首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grain yields of a soft white winter wheat cultivar, cv. Ionia, susceptible to cereal leaf beetle (Oulema melanopus (L.)), were determined when the crop was subjected to four controlled infestation levels of the beetle in caged plots over a 3-year period in Michigan. Although identical infestation procedures and insect numbers were used each year, the intensity of larval infestation and feeding damage varied with the year. Significant (P < 0·01) grain losses occurred in plots that had at least 9·0 larvae per stem. The greatest yield loss was 45% and occurred with 15 larvae per stem and 85% feeding damage. Beetle damage had a greater effect on kernel weight than on the other yield components. Although economic thresholds should be conservative to allow for environmental variations, it appears that soft white winter wheat can often withstand beetle infestation levels greater than the current economic threshold of three or more eggs and largae per stem before the boot stage or one or more large larvae per flag leaf during heading.  相似文献   

2.
A perennial ryegrass sward was grazed by sheep in April 1993 to a target sward surface height (SSH) of 3 cm to create a high density of grass tillers. From 3 May, the sheep were removed and small plots were established on the sward, when the average tiller density (± s.e.) was 35 900 ± 420 live tillers m−2. Different regrowth treatments were then imposed by allowing plots to regrow to target SSHs of 6 cm (18 g dry matter (DM) M−2), 9 cm (78 g DM m−2), 12 cm (132 g DM m−2) or 15 cm (197 g DM m−2). The plots were then maintained by cutting at either 6 or 9 cm SSH until the end of the experiment on 30 September. Live tiller density was reduced by regrowth beyond 8.9 cm (78 g DM m−2, P <0.001) and leaf-stem ratio and in vitro organic matter digestibility were reduced by regrowth beyond 6.1 cm (18 g DM m−2, P < 0.05). The effect on live tiller density was sustained through the remainder of the season. From the beginning of June to the end of September, maintenance of SSH at an average of 9.1 cm compared with 6.4 cm also resulted in lower live tiller density, live-dead tiller ratio and leaf-stem ratio and higher herbage mass (at least P < 0. 05). There were significant interactions between regrowth SSH and maintenance SSH, so that leaf-stem ratio, live-dead tiller ratio and live tiller density were reduced by regrowth to a SSH of 16–4 cm followed by maintenance at 9.1 cm, compared with regrowth to 6.1 cm and maintenance at 6.4 cm.  相似文献   

3.
Elimination of shooly larvae increased grass yields daring the September feeding period. Increases were usually less than 10% bat in one case, where growth was abnormally slow, die increase was over 30% and in another, where the larval population was atypically dense, it was almost 60%. The effects of damage were not cumulative daring the feeding period; and at the end of this period insecticidreated plots sometimes gave lower yields than untreated plots. Fertilizer increases had a much greater effect on yield than did control of larvae and, where N was applied at 75 kg/ha (67 lb/ac) in spring, the additional effect of larval control was usually negligible. It is suggested that shoot-fly damage may be more serious in other localities. When turf containing shoot-fly larvae was ploughed, Oscinella spp. re-established themselves more successfully than others in seedling ryegrass bat did not damage the new sward appreciably.  相似文献   

4.
Two methods were adopted of measuring sward output, following the prevention of bracken frond growth, with differing results. Accumulated growth estimation, corresponding to production under a system of open-range grazing, showed that asulam used for frond control had no effect on herbage yield in the year of application and large increases were observed in succeeding years compared with untreated control plots. In measuring production by sward regrowth after cutting, corresponding to intensive pasture utilization systems, asulam reduced yields in the year of treatment and increases were not observed until 2 years later. The inhibition of growth could be overcome by applying ground mineral phosphate at rates of 300 or 500 kg ha-1 before spraying but the 500 kg ha-1 rate showed no advantage over 300 kg ha-1. Applications of ground mineral phosphate after spraying had no effect on sward output. It is concluded that indigenous pasture plants in bracken-infested areas of western Scotland cease growth by mid July unless subjected to major earlier defoliation or severe soil moisture deficits and the removal of the frond canopy does not change this pattern significantly. Obtaining the full benefit of bracken clearance depends on making use of the resulting production of extra herbage and limiting as far as possible frond regrowth in treated areas.  相似文献   

5.
The causes of tiller death in a 2-year-old perennial ryegrass sward were examined between April and August 1977. Physiological causes accounted for most tiller deaths and grazing by slugs and rodents was more important than the damage caused by stem-boring larvae. Tillers which died were mainly small and vegetative, although some flowering tillers died prematurely. Low nutrient status delayed but did not prevent tiller death. Using 14CO2 it was shown that small tillers fixed relatively less radiocarbon than did larger tillers and they did not receive much support for their carbon economy. Selective defoliation showed that in April defoliated tillers imported radiocarbon from undefoliated tillers but that in July at anthesis an undefoliated reproductive tiller retained most of the carbon it fixed, despite its vascular association with defoliated tillers. It appears that much of the tiller death during the period April-August is due to the failure of the more favourably placed tillers to support other tillers which are heavily shaded.  相似文献   

6.
Patch selection by grazing dairy cows in response to simultaneous variation in combinations of sward structural characteristics was examined in three experiments in which four mature dairy cows were offered a choice of patches (typically 0.9 m × 0.9 m) of perennial ryegrass (Lolium perenne) presented in a linear arrangement. Treatments involved combinations of variations in sward height, stubble height and/or depth of regrowth, prepared by preliminary cutting treatments. They were arranged in balanced sets of four to nine treatments, which were arranged in linear sequences of eighteen to twenty‐seven patches. Within experiments, sequences were balanced across replicate sets of patches, which were grazed separately by individual cows. The number of bites removed and the residence time for each patch were highly correlated in all three experiments, and the results are reported using number of bites per patch as an estimator of foraging behaviour. In the first experiment, with vegetative swards, cows preferentially selected the tallest swards. When swards comprising reproductive stem were offered in Experiment 2, cows selectively grazed short‐stubble swards rather than tall‐stubble swards, although both offered a similar depth of regrowth. Cows did not exhibit preference for swards comprising the greatest quantity of leaf mass, indicating that the spatial distribution of plant components assumed greater importance. In the third experiment, the number of bites removed increased with increasing depth of regrowth, and was negatively correlated with sward height. The three patch‐appraisal cues investigated were broadly ranked in order of importance as (i) depth of regrowth, (ii) sward maturity and (iii) sward height. There was no evidence, at least at a short temporal scale, that patch behaviour was influenced by conditions in adjacent patches, suggesting that the cows assessed grazing opportunities on a patch‐by‐patch basis.  相似文献   

7.
Measurements of rates of growth and senescence of leaf lamina per tiller and of changes in tiller population densities were made in three experiments designed to investigate the influence of sward slate on leaf turnover and net production under continuous stocking. In each experiment initially uniform swards were fenced to provide four plots on which animal numbers were adjusted twice weekly to give a series of swards maintained as nearly as possible in a steady state with respect to sward surface height (range 1.1–6.4 cm) and herbage mass (range 440–2690 kg OM ha?1). Two experiments were carried out in July–September on vegetative swards and one in May–June on a reproductive sward. Measurements were begun 3–7 weeks after treatments were started and were repeated weekly during 3–4 week measurement periods. In all three experiments the rate of lamina growth per tiller increased linearly with an increase in sward surface height and herbage mass. In the two experiments conducted in July–August this relationship was partially offset by a linear increase in the rate of senescence per tiller but net production per tiller also increased linearly in relation to sward height and mass. In the experiment conducted in May–June the rates of growth and senescence per tiller increased in parallel so that net production per tiller showed no relationship with sward condition. Tiller population densities in the July–August experiments were highest in swards maintained between 2 and 3 cm surface height and declined in swards maintained above and below this height. In the experiment in May–June tiller numbers were similar in all treatments prior to the summer solstice but diverged in a manner similar to the other experiments later in the year. The rate of lamina growth per unit area increased in a manner consistent with an asymptotic relationship and the rate of senescence increased linearly with increasing sward height and mass in all three experiments. Net production per unit area was reduced on swards below about 2.5 cm in height but was insensitive to variation in sward surface height between 2.5 and 6.0 cm (approximately 1000–2500 kg OM ha?1 herbage mass). The effectiveness of adjustments in tiller numbers and production per tiller and of changes in the balance between growth and senescence as mechanisms of sward homeostatis, together with their implications in the scope for manipulating herbage production by grazing management are discussed briefly.  相似文献   

8.
An examination was made of the effects of different spring treatments on the growth of white clover in a ryegrass/white clover sward. Plots were either cut once (in February, March or April) or twice (in February and April) or left uncut. Nitrogen was applied to half of the plots in each instance. The clover was sampled at intervals of approximately 3 weeks from February to June to determine numbers of leaves and growing points and weights of plant parts. Rates of leaf appearance were also observed and estimates were made of total herbage mass from ground-level cuts.
Percentages of white clover in the herbage were higher in unfertilized than in fertilized plots and in defoliated than in undefoliated plots. The percentage increases that followed defoliation were usually maintained into later regrowth, showing that clover content was not automatically reduced as herbage mass increased. Increases in growing points were recorded after the beginning of April in defoliated unfertilized plots but not in undefoliated fertilized plots or in plots fertilized and defoliated twice during the spring period, in which numbers fell substantially.
Inverse relationships were found between rates of leaf appearance, or the number of green leaves retained per stolon, and herbage mass, whereas heights of clover and grass leaves and the percentage of dry matter allocated to petiole rather than leaf in the clover increased with increasing herbage mass.
We suggest that the observed differences between spring treatments in clover percentage result primarily from their differential effects on the formation and death of tillers and growing points in the early stages of regrowth.  相似文献   

9.
Three experiments designed to investigate different facets of autumn management on white clover stolon development are described. The effects of defoliation interval (2, 4, 6 and 8 weeks during 16 weeks from 27 July) were investigated. The shortest interval resulted in the shortest length of stolon material per unit area but cutting interval had no effect on growing point density nor on hardiness of stolon tips evaluated in October, December and January.
Chemical grass suppressants were employed to reduce grass biomass during winter in two experiments to evaluate the influence of grass on white clover development. One experiment involved varying grass tiller density by spraying a perennial ryegrass/white clover sward in October with three rates of three chemical suppressants (Clout, Kerb and Checkmate). Although tiller and clover growing point density were inversely related in January, the overall relationship was not strong.
Clout at l·5kg a.i. ha−1 was sprayed in October on one of two subplots in each of twelve grazed grass/white clover plots that had been maintained at 7 or 9 cm from July to October then grazed to 3–4 cm with sheep. Sward height had no effect on clover population density but the shorter sward had a greater mean node number per secondary stolon branch. By March, suppressing grass resulted in more than double the stolon population density, a higher proportion of plants with tertiary and quaternary branches, and on marked stolons, five times more branches and 60% higher dry matter (DM) produced during winter but with shorter petioles compared with clover in untreated plots.
It is concluded that white clover has the capacity to branch during a mild winter and as stolon branch numbers can suffer a net loss as a result of the presence of the grass canopy, management that controls grass growth during winter should aid over-wintering and improve persistence of white clover.  相似文献   

10.
A cutting experiment was carried out on a sward of S23 perennial ryegrass to study the effect of different defoliation regimes on regrowth and the factors affecting regrowth. The defoliation frequencies and intensities encompassed the range commonly found on continuously stocked pastures. The defoliation regimes produced swards of contrasting growth form with regrowth characteristics which differed in respect of senescence loss, fall in water-soluble carbohydrate concentration, residual leaf area index, photosynthesis per unit leaf area index and photosynthesis per unit area of land. Regrowth was most closely related to the latter. These results were used to interpret data for net canopy photosynthesis of continuously grazed pastures.  相似文献   

11.
The influence of sward height at the time of slurry application on sward responses to slurry was investigated using perennial ryegrass ( Lolium perenne )/white clover ( Trifolium repens ) mini-swards under greenhouse conditions. Pig slurry, cattle slurry and a fertilizer control were applied either to: swards cut 1 d before slurry application to heights of 2, 4 or 8 cm (CH2, CH4 or CH8); or to swards cut to 4 cm with regrowth intervals of 1, 4 or 8 d before slurry application (RI1, RI4 and RI8). Scorch, smother and growth of marked clover stolons and grass tillers were monitored after slurry application. Dry-matter yields of both species were recorded over two harvests. Electrolyte leakage from leaves was used to assess leaf damage. Both slurries increased leakage, which was greatest from clover leaves, with biggest increases caused by pig slurry. Yield responses to slurry application varied with plant species and sward height. Reduced grass growth after slurry application to long swards (CH8, RI4, RI8) was probably caused by greater smother. In short swards (CH2), grass leaf growth was not depressed following slurry application but grass yields were reduced. Ammonia volatilization losses may have been greater in both long and short swards, contributing to yield reductions. Yield responses to slurry were greatest in swards cut to 4 cm, 1 d before application.  相似文献   

12.
Yield profile characteristics of tall fescue (Festuca arundinacea Schreb.), cv. Retu, were compared with those of meadow fescue (Festuca pratensis Huds.). The study was conducted in Finland and was based on official variety trial data recorded between 1980 and 1998 at 17 trial sites between latitudes 60° and 66°N. The crops were managed according to silage‐cutting regimes. The pattern of yield formation of the tall fescue cv. Retu differed significantly from that of meadow fescue cultivars, both within a growing season as well as in sward age. Tall fescue cv. Retu established slowly, and the dry‐matter (DM) yield from the first cut, made in the first year of harvest, was significantly lower than that for meadow fescue. In the second and third years, the DM yield from the first cut did not differ between tall fescue and meadow fescue. Tall fescue produced significantly higher DM yield as regrowth (second and third cuts) than meadow fescue. The sward age significantly affected total DM production. In first‐year swards, there were no significant differences in total DM yield between tall fescue and meadow fescue but, in the second‐ and third‐year swards, tall fescue produced significantly higher DM yields than meadow fescue. The difference in yield profile between tall fescue and meadow fescue was similar in all the environments included in the study. DM yield for the first cut (kg DM ha–1) for tall fescue cv. Retu, in comparison with meadow fescue cultivars, was 2495 vs. 3099 (P < 0·001), 3735 vs. 3741 (NS, P=0·94) and 3553 vs. 3468 (NS, P=0·30) in the first‐, second‐ and third‐year swards respectively. The respective DM regrowth yields (second plus third cut) were: 6059 vs. 5416 (P < 0·001); 5445 vs. 4221 (P < 0·001); and 5580 vs. 4113 (P < 0·001) in first‐, second‐ and third‐year swards. Total DM yields per season for tall fescue vs. meadow fescue were (kg DM ha–1) 8554 vs. 8515 (NS, P=0·69), 9180 vs. 7962 (P < 0·001) and 9133 vs. 7581 (P < 0·001) in first‐, second‐ and third‐year swards respectively. Over the three‐year sward rotation period, which is common in Finland, tall fescue produced on average 12% higher DM yield than meadow fescue. Both tall fescue and meadow fescue suffered little winter damage in Finnish conditions; the differences between cultivars of the two species were small. The results indicated that tall fescue cv. Retu is a productive and persistent forage species suited to Finnish growing conditions.  相似文献   

13.
Field indicators of forage nutritive value could help farmers with rapid management decisions to optimize timing and intensity of grazing and meet objectives regarding animal nutrition. The objective of this research was to evaluate the likely relationships among leaf blade nutritive value, herbage mass and leaf stage of pasture regrowth under different growing seasons and residual sward heights. Experiments were performed on perennial ryegrass (Lolium perenne L.) and tall fescue (Festuca arundinacea Schreb.) pastures during spring and summer of 2016. In both pastures, three residual sward height treatments (3, 6 and 12 cm) were imposed on plots arranged in a split plot design, replicated in three blocks. Sward plots were harvested 5–6 times at intervals spaced 7–10 days apart to measure herbage mass, plant morphology, neutral detergent fibre (NDF), and the 24-hr in vitro digestibility of NDF (NDFD) and dry matter (DMD) of leaf blades. Pastures showed strong (R2: .62 to .70), but variable, negative relationships between NDFD and herbage mass that varied with the rate at which pasture grew in each season of experimentation. Although there was a consistent NDFD decline as leaf stage of regrowth progressed (R2: .75 to .97), the NDFD also decreased as residual sward height increased, most notably in tall fescue. Additionally, findings indicate that the greater leaf length plasticity of tall fescue compared to residual sward heights may offer opportunities to manage both post- and pre-grazing targets to achieve tall fescue forages with a similar high nutritive value as perennial ryegrass. However, the evaluation of this hypothesis at the farm level and its impacts on animal intake and performance warrants further careful investigations.  相似文献   

14.
The effect of grazing frequency and severity on sward characteristics and preferences by sheep was investigated from April to September. Two levels of grazing severity were imposed by varying the numbers of ewes grazing 200 m2 plots for 24 h: four (S, severe) or two (L, lax) ewes. Grazing frequency was either 1 d week?1 (F, frequent) or 1 d every 2 weeks (I, infrequent). By combining frequency and severity, four treatments were obtained: SF, LF, SI and LI. The six binary combinations (SF/LF, SF/SI, SF/LI, LF/SI, LF/LI and SI/LI) were studied in preference tests. Treatments LF, SI and LI were characterized by a high sward surface height, biomass and amount of reproductive green tissues relative to treatment SF. Herbage quality was not different between the grazing treatments between April and July. In September, after a 6‐week period of regrowth, herbage quality was significantly higher for the SF treatment than the other treatments. The sheep preferred the swards grazed at a low frequency between April and July, and then changed their preference in favour of the sward with higher quality herbage (treatment SF). The relative abundance of green laminae and the relative digestibility of the swards helped to explain the preferences observed. For a low grazing pressure at the spatio‐temporal scale studied, sheep should graze swards at a relatively low frequency but at a high severity of grazing rather than the reverse.  相似文献   

15.
An experiment was carried out over 2 years on grass and grass/clover swards in SW England lo compare herbage yields and N recovery following surface application or shallow injection of cattle slurry at three different times of application. In the second year, losses of N via ammonia volatilization, denitrification and nitrate leaching were measured from applications to the grass sward. On the grass sward, there was no significant effect of time or method of application on dry-matter (DM) yield in the first year, although shallow injection reduced apparent N recovery (ANR) in the herbage by 45% when compared with surface application. In the second year, shallow injection reduced DM yields by 26% and ANR by 48%. On the grass/clover sward, there were no significant effects of time or method of application on DM yields or ANR in either year Inclusion of dicyandiamide (DCD) in the October slurry applications had no significant effect in the first year, but in the second year on the grass sward increased DM yield by 31% and 14% and ANR by 156% and 42% for shallow injection and surface applications respectively. Measurements in the second year on the grass sward showed a reduction in N loss by ammonia volatilization using shallow injection of 40% and 79% for March and June applications respectively. Losses due to denitrification were greatest following October application. Shallow injection increased denitrification losses following March application, but there were no significant differences following October or June applications. N losses due to leaching were small, with no significant difference between treatments. Reasons for the reductions in DM yield and ANR following shallow injection, despite the large reduction in N loss by ammonia volatilization, are discussed.  相似文献   

16.
A long-term field grazing experiment was begun in 1982 to examine the impact of efficient field drainage on herbage and animal production from swards on an impermeable clay loam in the south-west of England. Drained and undrained lysimeter plots (each of 1 ha) were established on the existing permanent sward and received annual applications of fertilizer N of 200 or 400 kg ha−1. Similar plots were initially ploughed and reseeded with Lolium perenne (cv. Melle), and received fertilizer N at an annual rate of 400 kg ha−1. All plots were continuously stocked by beef cattle and stock numbers were adjusted to maintain a constant sward height and to avoid poaching damage. Results for the first 5 years show that the benefits from drainage were modest and, for beef production, unlikely to pay for its costs over the shorter term. The main benefit was in spring when herbage dry matter yield was 11% greater on the drained plots, but with no significant interaction with fertilizer N level or sward type. This benefit was reduced to 3% on an annual basis, due to the effect of the larger soil water deficits sustained by the drained swards in mid-season. Drainage increased the annual liveweight gain per ha by the grazing cattle by 11%. Possible mechanisms accounting for these effects are discussed in relation to the influences of seasonal patterns of weather.  相似文献   

17.
Despite low net grass growth rates in Ireland between mid-November and February, tissue continuously turns over as new leaves are produced and older leaves senesce. The effects of closing swards from grazing on three dates in autumn (1 September, 20 September and 10 October) on tissue turnover in a perennial ryegrass sward during the winter were examined at two sites in the north-east and south of Ireland. Leaf extension and senescence rates were greater in the south than in the north-east, and were greatest on the earliest closing date at both sites. Leaf appearance and extension rates at both sites were closely correlated with accumulated daily air temperature above 6°C and mean soil temperature. Site-specific factors also influenced tissue flux, possibly including grazing intensity at closing and density of tillers of perennial ryegrass. Swards in the autumn with high herbage masses [>2000 kg dry matter (DM) ha−1 approximately] and high leaf area index (LAI; about 2·5 and above) had the greatest leaf senescence rates and the greatest declines in herbage mass during the winter. Leaf senescence rates per tiller in high LAI swards were correlated positively with amount of leaf per tiller and also the proportion of green leaf in the second youngest expanding leaf lost to senescence. As potentially a complex of interactive factors influences tissue flux in winter, it is proposed that the data from this study be used in conjunction with other data to construct a dynamic model to predict more reliably optimum closing date in autumn for herbage utilization in winter.  相似文献   

18.
The effect of the initial N-supplying capacity of soils (SoilN, 90–230 kg N ha–1 year–1) was tested on the dry-matter and N yields of pure or mixed white clover and perennial ryegrass swards, managed under simulated grazing over a 5-year period. The cumulated N harvested in the mixed swards was similar, both for white clover and perennial ryegrass, but the proportion of white clover showed oscillations over a 2-year period. In the first year, the SoilN effect was similar to that of fertilizer N. During the course of the experiment, the effect was always positive on the pure perennial ryegrass sward, alternately negative and nil for the white clover in the mixed sward and alternately positive and nil for the perennial ryegrass in the mixed sward; the period of these oscillations was 2 years. From the third regrowth period after sowing, the ratio between the actual N concentration and the concentration non-limiting to growth for the perennial ryegrass in the mixed sward, increased above that of the pure perennial ryegrass sward. It was in turn greater in the soils that were initially poor and then greater in those that were initially rich in soil N. The periodic oscillation of the initial SoilN effects implies that the initial SoilN gradient was alternately compensated and restored. It was concluded that N fluxes are partly responsible for the temporal oscillations in the proportion of white clover in mixed swards.  相似文献   

19.
An experiment was carried out in two parts to investigate lack of persistency of white clover in a meadow fescue/white clover sward when grazed by poultry. It was found that poultry manure was responsible for a considerable part of this depressing effect. Grazing by poultry in the autumn and winter was nearly as effective in reducing the clover conlent of the sward as grazing for the whole year, autumn grazing being particularly harmful. Autumn and winter grazing alone increased the number of sown grass tillers and reduced Poa tririalis tillers in comparison wilh all-the-year-round grazing. Range and fold grazing at a high stocking rate (312 per acre in the first winter) both had the same effect on the sward. The effects of drought and continual close mowing on white clover persistence are discussed. Fertilizers containing calcium, potassium and phosphorus might counteract the depressing effect of poultry grazing and manure on white clover.  相似文献   

20.
The effects of N applied in spring on the growth and development of white clover ( Trifolium repens L.) in a mixed sward were investigated at Uppsala, Sweden. In early spring, the plots received 0 or 90 kg N ha−1 in the form of nitrochalk. The formation and loss of stolon branches were followed on marked stolons. The proportion of white clover in the total above-ground dry matter (DM) of the sward fell substantially in both treatments during the 8-week growth period, but more so in N fertilized than in unfertilized plots; fertilizer N increased the accumulation of grass DM, whereas it reduced the accumulation of white clover DM. Over time, there was a loss of white clover growing points and this loss was greatest in plots where N was applied. Branching occurred predominantly during the first half of the growth period and was unaffected by N application, whereas the loss of branches was more confined to the latter period and was increased in plots receiving N. Irrespective of node position, the size of the branches that died was comparatively small, and more branches were lost from young than from old node positions. It is concluded that the decline in the number of growing points in the N fertilized sward was mainly due to an increased loss of recently formed branches. As a consequence of its stimulating effect on grass growth, the N fertilized treatment initially led to a reduction in the R:FR ratio of light and subsequently also in the availability of photosynthetically active radiation within the canopy. These changes in the light environment of the sward caused morphological adjustments to be made by the white clover and may have contributed to the observed loss of branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号