首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a study of the effect of forest clear-cutting on the saproxylic beetle fauna in aspen in Norwegian boreonemoral forest, we find that both sun exposure and substrate are important structuring factors for the community of saproxylic beetles. Even though the species number and abundance is rather similar across the gradient of sun exposure, there is a major turnover in species composition in decaying aspen from mature forest to clear-cuttings. Our results confirm that aspen is an important element for beetle biodiversity both because of a generally species-rich community and a high number of rare and threatened (red-listed) beetles. There is a higher probability of presence of red-listed beetle species in snags than in logs. Sun exposure increases the probability of presence of red-listed species, but this was largely an effect of one dominating species. We conclude that retention of trees when clear-cutting is an important means for safeguarding the fauna of saproxylic beetles in aspen.  相似文献   

2.
Predicting species' responses to habitat loss is a significant challenge facing conservation biologists. We examined the response of both European three-toed woodpecker subspecies Picoides tridactylus tridactylus and P. tr. alpinus to different amounts of dead wood in a boreal and a sub-Alpine coniferous forest landscape in central Sweden and Switzerland, respectively. Habitat variables were measured by fieldwork in forests with breeding woodpeckers (n=10+12) and in control forests without breeding woodpeckers (n=10+12) in the same landscape. Logistic regression analyses revealed steep thresholds for the amount of dead standing trees and the probability of three-toed woodpecker presence in both Sweden and Switzerland. The probability of the presence of three-toed woodpeckers increased from 0.10 to 0.95 when snag basal area increased from 0.6 to 1.3 m2 ha−1 in Switzerland and from 0.3 to 0.5 m2 ha−1 in central Sweden. In Switzerland, a high road network density was negatively correlated to the presence of woodpeckers (r=−0.65, p=0.0007). The higher volumes of dead wood in Switzerland, where population trends are more positive, than in central Sweden, where the population is declining, would suggest that the volumes of dead wood in managed forests in Sweden are too low to sustain three-toed woodpeckers in the long-term. In terms of management implications, we suggest a quantitative target of at least 5% of standing trees in older forests being dead over at least 100 ha large forest areas. This corresponds about to ?1.3 m2 ha−1 (basal area) or ?15 m3 ha−1 (volume), still depending on site productivity.  相似文献   

3.
The habitat requirements and effects of forest management on insects belonging to higher trophic levels are relatively unknown in forest ecosystems. We tested the effect of forest successional stage and dead wood characteristics on the saproxylic parasitoid (Hymenoptera, Ichneumonoidea) assemblage in boreal spruce-dominated forests in northern Sweden. Within each of nine areas, we selected three sites with different management histories: (1) a clear-cut (2) a mature managed forest and (3) an old-growth forest. Parasitoids were collected in 2003 using eclector traps mounted on fresh logs, which were either untreated (control), burned, inoculated with fungi, or naturally shaded, and on artificially-created snags.Both forest type and dead wood characteristics had a significant effect on parasitoid assemblages. Grouped idiobionts and some species, such as Bracon obscurator and Ontsira antica, preferred clear-cuts, while others, such as Cosmophorus regius (Hym., Braconidae) and other koinobionts, were associated with older successional forest stages. No single dead wood substrate was sufficient to support the entire community of parasitoids in any forest type, even when the regular host was present. In particular, snags hosted a different assemblage of species from other types of dead wood, with parasitoids of Tetropium spp. such as Rhimphoctona spp. (Hym., Ichneumonidae) and Helconidea dentator (Hym., Braconidae) being abundant. These results indicate that a diversity of dead wood habitats is necessary to support complete assemblages of beetle-associated parasitoids from early successional stages of dead wood and that parasitoids may be more sensitive to habitat change than their hosts.  相似文献   

4.
Intensive forest management in Scandinavia has decreased the amount of dead wood required by saproxylic (wood-living) organisms. To reduce this problem, some dead wood is now retained during forest operations, often in the form of man-made high stumps (ca. 4 m high). Most often these stumps are cut with a harvester, although the stumps in this study were made with explosives. The aims of this study were to determine whether such stumps of aspen (Populus tremula) and birch (Betula spp.) could be used by red-listed saproxylic beetles (Coleoptera), and to examine how the fauna of man-made high stumps differs from that of natural stumps. We also studied how tree species, sun-exposure, stage of decay and trunk diameter influenced the fauna. In 169 samples of bark from high stumps 116 saproxylic species were found, of which 21 were red-listed. Many species, including red-listed ones, were more associated with man-made stumps than with natural stumps. However, in total, more species were found in the natural than in the man-made stumps. This is probably because man-made stumps provide a more homogeneous type of wood substrate than natural ones. Among the other variables the difference between aspen and birch was the most important. We conclude that man-made high stumps are valuable habitats for many saproxylic beetle species.  相似文献   

5.
Winter cutting of Common Reed Phragmites australis (Poaceae) is increasing in Camargue, southern France, potentially affecting wetlands of high conservation value. We studied its impact on arthropods by comparing four cut and uncut sites with special respect to avian prey availability in the breeding season. The two most important prey groups for breeding passerines, spiders (Araneida) and beetles (Coleoptera), were identified to species in trap catches and diet samples. The arthropod assemblages differed significantly between cut and uncut sites. Phytophagous and saprophagous species showed contrasting responses. Numbers of homopterans increased in cut reed beds, where green Phragmites stem density was higher. Saprophagous woodlice decreased, presumably due to the reduced amount of litter. Densities of some vegetation-dwelling spider and beetle species were lower at cut sites, including two of the most preferred prey species for passerine birds. Consequently, large-scale mechanically harvested reed beds host altered arthropod communities, missing major food components used by vulnerable passerines. However, reed cutting on a small scale may increase habitat heterogeneity and species richness on a landscape level. To contribute to reed bed conservation, EU schemes should reward management that leaves uncut reed patches in the proximity of cut areas to permit their recolonization by arthropods.  相似文献   

6.
Saproxylic Coleoptera are diverse insects that depend on dead wood in some or all of their life stages. In even-aged boreal forest management, remnant habitats left as strips and patches contain most of the dead wood available in managed landscapes and are expected to act as refuges for mature forest species during the regeneration phase. However, use of remnant habitats by the saproxylic fauna has rarely been investigated. Our objective was to characterize the saproxylic beetle assemblages using clearcuts and forest remnants in western Québec, Canada, and to explore the effects of forest remnant stand characteristics on saproxylic beetle assemblages. We sampled both beetle adults and larvae, using Lindgren funnels and snag dissection, in five habitat locations (clearcuts, forest interiors of large patches, edges of large patches, small patches and cut-block separators) from three distinct landscapes. Adult saproxylic beetles (all feeding guilds combined) had significantly higher species richness and catch rates in small patches compared to forest interiors of large patches; the phloeophagous/xylophagous group had significantly higher species richness only. Small patches, cut-block separators and edges of large patches also had the highest snag density and basal area, increasing habitat for many saproxylic beetles. No significant differences in density of saproxylic larvae were found between habitat patches, but snag dissection nevertheless suggests that snags in forest remnants are used by comparable densities of insects. Saproxylic beetles appear to readily use habitat remnants in even-aged managed landscapes suggesting that forest remnants can insure the local persistence of these species, at least in the timeframe investigated in our study.  相似文献   

7.
In northern Europe, unimproved grasslands provide the habitat for a diverse group of fungi, including members of the genera Camarophyllopsis, Hygrocybe, Entoloma and Dermoloma, and the families Clavariaceae and Geoglossaceae. These fungi are currently the focus of international conservation concern, owing to rapid declines in the availability of suitable habitat. To assess their status in Scotland, 621 field surveys were undertaken on a total of 511 sites, distributed throughout the country. Taxa were found to differ substantially in abundance; for example, whereas five Hygrocybe taxa were recorded at a single site, seven taxa were recorded on more than 200 sites. The number of Hygrocybe taxa per site was found to be positively correlated with number of Clavariaceae taxa (r=0.60); however, the total number of Entoloma taxa was poorly correlated with diversity of other groups (r<0.35). Detrended correspondence analysis (DCA) of field data highlighted variation in composition of fungal communities; in particular, Entoloma taxa were found to cluster together, and were rarely found in association with Geoglossaceae. The data were used to critically examine current approaches to defining the conservation importance of grassland sites on the basis of their mycota. Species accumulation curves indicated that more than 16 visits may be required to fully characterize the fungal diversity of a site. Different groups of fungi also displayed constrasting patterns of seasonal variation in sporome production; peak diversity values for Geoglossaceae and Clavariaceae tended to occur later in the year than for Hygrocybe and Entoloma. Such results indicate that intensive, multiple surveys over prolonged periods are required to accurately define the conservation value of grassland sites. However, these preliminary data suggest that the unimproved grasslands of Scotland are of exceptional importance for fungal conservation, compared with other countries of northern Europe.  相似文献   

8.
The appropriate management of forest reserves is debated; two major alternatives are succession to ‘wild’ state, or management to produce semi-open stands. For temperate conservation stands, there are no strong experiments replicated at landscape level. In each of 22 forests rich in oaks (Quercus spp.) in Sweden, we set up a closed-canopy wild plot (1 ha), and a cutting plot (1 ha) to produce semi-open conditions, studying them before and after cutting. About 25% of the tree basal area was cut (large trees and dead wood retained) and harvested as bio-fuel, a CO2 - neutral energy source. We examined the response of beetles and trapped 59,000 individuals (1174 species; 100 red-listed species). For both the guild of herbivorous beetles (222 species) and of saproxylic beetles connected to oak wood (267 species), species richness increased by about 35% in the harvested plots, relative to the wild reference plots. Species composition within the groups changed, though not strongly. Thirteen saproxylic species of 50 analysed, and three herbivores of 12 increased in cutting plots. For red-listed saproxylic beetles, species richness did not change significantly. Regression analyses suggest that more open cutting plots disfavour the red-listed beetles of this forest type. Thus, partial cutting increased species diversity of two beetle groups, probably due to changed microclimate and increase in herbaceous plants, but some red-listed saproxylic beetles may be disfavoured. A hands-off alternative may through storms and other disturbances produce open patches, more dead wood, and favour some species. Combinations of these alternatives, carefully planned at the landscape level, need to be considered.  相似文献   

9.
Understanding how biodiversity is partitioned among alternative land-uses is an important first step for developing effective conservation plans in multiple-use landscapes. Here, we analysed nestedness patterns of species composition for nine different taxonomic groups [dung beetles, fruit-feeding butterflies, orchid bees, scavenger flies, leaf-litter amphibians, lizards, bats, birds and woody plants (trees and lianas)] in a multiple-use forestry landscape in the Brazilian Amazon containing primary, secondary and Eucalyptus plantation forests. A formal nestedness analysis was performed to investigate whether species-poor land-uses were comprised of a subset of species from more diverse forests, and the extent to which this pattern varied among taxa. At the landscape-scale the species-by-sites matrices were significantly nested for all nine taxonomic groups when both sites and species were sorted to maximally pack the species/occurrence matrix and, except for orchid bees when sorted by land-use intensity (primary forest to Eucalyptus plantation). Different patterns emerged when we conducted pairwise analyses of nestedness between the three forest types: (a) most of the taxonomic groups were nested in accordance with increased land-use intensity; (b) neither orchid bees nor leaf-litter amphibians from secondary forest made up a significant nested subset of primary forest species, although species found in Eucalyptus plantation sites were nested within secondary forest communities; and (c) lizards from Eucalyptus plantations were not a nested subset of either primary or secondary forest. Our findings emphasize the complex nature of patterns of species occupancy in tropical multiple-use forestry landscapes, and illustrate that there may be no easy solutions to questions regarding the conservation value of secondary and exotic plantation forests.  相似文献   

10.
This study was designed to examine whether or not specific tree species (Picea glauca, Picea mariana, Pinus banksiana, Populus tremuloides), their post-fire stand age, or their position in a successional pathway had any significant effect on the functional diversity of associated soil microbial communities in a typical mixed boreal forest ecosystem (Duck Mountain Provincial Forest, Manitoba, Canada). Multivariate analyses designed to identify significant biotic and/or abiotic variables associated with patterns of organic substrate utilization (assessed using the BIOLOG™ System) revealed the overall similarity in substrate utilization by the soil microbial communities. The five clusters identified differed mainly by their substrate-utilization value rather than by specific substrate utilization. Variability in community functional diversity was not strongly associated to tree species or post-fire stand age; however, redundancy analysis indicated a stronger association between substrate utilization and successional pathway and soil pH. For example, microbial communities associated with the relatively high pH soils of the P. tremuloides-P. glauca successional pathway, exhibited a greater degree of substrate utilization than those associated with the P. banksiana-P. mariana successional pathway and more acidic soils. Differences in functional diversity specific to tree species were not observed and this may have reflected the mixed nature of the forest stands and of their heterogeneous forest floor. In a densely treed, mixed boreal forest ecosystem, great overlap in tree and understory species occur making it difficult to assign a definitive microbial community to any particular tree species. The presence of P. tremuloides in all stand types and post fire stand ages has probably contributed to the large amount of overlap in utilization profiles among soil samples.  相似文献   

11.
The Maulino forest is a unique temperate ecosystem restricted to a small range of the coast of central Chile. This forest harbors many endemic species, and is threatened due to intensive deforestation and fragmentation. Currently the Maulino forest is composed of a suite of small fragments scattered in a landscape dominated by exotic plantations. The fragmentation of the Maulino forest has resulted in a higher abundance of granivores in small forest fragments compared with continuous forest. In order to determine if fragmentation-induced changes in granivore abundance affects the granivory of different size seeds, we experimentally assessed seed predation of a large-seeded species [Nothofagus glauca (Phil.) Krasser] and a small-seeded species [Nothofagus obliqua (Mirbel) Oersted] in the edges and interior of one continuous (large) forest and three small fragments (∼3 ha) surrounded by plantations of the exotic tree Pinus radiata. To determine what kind of granivores are preying upon seeds, seeds of both species were excluded from and exposed to large and small granivores. Granivory was higher in small fragments than in continuous forest, higher in the edges than in the forest interior, and higher upon large than on small seeds. Rodents, which were more abundant in forest fragments, were the main consumers. Thus, fragmentation indeed affects granivory increasing the consumption of seeds by predators inhabiting the Maulino forest remnants or coming from the matrix. This change may affect the future structure of the tree community in forest fragments.  相似文献   

12.
Due to increasing fragmentation of the boreal forests of Fennoscandia, a number of epiphytic lichens are now becoming threatened. Since these species typically are limited by a poor ability of dispersal, one possible but largely unexplored strategy for conservation is to disperse lichen material artificially into suitable habitats. Therefore, the objective of this study was to evaluate survival and vitality in lichen fragments from Evernia divaricata (L.) Ach. and Ramalina dilacerata (Hoffm.) Hoffm. after transplantation into three different stand types situated in northern Sweden, using different fragment sizes and modes of transplantation. After one year, survival ranged between 85% and 97.5%, and new growth occurred at all transplantation sites. The study has shown that transplantations of small fragments might constitute a resource-efficient option for establishment of new populations of endangered lichen species, or for enlarging their populations at the present sites of occurrence. In addition, the mode of transplantation was of importance for fragment vitality.  相似文献   

13.
The possible effects of excreta of the Great Cormorant Phalacrocorax carbo on decomposition processes and dynamics of nutrients (N, P, Ca, K, Mg) and organic chemical components (lignin, total carbohydrates) were investigated in a temperate evergreen coniferous forest near Lake Biwa in central Japan. Two-year decomposition processes of needles and twigs of Chamaecyparis obtusa were examined at two sites, control site never colonized by the cormorants (site C) and colonizing site (site 2). Mass loss was faster in needles than in twigs. Mass loss of these litter types was faster at site C than at site 2, which was ascribed to the decreased mass loss rate of acid-insoluble ‘lignin’ at site 2. Net immobilization of N, P, and Ca occurred in needles and twigs at site 2; whereas at site C, mass of these elements decreased without immobilization during decomposition. Duration of immobilization phase of these nutrients at site 2 was estimated to be 1.6 to 2.5 years in needles and 19.6 to 23.5 years in twigs. Immobilization potential (maximum amount of exogenous nutrient immobilized per gram initial material) was similar between needles and twigs for N and Ca but was about 10 times higher in twigs than in needles for P. δ13C in needles was relatively constant during the first year and then increased during the second year, whereas δ13C in twigs was variable during decomposition. Acid-insoluble fraction was depleted in 13C compared to whole needles (1.6-2.1‰) and twigs (2.0-2.5‰). δ15N of needles and twigs and their acid-insoluble fractions approached to δ15N of excreta during decomposition at site 2. This result demonstrated the immobilization of excreta-derived N into litter due to the formation of acid-insoluble lignin-like substances complexed with excreta-derived N. No immobilization occurred in K and Mg and their mass decreased during decomposition at both sites. Based on these results of nutrient immobilization during decomposition and on the data of litter fall and excreta amount at site 2, we tentatively calculated stand-level immobilization potential of litter fall and its contribution to total amount of N and P deposited as excreta. Thus, the potential maximum amount immobilized into litter fall (needles and twigs) was estimated to account for 5-7% of total excreta-derived N and P.  相似文献   

14.
One of the most important measures adopted in the new biodiversity-oriented forestry in Sweden is to increase the quantity of coarse woody debris (CWD) in commercially managed forests, by leaving existing dead trees as well as ensuring input of new dead trees. We have used a simulation model in order to predict the quantity of CWD of Norway spruce (Picea abies (L.) Karst.) in forest landscapes subject to different management regimes. It is shown that in an average, managed forest landscape in Sweden, where the management regimes are changed in order to follow the current requirements for certification by FSC, the amount of CWD will be more than doubled, but it will take more than 100 years to reach the new level. The increase in the amount of CWD will first be recognised for hard (less decayed) CWD and mainly in young, newly cut stands. Leaving forests unmanaged, retaining living trees and decreasing the destruction of CWD at final cutting, and not removing naturally dying trees are all measures that have a strong positive influence on the amount of CWD.  相似文献   

15.
Habitat reserves are a common strategy used to ensure viability of wildlife populations and communities. The efficacy of reserves, however, is rarely empirically evaluated. We examined the likelihood that small (650 ha), isolated habitat reserves composed of old-growth Sitka spruce (Picea sitchensis)-western hemlock (Tsuga heterophylla) rain forest (upland-OG) and mixed-conifer peatlands (peatland-MC) would sustain populations of northern flying squirrels (Glaucomys sabrinus) in the absence of immigration or emigration within the Tongass National Forest in Southeast Alaska. We used demographic data obtained from a study of flying squirrels on Prince of Wales Island in Southeast Alaska and litter size from flying squirrels in similar habitat to estimate per capita rate of increase (r) of flying squirrels in upland-OG (r = 0.14, SD = 0.42) and peatland-MC habitats (r = 0.01, SD = 0.39). Our results indicated that peatland-MC habitat was unlikely to sustain populations and that viability of flying squirrel populations in small habitat reserves largely depended on the upland-OG forest component. We subsequently estimated time to extinction (TN) based on r, its variance (v), and the potential population ceiling (K). We used TN to calculate the probabilities (Pt) that squirrel populations would persist in small reserves containing 100%, 50%, and 25% upland-OG habitat for 25, 50, and 100 years. In each scenario, we calculated TN and Pt for 2 levels of v. For the best-case scenario (100% upland-OG forest, lowest variance, t = 25 years), TN was 507 years and Pt was 0.95. For the worst-case scenario (25% upland-OG forest, highest variance, t = 100 years), TN was 237 years and Pt was 0.66. Minimum patch size of upland-OG forest required for a high probability (Pt = 0.95) of sustaining a flying squirrel population in isolation with relatively low demographic variability (v = 0.34) for 25, 50, or 100 years was 578, 5077, and 78,935 ha, respectively. We concluded that it was unlikely that small isolated habitat reserves could sustain populations of flying squirrels for >25 years in the absence of immigration. Consequently, dispersal among small reserves is critical to ensure that they function to support metapopulations of northern flying squirrels.  相似文献   

16.
Patterns of biodiversity are influenced by habitat features at multiple spatial scales, yet few studies have used a multi-scale approach to examine ground-dwelling beetle diversity patterns. We trapped and quantified ground-dwelling beetle assemblages at two spatial scales: (1) microhabitat elements, represented by open ground, ground under trees and ground next to logs and (2) macrohabitat, represented by three vegetation types in a box-gum grassy woodland in south-eastern Australia. Species richness and evenness was highest at samples from under trees and lowest at samples in the open. At the macrohabitat scale, species richness and evenness did not differ among vegetation types. Assemblage composition was significantly different between trees, logs and open elements. Assemblage composition was different only between vegetation types with contrasting high and low shrub cover. Estimation of true species richness indicated assemblages at logs may have a higher number of species compared to trees and open elements, and implied greater spatial heterogeneity in assemblages at logs. Significant spatial autocorrelation in beetle assemblages was detected for logs at up to 400 m, but not for ground under trees or in the open. In agreement with previous studies, a mix of vegetation types at the macrohabitat scale is important for beetle conservation. Assemblage composition, however, appears to be more closely linked with habitat elements at the microhabitat scale, where logs support a high diversity of beetle species. This strongly supports the idea that restoring logs to box-gum grassy woodlands would be useful for increasing beetle species richness and assemblage heterogeneity.  相似文献   

17.
The effort of boreal forest conservation has emphasised the preservation of old-growth forests while the role of young successional stages in maintaining biodiversity has remained largely unstudied. We compared the richness of beetle species and composition of species assemblages between managed and seminatural forests in five stages of forest succession. The sites were in boreal sub-xeric pine-dominated forests in eastern Finland. Seminatural study sites, especially the recently burned sites, were important habitats for threatened and near-threatened species. We propose that young stages of natural succession should be included in the network of protected forest areas. On the other hand, the composition of saproxylic species assemblages in seminatural forests differed from the assemblages in managed forests, indicating also the need to improve the forest management guidelines so that they better address the requirements of species protection. Regeneration methods applied should resemble or mimic the natural disturbances more closely.  相似文献   

18.
The conversion of single-species coniferous forest stands into mixed stands by promoting the natural regeneration of indigenous broadleaved tree species was studied in a forest-heathland on the Veluwe, in the central part of the Netherlands. Red deer (Cervus elaphus), roe deer (Capreolus capreolus) and wild boar (Sus scrofa) had a large impact on regeneration dynamics, as was established by comparing 20 pairs of fenced and unfenced plots (40 × 40 m) during a 10-year period. A fivefold reduction of total herbivore biomass to 500 kg per km2, resulted in a strong increase of shrub and tree sapling numbers in all vegetation types. However, height growth of the most palatable broadleaved tree species was still strongly impeded. Under the present-day grazing pressure, Scots pine (Pinus sylvestris) and beech (Fagus sylvatica) will become the dominant canopy species in the forests in the near future. It is argued that the most browse-sensitive woody species such as pedunculate and sessile oak (Quercus robur and Q. petraea) will successfully regenerate, only if temporal and spatial variation in browsing pressure is allowed to occur.  相似文献   

19.
Protection of area-limited species is an important component of plans to conserve biodiversity, but the habitat needs of such species can be different and important habitats may not align with existing reserves. We used empirically derived landscape suitability models for the spotted owl and the fisher to evaluate the overlap in habitat suitability for these two old forest-associated predators in an area of northern California affected by the Northwest Forest Plan (NWFP), a bioregional conservation plan. The area includes designated Wilderness areas and new reserves (Late-Successional Reserves, LSRs) established under the NWFP. We used the site selection algorithm MARXAN to identify priority habitat areas for each species, and for both combined, and to compare these areas with reserves. Sites were selected under two constraints, to achieve a threshold proportion of total habitat value and to select new areas equal to the total current area in existing reserves. The rank correlation between predicted value for the two species was low (0.11), because areas of highest predicted habitat value were more widely distributed for the owl. This difference also meant that the sites selected to optimize habitat value were more aggregated for fishers than owls, resulting in greater overlap of owl habitat and current reserves. To capture 25%, 50% and 75% of total habitat value for the owl required 14.0%, 29.2%, and 47.3% of the planning units, respectively; capturing the same for the fisher required only 5.3%, 13.5%, and 27.2%. A combined owl-fisher scenario resulted in areas that overlapped only ∼50% of existing reserves. The current location of LSRs may not be the best solution to maintaining well-connected habitats for these area-limited species in northwestern California. Whether LSRs are a better solution to protecting the diversity of other lesser-known taxa (i.e., salamanders and mollusks) is the subject of related work.  相似文献   

20.
Tropical forest fragmentation affects both biodiversity and plant reproductive success when small, isolated fragments sustain a reduced diversity or abundance of pollinators. Fragmentation-related effects have been poorly investigated in the case of palms, an important structural and functional component of tropical forests. We examined the relationships between fragment size and diversity and abundance of flower visitors, and palm reproduction, by quantifying the arthropod fauna associated to inflorescences of the palm Astrocaryum mexicanum, and its fruit set, in fragments of different size. The sample yielded a total of 228,772 arthropods (10 orders, 60 species). Coleoptera was the predominant group (?50% of the species), followed by Hymenoptera (20%), while the remaining (30%) was distributed among the other eight orders. We found a predominance of pollinating insects (Coleoptera-Nitidulidae), representing 85% of all visitors. Pollinator abundance was negatively affected by fragmentation, with a 4.2-fold average difference between small (<35 ha) and large (114-700 ha) fragments. However, fruit set was relatively high (?0.7) and not affected by fragmentation during three reproductive seasons. This could be explained because small fragments retained remarkably high numbers of pollinators (1191.4/inflorescence) and by the high abundance of palms (and flowers) in fragments. Further research is needed, however, to assess if fragmentation restricts pollinator movements to plants within the fragments, leading to a reduction in genetic variation of the progeny present in forest remnants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号