共查询到17条相似文献,搜索用时 125 毫秒
1.
无人机果树施药旋翼下洗气流场分布特征研究 总被引:1,自引:4,他引:1
植保无人机悬停果树施药时的旋翼下洗气流场分布对雾滴空间运动和在冠层内部的附着、穿透有重要影响。该文基于计算流体动力学(computationalfluiddynamic,CFD)方法,结合RNGκ–ε湍流模型、多孔介质模型和滑移网格技术,通过构建虚拟果园,对六旋翼植保无人机悬停果树施药时的下洗气流流场进行数值模拟,分析在无人机不同悬停高度、不同果树生长阶段和不同自然风速下的气流场分布特征,并进行标记点下洗气流速度测试试验。研究结果表明:1)自然风速大于3 m/s时,旋翼下洗气流速度已淹没于环境自然风速中,不再满足植保无人机悬停施药作业条件;2)自然风破坏了旋翼下洗气流的中心对称状态,向下风方向出现后扬,且随着自然风速和悬停高度的增大,后扬距离随之增大;3)与无自然风状态比较,果树生长时期对其喷头处速度分布影响不显著,主要受自然风影响,且竖直向下的z向气流占主体地位,对雾滴的对靶运输起主导作用,应将喷头安装于可使雾滴获得较大z向速度的旋翼正下方0.2 m处附近;4)无人机悬停位置沿逆风方向调整后,冠层内部上、中、下层气流平均速度较调整前分别由1.36、0.80、0.81 m/s增大至3.04、2.37、1.63 m/s;上、下层速度分布变异系数分别由74.26%、35.80%降至45.39%和22.70%,中层略有增大,总体利于实现对靶喷雾。试验结果表明,标记点下洗气流速度测量值和模拟值之间具有较好的一致性。该文可为动态环境条件下植保无人机悬停果树施药的对靶喷雾自适应控制技术研究提供参考。 相似文献
2.
近几年,植保无人机施药技术在中国获得广泛应用,并逐渐发展为国内主要植保技术之一。但由于对植保无人机施药技术基础理论研究不够深入,相关机理尚不明晰,且植保无人机作业平台的稳定性依然有待提高,导致国内植保无人机施药效果不够理想。深入研究植保无人机施药技术的基础理论,理论结合试验结果共同指导植保无人机田间施药是提高其施药效果的关键。该研究综述了植保无人机旋翼风场分布特性、雾滴与无人机旋翼风场交互机理、雾滴沉降与飘移机理、雾滴与叶片表面的交互作用机理及雾滴分散和蒸发特性等植保无人机施药技术基础理论及其模型构建的国内外研究现状,并结合其基础理论与模型构建的国内外研究现状,给出植保无人机施药技术的未来发展建议,以期为植保无人机施药技术的发展提供参考。 相似文献
3.
基于空间质量平衡法的植保无人机施药雾滴沉积分布特性测试 总被引:5,自引:6,他引:5
为了探究飞行方式、飞行参数及侧风等因素对无人机喷雾雾滴空间质量平衡分布和旋翼下旋气流场分布的影响,该文基于无人机施药雾滴空间质量平衡测试方法,测定了3WQF80-10型单旋翼油动植保无人机在不同飞行方式(前进、倒退)、飞行高度和侧风速条件下的喷雾雾滴空间不同部位的沉积率和下旋气流风速。结果表明:对于该型无人机,在飞行高度(3.0±0.1)m、速度(5.0±0.2)m/s、1.2 m/s侧风速条件下,机头朝前与机尾朝前2种飞行方式对雾滴分布有显著影响,机尾朝前的飞行方式底部沉积比例可达60%,作业效果更佳;在2.0~3.5 m高度、(5.0±0.3)m/s速度和0.8 m/s侧风速条件下,空间质量平衡收集装置底部雾滴沉积率变异系数与高度呈现线性负相关,线性回归方程决定系数为0.9178,即高度越高雾滴分布均匀性越好;在(3.0±0.1)m高度和(5.0±0.3)m/s速度条件下,空间质量平衡收集装置底部雾滴加权平均沉积率与侧风风速呈线性正相关,线性回归方程决定系数为0.9684,即侧风速越大雾滴越集中分布在下风向处;飞行方式、高度和侧风3种因素对单旋翼无人机喷雾雾滴产生的影响都是通过改变其旋翼下旋气流场在垂直于地面向下方向的强度,减弱气流对雾滴的下压作用来实现的。研究结果可以为植保无人机设计定型、田间喷雾作业参数确定和作业条件的选择提供理论参考。 相似文献
4.
圆形多轴多旋翼电动无人机辅助授粉作业参数优选 总被引:3,自引:8,他引:3
圆形多轴多旋翼无人直升机与单轴单旋翼无人直升机相比,结构上有很大差异,因而其旋翼所产生气流到达作物冠层后形成的风场参数亦有所不同。该文采用3种圆形多轴多旋翼无人直升机,根据正交试验设计法设计了3因素(飞行高度、飞行速度以及飞机与负载质量)3水平的正交试验,通过考察平行于飞行方向(X)、垂直于飞行方向(Y)、垂直地面(Z)3个方向上的峰值风速、Y向风场宽度(越宽越好)、动力电池的压降(放电越慢越好)3个指标,对该机型用于水稻制种辅助授粉的田间作业参数进行优选,试验结果分析表明:圆形多轴多旋翼无人直升机在水稻冠层形成的X向风场宽度明显大于Y向的风场宽度;有别于单旋翼无人直升机,圆形多轴多旋翼无人直升机X向风场只有1个峰值风速中心,Y向风场存在2个峰值风速中心,这一现象主要由飞行器多个旋翼的侧向气流叠加形成,相互之间存在干扰,而且也影响了Y向风场的有效宽度。在实际应用中,对于能实现GPS自主导航飞行的机型,应根据作业的便利程度尽量利用X向的风力,更有益于辅助授粉作业;而对于未采用GPS自主导航飞行的机型,为便于飞控手对飞机位置的判断与姿态操控而必须沿父本行方向进行飞行作业时(即利用Y向风力),应充分考虑垂直于飞行方向风场宽度较窄的实际情况,通过降低作业效率来弥补。圆形多轴多旋翼无人直升机在水稻冠层所形成风场的峰值风速主要受飞机的飞行速度、飞机与负载质量、飞行高度影响。结合有效风场宽度及电池电量消耗程度来考量,3种主要因素的主次排序及其较优水平依次为飞行速度1.30 m/s、飞机与负载质量18.85 kg和飞行高度2.40 m。该结果可为其他圆形多轴多旋翼无人直升机用于水稻制种辅助授粉的田间作业参数设置提供参考,而且也可为制定基于农用无人直升机的水稻制种辅助授粉作业技术规范提供依据。 相似文献
5.
旋翼式无人机授粉作业冠层风场分布规律 总被引:2,自引:13,他引:2
为提高杂交水稻机械化种植效率,扩大父母本种植行宽比,采用旋翼式无人机进行辅助授粉作业。旋翼风场是由无人机旋翼旋转推动空气进行流动作用在作物冠层而形成。风场的覆盖宽度、风场内各方向风速的大小以及风场的分布规律将会直接影响到农用无人机田间作业的效果。该文结合无人机的飞行参数使用风速参数采集系统获取18旋翼无人机的授粉作业风速,其中对于矩阵数据(100×60)的行数据和列数据的意义进行了充分的讨论,总结了行、列数据的特点并结合试验实际情况对数据进行处理。发现3向风速数据的时序变化规律保持有一致性,X向风速在最大值时刻之前其平均值要大于Y向与Z向风速;X向、Y向风速值时序曲线之间的形状特征差异小于X向与Z向或者Y向与Z向之间的形状特征差异。而从3向风速值的空间变化分布情况也可看出无人机飞行轨迹与传感器行阵列交汇点处(9#~11#)所采集风速平均值最大,考虑到测量误差值,随着采样点距离飞行轨迹越远,采样点对应风速值衰减越多。综合二维风场数据可知3向风场宽度对比结果为Y向X向Z向。在此基础上,采用高斯法拟合等方式对行数据及列数据进行计算,通过对比各统计项的参数,拟合列数据建立风速数据与时间关系的5阶指数函数模型;拟合行数据作为风速数据与采样点分布距离关系的6阶指数函数模型。利用矩阵变换基于行、列数据模型最终建立水稻冠层处无人机旋翼X向二维风场理想模型,且由模型图中可发现无人机沿冠层飞行时旋翼X向风场的分布形状存在"陡壁"效应,即无人机旋翼下风速达到最大值,前向风速增大率要明显高于后向减小率,整个风场"陡壁"沿无人机飞行方向左右对称。研究将为无人机辅助授粉通过改变风场实现新的作业方法提供参考。 相似文献
6.
植保无人机飞行参数对施药雾滴沉积分布特性的影响 总被引:3,自引:10,他引:3
为探究植保无人机喷雾田间雾滴沉积分布特性和飞行参数及参数精准度对沉积分布影响,该文采用高精度北斗卫星定位系统获取无人机精准飞行参数,以柠檬黄示踪剂水溶液代替农药对4种典型国产植保无人机进行了小麦田间喷雾试验,并将其中2种单旋翼无人机的飞行参数与其变异系数、均方根误差相结合,对雾滴沉积分布特性的影响因素进行了研究。结果表明:4种无人机施药在航线两端区域内沉积量变化剧烈,航线中间区域沉积量较稳定;影响横向雾滴沉积分布主要因素是无人机相邻喷头或喷幅间的雾滴重合度;对于单旋翼无人机,在高度1.1~1.2 m、速度4.2~4.9 m/s的范围内,沉积量与速度均方根误差呈极显著线性正相关关系(P0.01,r=0.952),纵向沉积量变异系数与速度变异系数呈极显著线性正相关关系(P0.01,r=0.963),总体沉积量变异系数与高度呈显著线性负相关关系(P0.01,r=–0.888);使用速度均方根误差、速度变异系数和高度这3个飞行参数和参数精准度指标来分析和预测雾滴沉积量和分布均匀性的方法合理、有效、可行。根据试验结果,该文给出了相关合理建议以改善植保无人机施药效果,研究结果可为植保无人机田间喷雾作业参数确定、作业条件的选择和田间作业规范的制定提供参考。 相似文献
7.
针对植保无人机受大气环境影响导致的旋翼气动性能降低、无人机荷载量下降等问题,该研究设计了一种旋翼转速可调且具备实时监控发动机转速、旋翼升力及输出扭矩的植保无人机旋翼试验台,主要包括DLE430型双缸直列两冲程航空发动机、翼型NACA 8-H-12的半径1.51 m旋翼2片、动力输出装置、控制系统和数据采集系统。运用数值模拟、CFD(computational fluid dynamics)方法与台架试验,在海拔0、1、2、3、4 km高度下,分别以800、1 000、1 200 r/min的转速测试旋翼气动性能,通过二次旋转正交组合试验探究桨叶角和旋翼转速对旋翼升力、输出扭矩和功率的影响。结果表明,随着海拔高度的增加,旋翼的升力和功率明显降低,海拔4 km时,旋翼转速1116 r/min、桨叶角10.44 °的升力最大值为356.28 N,扭矩为227.35 N·m,功率为26.54 kW,旋翼试验台效率为85.92%。与海拔134 m相比,海拔1.941 km下的旋翼升力下降22.38%,与数值模拟结果下降的20.22%相吻合,旋翼驱动扭矩下降约24.21%,发动机功率下降约3.99%,试验结果与数值模拟结果的变化趋势一致,误差在合理范围内,该研究所采用的数值模拟方法有效。研究结果可为研制高海拔地区大载荷植保无人机提供参考。 相似文献
8.
9.
多旋翼植保无人飞机在农药喷洒和授粉作业等相关领域已开展广泛应用,但存在风场分布不明晰导致的分布不均问题。针对六旋翼植保无人飞机,结合雷诺平均N-S方程及Realizable k-ε湍流模型,建立了下洗气流三维数学模型,风场测试及非定常计算表明特征点z向速度的测量和模拟值相对误差在9%以内,验证了风场数值计算的可靠性;在机翼旋转诱导及外界气压的挤压下,下洗气流纵向主截面呈现出"收缩-扩张-再收缩"现象;"旋翼间干扰"使得下洗风场湍流效应明显,横截面的旋翼间区域出现了气流"引入"及"导出"区。引入雾滴离散相,并对连续相进行动量、能量方程修正,建立喷头含雾滴离散相的两相流模型,结合喷头喷幅试验来验证了该两相流模型计算雾滴运动轨迹的有效性;结果表明,粒径越小,雾滴水平方向分速度衰减越快,喷幅越小;雾滴粒径越大,竖直方向的最终分速度越大。建立了六旋翼植保无人飞机悬停条件下含雾滴离散相的三维两相流模型,计算分析表明,雾滴主要分布在"旋翼间干扰"明显的3个"引入区"、3个"导出区",下洗区内侧雾滴群交织,外侧大雾滴周向水平行程更大进而分布在外围;当雾滴粒径小于200?m时,雾滴运动范围无法覆盖全部的"引入区",雾滴多分布在下洗区中心;当雾滴粒径大于250?m时,雾滴运动区域逐渐覆盖所有"引入区"、"导出区"。该研究可为飞行施药过程中迎风气流、下洗气流、瞬时横风耦合风场扰动下雾滴的漂移、沉积研究提供参考。 相似文献
10.
针对现代农业航空技术的发展对电动多旋翼农用无人机的载荷能力、持续作业能力、作业效率提出更高的要求,而目前电动多旋翼植保无人机存在续航时间短、载质量小、作业效率低等问题,该文通过试验测试平台,首先对共轴式双旋翼进行不同纵向间距下的升力性能及能耗测试,分析纵向间距对双旋翼升力的影响规律,根据分析结果,针对纵列式双旋翼进行升力随横向间距的变化规律研究,得出横向间距比等于1.8为双旋翼纵列式方式的最优横向间距比。随后对不同尺寸纵列式双旋翼和纵列式多旋翼升力随横向间距比的变化规律进行测试,验证最优横向间距比1.8的普遍适用性。最后,对多旋翼单机臂结构六轴十二旋翼纵列式布局无人机的综合性能参数进行优化分析,并对平面式、纵列式布局方式下的六轴十二旋翼无人机进行飞行试验,验证旋翼间距的优化结果。优化分析结果表明,横向间距比均分别在最优化条件下时,纵列式和平面式布局的升力远高于共轴式布局。与纵列式布局相比,平面式布局机型升力差别不大,但机身尺寸增加38.70%。飞行试验结果表明,在相同负载下,相对于优化后的纵列式机型,平面式机型在单位时间内悬停功率仅减小0.062%,而机身质量增加6.8%。该研究在保证无人机能效的前提下,通过改变旋翼间的相对位置,对多旋翼单机臂结构电动无人机的旋翼间距进行优化,从而优化机身尺寸及质量,改善多翼单臂结构无人机的气动特性,降低惯性,提升有效负载能力,从而提升整机性能。 相似文献
11.
植保无人机航空喷施作业有效喷幅的评定与试验 总被引:5,自引:10,他引:5
植保无人机有效喷幅宽度的准确评定是农业航空精准作业的前提,对其作业航线的规划及喷施作业质量的提升均有着重要意义。该文以不同参数的单旋翼植保无人机和多旋翼植保无人机为例,分别通过12架次不同飞行参数下的航空喷施试验及目前国内常用的雾滴密度判定法和50%有效沉积量判定法来评定植保无人机的有效喷幅宽度,并根据雾滴处理软件Deposit Scan对水敏纸等采集卡上的图像处理原理对不同评定方法进行了深入分析。结果表明:50%有效沉积量判定法更适于雾滴粒径相对较大的3WQF120-12型植保无人机有效喷幅宽度的评定,且评定的平均有效喷幅宽度为≥4.44 m;雾滴密度判定法更适于雾滴粒径相对较小的P-20型植保无人机有效喷幅宽度的评定,且评定的平均有效喷幅宽度为≥2.58 m;评定的有效喷幅结果与实际情况相符合。另外,由分析可知,由于当前图像处理技术的限制,不同粒径大小的雾滴斑点图像,软件Deposit Scan所产生的相对误差不同,因此,应根据植保无人机喷施雾滴粒径的范围选择合适的有效喷幅宽度评定方法。该结果为不同参数的植保无人机选择较优的有效喷幅评定方法提供了指导,降低了航空喷施作业的重喷率和漏喷率,提高了植保无人机航空喷施作业质量,可为植保无人机精准喷施作业的实施提供参考。 相似文献
12.
农药静电喷雾技术可以提高农药在叶背面的沉积效率,减少农药飘移对环境的污染,已经成为国内外学者研究的热点课题。为明确农药静电喷雾技术研究进展及产业现状和存在的瓶颈问题,该文从农药静电喷雾技术基础理论、机理研究分析、室内/室外静电喷雾效果评价和静电喷雾装备产业现状进行系统分析。重点概述了雾滴荷电、荷电雾滴动力学、荷质比及其持留时间,总结荷电雾滴的主要受力、感应式充电的最佳荷电参数及荷质比的合理比较方法。介绍了静电喷雾中荷质比、电位、雾滴粒径、雾滴速度等测试方法,并提出加强(phase doppler particle analyzer,PDPA)测试技术和CFD仿真在静电喷雾技术研究中的应用建议。从荷电参数、环境参数、工作参数和靶标参数4个方面综述了荷电雾滴沉积的影响机理,认为静电喷雾沉积效率受荷电参数、环境参数、靶标参数和工作参数的影响,但其之间的影响机理仍不明晰,仍需进一步关注。大量静电喷雾室内/室外效果评价试验表明了荷电雾滴在静电力、气流曳力、重力的驱动下,有助于雾滴在叶片的沉积,但静电喷雾对雾滴飘移、穿透性能的影响还规律需进一步研究,而且静电喷雾装备的产业化水平还有待加强。最后从荷电效果、机理研究、作业规范3方面提出了研究建议,以期为农药静电喷雾技术及装备研究提供参考。 相似文献
13.
基于无线传感器网络的无人机农田信息监测系统 总被引:2,自引:7,他引:2
移动无线传感器网络技术为农田信息监测提供了高效可行的技术手段。该研究根据南方农田地块相对分散、丘陵山地多,农情信息获取环境恶劣、采集数据时间周期长、网络分割成块的特点,利用UAV(unmanned aerial vehicle)具有的高效、灵活的特性,结合低功耗无线传感器网络,提出一种满足南方农田信息获取采样和数据业务需求的三层架构的无线传感器网络体系结构TUFSN(three-tire unmanned aerial vehicle farmland sensor network),其由数据采集层、中继传输层和移动汇聚层组成,该体系结构具有系统结构合理、可扩展性好、系统整体能耗低等特点。通过仿真可得中继节点RN(relay node)的缓存大小范围为3~13kB,系统试验中携带移动节点的UAV以1m/s的速度、15 m的高度在农田上空飞过,飞行过程中与地面中继节点通信并采集农田信息,UAV与地面中继节点的平均通信时长为26 s,仿真和试验表明,基于UAV的三层架构农田信息采集无线传感器网络很好地满足了南方地区农田信息数据采集和监控的生命周期长、传输数据可靠、覆盖面积广的要求。 相似文献
14.
油动单旋翼植保无人机雾滴飘移分布特性 总被引:5,自引:9,他引:5
为了研究油动单旋翼植保无人机在精准作业参数(速度、高度)条件下的雾滴飘移分布特性,该文建立了雾滴飘移收集测试平台,分别用雾滴飘移测试框架、等动量雾滴收集装置和培养皿收集3WQF80-10型油动单旋翼植保无人机在作业时空中及地面飘移的雾滴。将测试结果分别与侧风风速、飞行高度、飞行速度进行相关分析和回归分析,结果表明:在平均温度31.5℃、平均相对湿度34.1%的条件下,侧风风速为雾滴飘移的主要影响因素;侧风风速与等动量雾滴收集器和培养皿测得的雾滴飘移率呈正相关(相关系数r分别为0.97、0.93);而与雾滴飘移测试框架测得的雾滴飘移率无相关性;侧风风速为0.76~5.5 m/s时,90%飘移雾滴沉降在喷雾区域下风向水平距离9.3~14.5 m的范围内,因此在作业时要预留至少15 m以上缓冲区(安全区)以避免药液飘移产生的危害。研究结果可为低空低量植保无人机施药技术研究和建立植保无人机低空低量施药田间雾滴沉积与飘移测试标准提供参考。 相似文献
15.
药箱的液量是植保无人机精准作业中需要监测的重要信息之一。为了实现对植保无人机药箱液量的实时监测,针对植保无人机作业过程中存在的液面波动剧烈、药液的理化特性各异、药箱空间小、防腐蚀要求高等特点,该文提出一种双气压式液量监测装置的设计方案,包括双气压式液位监测、药箱液面震荡干扰滤波、机身倾斜干扰校正以及液位-液量换算模型等。为了验证方案的可行性,制作了液量监测装置的样机,并设计了相关的验证试验进行性能测试。试验结果表明:采用同时监测环境气压和密闭气室内气压的双气压式差值法,液位高度与气压差值之间呈线性负相关关系,决定系数为0.998 9,可有效消除环境气压变化对测量精度和稳定性带来的影响;融合了中位值平均滤波法与滑动平均滤波法优势的混合数字滤波算法,使药箱液位数据的变异系数由滤波处理前的28.45%降低到12.27%,对液面震荡干扰具有较好的滤波效果;基于微机械陀螺仪的校正算法,在机身倾斜30°时,气压差值误差从校正前的-1.09 h Pa,降低至校正后的0.05 h Pa,可较好地消除植保无人机飞行中机身倾斜带来的药箱倾斜干扰误差;在植保无人机机载动态测试试验中,设计了前进、后退、田间掉头移行等3种常见的飞行工况中进行测试,在2、4、6 L的载药量时,液量监测器输出的液量数据均值分别为1.985、3.942、5.984 L,经过校正处理后液量相对误差分别为0.75%、1.45%、0.77%,均方根误差分别为0.182、0.199、0.180 L,表明液量监测器在不同实际作业工况中的数据输出较稳定可靠。 相似文献
16.
针对单风道果园喷雾机两侧气流场不对称、施药不均匀的现象,对自制双风道果园风送试验台气流场特性进行分析研究。该文采用CFD数值模拟和试验的方法对单双风道的气流场由内及外依次对比分析研究,以viscous-standard模型分析单双风道内部气流场分布,对仿真值与试验值拟合分析,拟合优度R2=0.8274,验证数值模拟的准确性;通过对两风道出风口及距出风口不同截面上的风速散点数据Golden software Voxler拟合处理和加权分析对比2种风道特性。结果显示:单风道内部流场右侧较强,双风道左右两侧基本一致;双风道在出风口处风速较单风道大,且两侧风速曲线走势基本相同;两侧距出风口0、1、2、3、4、5 m截面上外部气流场气流分布云图中,单风道气流场集中域有明显的偏移,两侧气流场强度差异大,双风道左右气流场基本对称;在对中性上,2 m截面上双风道左右两侧最大风速对其距中距离的加权平均数分别为-3.23、-1.33 mm,单风道为-24.99、-32.33 mm,且双风道距中偏移量随距离的变化趋势较单风道小。综合分析最终得到双风道气流场在两侧对称性和对中性上较单风道有明显的优势。该研究可为进一步优化风送喷雾技术提供参考。 相似文献
17.
N-3型农用无人直升机航空施药飘移模拟与试验 总被引:3,自引:11,他引:3
为了判定N-3型农用无人直升机在进行病虫害防治作业时所需的安全农药飘移缓冲区,该文通过模拟和试验,研究了飞机在飞行速度为3 m/s、侧风风速分别为1、2和3 m/s、飞行高度为5、6和7 m时在非靶标区域的药液飘移情况。采用计算流体力学(computational fluid dynamics,CFD)方法,在约束条件下对作业过程中旋翼风场和农药喷洒的两相流进行了模拟,并设计了条件相似的对应试验进行验证。模拟的结果表明,在无人机飞行速度3 m/s,侧风风速相同的情况下,作业飞行高度为5、6、7 m时,药液在侧风下方(Z轴正向)的最大飘移距离和在无人直升机后方(X轴负向)的最大沉积量位置差异不大;在作业飞行高度相同的情况下,侧风风速为1、2、3 m/s时候,药液在侧风下方的最大飘移距离和在无人直升机后方的最大沉积量位置发生变化明显。通过相应试验,对飘移量(飞行高度6 m,飞行速度3 m/s)的模拟数值与试验值的变化趋势进行了比较,并进行线性回归分析,拟合直线决定系数R2分别为0.7482、0.8050和0.6875。本文提出一种较传统检测方法更为方便的CFD模拟方法,来对N-3型无人直升机施药作业中药液的飘移情况进行分析,模拟研究可以比较准确地定性地模拟出实际飘移情况,对实际生产具有一定的指导意义。 相似文献