扇贝触土外凸曲面为仿生对象,设计了耦合仿生镇压轮。耦合仿生镇压轮可以从两侧挤压土壤,使湿润的土壤压缩,保持土壤含水率和土壤温度,促进种子生长。采用耦合仿生方法,提取了蜗牛触土横面外凸曲线与扇贝纵向横面外凸曲线,在AutoCAD中对曲面逆向重构,获得轮子表面的凸包体,并遵循横向受力均匀和径向等间隔的原则,将凸包体排列在镇压轮表面,设计了耦合仿生镇压轮。离散元仿真试验结果表明:耦合仿生镇压轮作业时无明显壅土现象,耕作阻力较传统刚性镇压轮降低了8.7%。田间试验结果表明:相比于传统刚性镇压轮,耦合仿生镇压轮作业后平均土壤硬度增加17.7%,土壤含水率增加15.15%,土壤温度升高15.4%,出苗率提高2.9%,出苗时间平均缩短1.68天,耦合仿生镇压轮结构合理,作业性能优良。  相似文献   

3.
针对现存大豆垄作耕作模式中播种作业后镇压强度差,进而导致土壤水分散失快、土壤温度低、出苗率低等问题,对前期所设计的耦合仿生镇压轮进一步优化设计,并应用于大豆垄上镇压作业,以此来提高镇压轮的作业性能与作业效果。根据对耦合仿生镇压轮的动力学分析得到,影响镇压轮作业性能的因素为镇压轮载重、镇压轮宽度、土壤参数。在土壤参数为自然条件下,以作业速度、镇压轮载重、镇压轮宽度为试验因素,土壤硬度、土壤温度、出苗率为评价指标对耦合仿生镇压轮实施三因素五水平正交旋转组合试验,试验结果表明作业速度为4.38 km/h、镇压轮载重为42.5 kg、镇压轮宽度为21.35 mm时,土壤硬度为369.5 kPa,土壤温度为14.9℃,出苗率为96.7%;对比试验结果表明,相对于传统刚性镇压轮,优化后的耦合仿生镇压轮作业后土壤硬度提高6.42%、土壤温度提高9.56%、出苗率提高3.64%,因此优化设计的耦合仿生镇压轮作业性能与作业效果较优。  相似文献   

4.
丘陵地区双向仿形镇压装置设计与试验   总被引:3,自引:0,他引:3  
针对镇压装置在丘陵地区作业时镇压不均匀、镇压强度不足等问题,借鉴丘陵山地农业机械结构特点,设计了一种能实现双向仿形和镇压强度可调的镇压装置。该装置主要由仿形调节机构、镇压强度调节机构和镇压轮组成。建立了丘陵地形下镇压轮与土壤相互作用模型,对镇压轮进行受力分析,确定镇压轮工作过程,同时对镇压装置进行受力分析,确定弹簧变形量(镇压强度)的合理范围。进行对比试验和田间性能试验,采用L9(34)正交试验,考察镇压轮类型、镇压强度、作业速度对镇压装置作业性能的影响,得到了各因素的主次顺序:镇压轮类型、弹簧变形量(镇压强度)、作业速度,最优组合:橡胶镇压轮、弹簧变形量20 mm、作业速度1 m/s,此时牵引阻力为22.3 N,根冠比为0.271。通过对比试验,证明仿形镇压装置更能保证镇压均匀性。  相似文献   

5.
仿形弹性镇压辊设计与试验   总被引:4,自引:0,他引:4  
针对保护性耕作条件下与大豆耕播机配套的镇压辊压实土壤不均匀、相关耕播机具纵向尺寸过长的问题,设计了一种仿形弹性镇压辊,采用弹性辐条结构,通过理论分析确定了镇压辊的主要结构参数:直径D=450 mm,宽度B=210 mm,弹性辐条数量n=12。利用ADAMS软件对镇压辊进行运动仿真,同时进行土槽试验,采用L9(34)正交试验,在土壤干基含水率为20%时,考察了仿形弹性镇压辊的弹簧刚度k、载荷F、作业速度v和土壤坚实度P对其镇压力波动的影响。通过ADAMS运动仿真,找到了各因素的最佳取值范围;通过正交试验,得到了各因素的主次顺序:载荷、弹簧刚度、土壤坚实度、作业速度,最优组合为载荷800 N,弹簧刚度5 N/mm,土壤坚实度15 k Pa,作业速度0.5 m/s,模拟仿真的结果与试验结果吻合很好。通过对比试验,得到仿形弹性镇压辊在垄台表面有一定倾角的情况下能更好地保证镇压的均匀性。  相似文献   

6.
针对2BMFJ系列原茬地免耕覆秸精量播种机春播作业时,触土工作部件表面土壤粘附量较大、搅乱土层问题,设计了一种具有主动输送土壤和克服粘附力的弹性螺旋式覆土镇压器。确定了弹性螺旋式覆土镇压轮的关键结构参数,应用四因素三水平正交试验法,以机具作业速度、螺距、垂直载荷和土壤含水率为试验因素,覆土厚度、土壤坚实度和土壤粘附量为评价指标,对影响覆土镇压器作业性能的结构与工作参数开展优化试验研究。结果表明:在作业速度8km/h、螺距25mm、垂直载荷600N、土壤含水率25%条件下,覆土厚度3.9cm,土壤坚实度40.3kPa,土壤粘附量0.35kg。该覆土镇压器在满足作物所需覆土厚度和镇压强度条件下,可有效减少土壤粘附量,为覆土镇压器设计与精准播种奠定基础。  相似文献   

7.
基于刮削与振动原理的减粘降阻镇压装置研究   总被引:3,自引:0,他引:3  
针对镇压作业时,土壤粘附严重、牵引阻力大等问题,借鉴地面机械触土部件减粘降阻法,设计了一种机械式减粘降阻镇压装置。进行镇压装置运动过程分析、镇压轮表面脱土机理分析和刮削板脱土机理分析,为确定镇压装置减粘降阻的能力提供了理论依据,并在此基础上对镇压装置的关键机构进行了设计。为研究机械式减粘降阻镇压装置的工作性能,以弹簧刚度、前进速度和刮削角为试验因素,以牵引阻力、土壤粘附量为试验指标,在室内土槽中进行L9(34)正交试验。试验结果表明:各因素对指标影响的主次顺序为弹簧刚度、刮削角、前进速度;最优水平组合为弹簧刚度40 N/mm、刮削角30°、前进速度7 km/h。以最优水平组合进行验证试验,得到牵引阻力39.6 N,土壤粘附量43.24 g。与传统镇压装置的对比试验表明,机械式减粘降阻镇压装置使牵引阻力降低17.8%,土壤粘附量降低34.8%。  相似文献   

8.
为了提高白萝卜收获机关键部件松土铲的离散元仿真结果与实际情况的吻合度,利用台架实验和EDEM软件仿真相结合的方式,对黏壤土与松土铲之间接触的离散元仿真参数进行标定。以堆积角和滚动距离作为响应值,通过四因素三水平正交组合试验,分别建立土壤与土壤、土壤与触土材料之间的回归模型,并对回归模型进行分析,得到土壤含水率为(21±0.1)%时模型参数的解最优,分别为:土壤与土壤之间JKR为8.884J/m2,恢复系数为0.275,静摩擦因数为0.504,滚动摩擦因数为0.038;土壤与接触材料之间的仿真参数JKR为6.975J/m2,恢复系数为0.428;静摩擦因数为0.054;滚动摩擦因数为0.054。为了验证离散元仿真模型参数最优解与实际情况的吻合度,开展了基于最优参数下的台架实验与仿真试验,结果表明:台架实验松土铲的黏土量与仿真的相对误差为5.70%,仿真结果与台架试验基本一致,验证了离散元仿真参数模型的可靠性。  相似文献   

9.
基于EDEM的轻型凿式深松铲土壤耕作载荷仿真分析   总被引:1,自引:0,他引:1  
以轻型凿式深松铲为研究对象,利用EDEM建立其离散元仿真模型,确定深松铲土壤深松作业过程中的耕作载荷组成,并采用单因素试验方法分析了入土深度及作业速度对土壤耕作载荷的影响。结果表明:深松铲土壤耕作阻力主要由前进阻力及垂直阻力组成,土壤耕作阻力及其前进、竖直分量随着作业速度及入土深度的增大而增大,且土壤耕作阻力与两作业参数间皆成抛物线型二次函数关系;同时,土壤耕作阻力的波动状况随入土深度的增大及作业速度的减小而减小。该研究可为深松铲的研究提供一定的依据。  相似文献   

10.
2ZY-6型油菜毯状苗移栽机设计与试验   总被引:3,自引:0,他引:3  
吴俊  俞文轶  张敏  吴崇友  蒋兰  汤庆 《农业机械学报》2020,51(12):95-102;275
现有移栽机均以土壤流动为移栽的前提条件,不适应稻茬田黏重土壤,且作业效率较低。针对油菜机械化移栽的难题,采用油菜毯状苗的育苗方式,借鉴水稻插秧机的切块取苗原理,设计了2ZY-6型油菜毯状苗移栽机,该机可一次性完成切缝、移栽和覆土镇压等作业。切缝装置采用动力波纹圆盘,破茬能力强、沟型稳定,有利于后续秧苗对缝栽插;设计了机械液压式旱地仿形机构,可在不平土壤条件下实现栽深控制;设计了V型覆土镇压装置,通过具有夹角调节功能的V型对称布置的镇压轮锐角轮缘切土、侧向推土,挤压栽植缝壅土立苗;根据油菜移栽农艺要求,对栽植系统的关键部件和参数进行了优化设计,满足毯状苗油菜大面积、低回数切块取苗的要求。对整机进行了稻茬田和旱田两种土壤条件下的性能试验,结果表明,稻茬田土壤含水率为24.7%~30%时移栽效果较好,栽植合格率最大可达85.66%;旱田土壤含水率为17.6%~26.8%时移栽质量最优,栽植合格率最大可达87.01%;在稻茬田移栽时,机具前进速度应控制在1.15m/s以内,在旱田移栽时,机具作业速度为0.8~1.2m/s时均能满足油菜移栽要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号