首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of different breadmaking processes (conventional, frozen dough, frozen partially baked bread) and the effect of the storage period on the technological quality of fresh wholemeal wheat breads are investigated. In addition, the impact of the exogenous fungal phytase on the phytate content was also determined. Results showed that breadmaking technology significantly affected the quality parameters of wholemeal breads (specific volume, moisture content, crumb and crust colour, crumb texture profile analysis and crust flaking) and frozen storage affected to a different extent the quality of the loaves obtained from partially baked breads and those obtained from frozen dough, particularly crust flaking. Freezing and frozen storage of wholemeal bread in the presence of fungal phytase decreased significantly the phytate content in whole wheat breads. The combination of fungal phytase addition, breadmaking process and frozen storage could be advisable for overcoming the detrimental effect of bran on the mineral bioavailability.  相似文献   

2.
The objective of this study was to examine the influence of flour quality on the properties of bread made from pre-fermented frozen dough. The physicochemical parameters of 8 different wheat flours were determined, especially the protein quality was analysed in detail by a RP-HPLC procedure. A standardized baking experiment was performed with frozen storage periods from 1 to 168 days. Baked bread was characterised for specific loaf volume, crumb firmness and crumb elasticity. The results were compared to none frozen control breads. Duration of frozen storage significantly affected specific loaf volume and crumb firmness. The reduction of specific loaf volume was different among the used flours and its behaviour and intensity was highly influenced by flour properties. For control breads wet gluten, flourgraph E7 maximum resistance and RVA peak viscosity were positively correlated with specific loaf volume. However, after 1–28 days of frozen storage, wet gluten content was not significantly influencing specific loaf volume, while other parameters were still significantly correlated with the final bread properties. After 168 days of frozen storage all breads showed low volume and high crumb firmness, thus no significant correlations between flour properties and bread quality were found. Findings suggest that flours with strong gluten networks, which show high resistance to extension, are most suitable for frozen dough production. Furthermore, starch pasting characteristics were also affecting bread quality in pre-fermented frozen dough.  相似文献   

3.
Gluten-free bread often has low nutritive value, high glycemic index (GI) and short shelf-life. The aim of this research was to investigate the influence of sourdough addition on GI, quality parameters and firming kinetics of gluten-free bread produced by partially baked frozen technology. Sourdough was fermented with a commercial starter of Lactobacillus fermentum and added to bread batter at four levels (7.5; 15; 22.5 or 30%). We determined biochemical characteristics of the sourdough and bread chemical composition, glycemic index in vivo, physical properties and firming kinetics after final rebaking. All breads were enriched with inulin and were high in fiber (>6 g/100 g). Control bread that was prepared without sourdough had medium GI (68). Sourdough addition decreased bread GI. However, only breads with 15 and 22.5% of sourdough had low GI. Moreover, addition of 15 and 22.5% of sourdough had positively affected the quality parameters of partially baked frozen bread: specific volume increased, crumb firmness decreased and firming was delayed. In conclusion, the combined application of sourdough and partially baked frozen technology can decrease glycemic index, improve quality and shelf-life of gluten-free bread. Such breads can be recommended as a part of well balanced gluten-free diet.  相似文献   

4.
The influence the quality and shelf life of baked product has previously been reported to be effected by the time and temperature of the baking process. In this study, dough was baked at 219 °C by using different ovens (conventional, impingement or hybrid) or with doughs of different sizes (large or small) for varying times. During baking the temperature profile at the dough center was recorded. Texture, thermal properties and pasting characteristics of baked product with reference to baking conditions were investigated. Small breads baked in the hybrid oven had the highest heating rate (25.1 °C/min) while large breads baked in conventional oven had the lowest heating rate (6.0 °C/min). When the data are viewed as a function of heating rate in this study, the enthalpy of amylopectin recrystallization, rate of bread firmness and the amount of soluble amylose were all-lower at the slower heating rate. The differences observed in product firmness following storage are potentially a consequence of the extent of starch granule hydration, swelling, dispersion and extent of reassociation; all of which are affected by the heating rate during baking.  相似文献   

5.
6.
Breads were chilled at room temperature or using a vacuum chilling process. The staling rate was studied after partial baking and after the final baking. Vacuum chilled breads (VCBs) exhibited a higher moisture loss than conventionally chilled bread (CCB). A higher enthalpy of melting of amylopectin crystals was observed for VCB in comparison to CCB.VCB had a negative effect on the texture of the bread. The hardness of the crumb of VCB was increased by 20% at the end of staling and the kinetics of staling was 10% faster for VCB in comparison to CCB. After 12 days of storage at 4 °C, a second and final baking was applied to the bread. The staling rate of VCB was almost two times that of CCB. The staling rate of CCB was unchanged in comparison to the staling rate after partial baking. Data on the enthalpy of melting of amylopectin showed that the same amount of amylopectin was formed at the end of staling for CCB after part baked process and after full baking process. Beside, the VCB showed a higher amount of recrystallized amylopectin (10%) at the end of the staling which followed the partial baking.  相似文献   

7.
The effect of the recombinantly produced xylanase B (XynB) from Thermotoga maritima MSB8 on the quality of frozen partially baked bread (FPBB) was investigated. Addition of XynB to wheat flour dough resulted in a significant increase in dough extensibility (L), swelling (G), and a decrease in dough resistance to deformation (P), configuration. Bread crumb characteristics were studied by differential scanning calorimeter (DSC) and dynamic-mechanical analysis (DMA). The results show that addition of XynB leads to improvements in the bread quality of FPBB and retards bread staling compared to the control. The greatest improvements were obtained in specific volume (+35.2%) and crumb firmness (−40.0%). The control FPBB was significantly firmer in texture and higher in amylopectin recrystallization than the bread with XynB. During frozen storage of FPBB with and without XynB for 8 weeks, the crumb firmness increased gradually and the specific volume slightly decreased with the frozen storage time. The ΔH values of freezable water (FW) endothermic transitions increased with frozen storage time for all samples. However, addition of XynB lowered the ΔH values indicating a decrease in FW. Therefore, XynB is useful in improving the quality of FPBB. DMA was also used to monitor the shrinking behavior of the samples. Addition of XynB increased the contraction during chilling but significantly diminished the total shrinking and frozen-state shrinking of the bread crumb during the freezing process.  相似文献   

8.
Breadmaking achievement using grains alternative to wheat and rye is a challenging task for cereal technologists, since most of the available innovative breads are characterised by poor crumb and crust characteristics, slight flavour and fast staling. To improve texture, mouth-feel, acceptability and shelf-life of breads prepared by using minor and/or under-utilised cereals, gluten and/or polymeric substances that mimic the viscoelastic properties of gluten, are required. Recent studies reported that high hydrostatic pressure (HP) treatment may represent an efficient non-thermal technique to promote the dough structure formation of composite cereal matrices. In the present study the effects of HP on the techno-functional and nutritional properties of oat-, millet-, and sorghum- based breads were evaluated compared to their unpressured- and gluten-added conventionally made counterparts. HP-treated (350 MPa, 10 min) wheat, oat, millet and sorghum batters were added to the bread recipe, replacing 50%, 60% and 40% of untreated wheat flour, respectively. Data from bread analyses revealed non significant physico-chemical impairment, and superior nutritional and sensory profiles in most quality features when HP treatment was applied to dough batters, compared with conventional/gluten-added samples. Specifically, HP breads deserved better sensory scores and exhibited higher antiradical activities despite a reduction in specific volume (wheat and oat) and faster staling kinetics (millet and sorghum) that were explicit in some composite samples.  相似文献   

9.
Frozen bread dough: Effects of freezing storage and dough improvers   总被引:1,自引:0,他引:1  
This review focuses on the effects of freezing storage on the microstructure and baking performance of frozen doughs, and provides an overview of the activities of dough improvers, including emulsifiers, hydrocolloids and other improvers used in frozen dough applications. The overall quality of bread baked from frozen dough deteriorates as the storage of the dough at sub-zero temperatures increases due to several factors which are discussed. Lipid-related emulsifiers such as diacetyl tartaric acid esters of mono and diglycerides and sucrose esters employed as anti-staling agents, dough modifiers, shortening sparing agents, and as improvers for the production of high-protein bread have also been employed in frozen doughs. Hydrocolloids are gaining importance in the baking industry as dough improvers due to their ability to induce structural changes in the main components of wheat flour systems during breadmaking steps and bread storage Their effects in frozen doughs is discussed. Other dough improvers, such as ascorbic acid, honey and green tea extract, are also reviewed in the context of frozen doughs.  相似文献   

10.
During baking, bread dough undergoes an expansion followed by a slight contraction at the end of baking. The contraction during baking has been evidenced by some authors. However, there is a limited amount of literature about the contraction of the crumb during the chilling phase and also during the freezing phase in the case of freezing. A study has been carried out to better understand the impact of the baking degree on the contraction of the crumb during chilling after baking and during freezing. The volume of the samples has been evaluated with a laser volumeter. Breads (70 g dough) were baked until reaching 75 °C, 85 °C, 95 °C, 98 °C and then 98 °C for 10 min. Results showed that a longer baking resulted in a lower contraction of the bread. The volume change was between 25% and 2.5% for baking at 75 °C—0 min dwell and 98 °C—10 min dwell, respectively. The contraction was compared to the contraction of degassed bread crumb samples, which was more important. SEM pictures showed that the degree of baking also corresponded to a very different structure of the crumb. For the longer baking, the starch granules were fully gelatinized and no ghosts of starch granules were visible. The magnitude of the contraction was thus associated with the degree of baking and with the degree of starch granule destructuration.  相似文献   

11.
Partly baked (PB) and fully baked (FB) breads were frozen at −18 °C for 7, 21, 63, 92, 126 and 188 d and were analysed after its thawing (FB) or thawing and final baking (PB). The starch retrogradation, the moisture content and the firmness were measured as properties closely related to the aging of bread. The temperature of glass transition of the maximally freeze-concentrated state, Tg′, was also measured and established in (−18 ± 0.8) °C. This value cannot ensure molecular immobility in both types of bread during its frozen storage at (−18 ± 2) °C. Consequently, the rearrangements of starch component molecules, needed for its recrystallization and for the diffusion of water during frozen storage, could take place and could justify the changes observed in the bread. PB bread showed a significant decrease in firmness with frozen storage, while the firmness of the FB bread did not change significantly, although an increase when compared with the control, not frozen bread, was detected. A regression study led to the conclusion that the combined effect of starch component crystallization and water loss could explain the firming evolution and that both variables exerted an effect of similar intensity on crumb firmness.  相似文献   

12.
Bread staling involves a combination of physico-chemical phenomena that leads to a reduction of quality. This study aims at evaluating the impact of baking conditions (280 °C, 8 min; 310 °C, 5.5 min; 340 °C, 4 min), baking type (of fully baked (FB) and part-baked (PB)) and storage temperature (−18, 4 and 20 °C) on the staling of Sangak bread. Results showed that lower baking temperature with longer baking time produced drier bread with higher firmness. In FB Sangak breads, amylopectin retrogradation, amount of unfreezable water and firmness (measured by compression test) increased during storage at positive temperatures but hardness (determined by Kramer shear test) decreased significantly during first day of storage. The recrystallized amylopectin traps the free water resulting in crumb hardening. Water is also absorbed by the dry crust resulting in changes of rheological properties in the crust and crumb, and finally in staling. Storage at 4 °C resulted in increasing melting enthalpy of amylopectin crystallite in comparison with storage at 20 °C. Also it was found that firmness of PB breads due to rebaking was significantly lower than FB breads. There were no significant changes in staling parameters of FB and PB stored at −18 °C.  相似文献   

13.
The use of sourdough, even in combination with cryoprotectant (skim milk, sucrose and trehalose), conventional additives (guar gum, diacetyl tartaric acid esters of monoglycerides, ascorbic acid), honey or fructose and glucose, in frozen dough technology was investigated. After frozen storage, the leavening performance of doughs, and the hardness and texture of breads were compared to those of an unfrozen dough, and to those of a conventional frozen dough. All frozen doughs showed a longer fermentation time and a lower volume increase, with respect to unfrozen dough. When sourdough was combined with cryoprotectant, honey or both, the leavening performance improved compared to the use of sourdough alone. Compared to the conventional frozen dough, higher leavening performance was reached combining sourdough with cryoprotectant alone or together with honey. Sourdough combined with honey, fructose and glucose, honey and cryoprotectant, or conventional additives decreased bread hardness compared to the unfrozen dough bread and to the conventional frozen dough bread. Independently from the use of sourdough, conventional additives allowed to reach a specific volume not significantly different from that of unfrozen dough bread, and breads containing honey were characterized by low values of hardness and by high values of red index.  相似文献   

14.
This paper presents a study on the impact of baking conditions on crumb staling. Breads were baked at 220 °C, 200 °C and 180 °C corresponding to 6, 8 and 10 min to rise the temperature to 98 °C in the crumb (heating rates 13, 9.8 and 7.8 °C/min respectively with an initial temperature of 20 °C). A new protocol has been developed, consisting in baking a slab of degassed dough in a miniaturized oven to mimic the baking conditions of conventional bread making. Texture tests were done during staling on degassed crumb and on conventional crumb. Calorimetry tests showed that during storage, amylopectin recrystallisation occurred before crumb stiffening. A first order kinetics model was used to fit the evolution of the crumb texture (Young's modulus) and of the recrystallisation of amylopectin. The results showed that the hardening of the crumb during staling occurred after retrogradation of amylopectin. In addition, the staling rate was faster for faster baking kinetics. A mechanical model showed that the relative Young modulus is proportional to the square of the relative density of the crumb.  相似文献   

15.
Glycemic responses to most of the conventional breads are high, including breads made of wholemeal flour. Baking technology is known to affect these responses. The aim of the present study was to investigate effects of xylanase enzyme treatment and sourdough fermentation in wholemeal wheat bread baking on postprandial glucose and insulin responses and on in vitro protein digestibility. The wheat breads were made of 100% flour from peeled kernels by a straight dough or sourdough fermentation method, and with or without using xylanase during mixing of dough. Standard white wheat bread was used as a reference. All test bread portions contained 50 g available carbohydrate and were served in random order to eleven insulin resistant subjects. Blood samples for measuring glucose and insulin concentrations were drawn over 4 h. The sourdough wholemeal wheat bread resulted in the lowest postprandial glucose and insulin responses among the four tested breads (treatment × time; p = 0.000 and p = 0.022, respectively). There were differences in solubility and depolymerisation of protein and arabinoxylan among the breads but these did not fully explain the in vivo findings. In conclusion, the health effects of wholemeal wheat bread can be further improved by using sourdough process in breadmaking.  相似文献   

16.
The possibility of using naked barley for food products is gaining popularity due to its dietary fibre content, especially β-glucans. The technological process (dough preparation, fermentation and baking) influences bread quality but also may contribute to degradation or preservation of valuable grain components. The aim of the study was to investigate the effects of different wholemeal barley flour share and bread production method on the quality of bread and non-starch polysaccharides content and solubility.Barley enriched bread contained more both soluble and insoluble dietary fibre and β-glucans, products of 40% barley share contained 67% more total dietary fibre and 160% more β-glucans than control. However, barley incorporation decreased the amount of soluble arabinoxylans. High barley contents contributed to the breads’ volume reduction by 14% and change in their crumb and crust colour. However, barley enriched breads gained higher ratings of taste than wheat bread. Barley sourdough fermentation improved breads’ volume, colour and sensory properties. Sourdough fermentation also resulted in higher concentration of dietary fibre, arabinoxylans and β-glucans. The beneficial effect of barley addition to wheat bread may be successfully enhanced by using barley wholemeal sourdough fermentation.  相似文献   

17.
Freezing deteriorates the baking quality of frozen bread dough. This study revealed the protective effects of zein-based ice nucleation films (INFs) on the baking quality of frozen dough. INFs were prepared by immobilizing biogenic ice nucleators on the surface of zein films, which consequently revealed ice nucleation activity and increased the ice nucleation temperature of water from −15 °C to −6.7 °C. By using these films to wrap frozen dough during five freeze/thaw cycles, the specific volume of bread was increased by up to 25% compared to the bread from control frozen dough. The reason was attributed to 40% more viable yeast cells preserved by INFs. In addition, zein-based INFs also reduced the water loss by frozen dough resulting in higher water content in bread crumb. Combining the protective effects on both specific volume and water content from zein-based INFs, the obtained bread showed 68% lower firmness and fracturability and 2.4 times higher resilience compared to the control. The INFs were also superior in that for zein-based INFs, biogenic ice nucleators showed desirable affinity with the surface to sustain at least fifteen repetitive uses on freezing water.  相似文献   

18.
The potential of sourdough to improve bread quality of barley and oat enriched wheat breads may depend on the characteristics of the added flour (cereal type, variety, extraction rate). We compared the effect of different barley flours and oat bran (substitution level 40%), unfermented and as sourdoughs (20% of total flour), on composite wheat dough and bread characteristics by combining empirical rheological analyses (DoughLab, SMS/Kieffer Dough and Gluten Extensibility Rig) with small-scale baking of hearth loaves. Whole grain barley flour sourdough increased resistance to extension (Rmax) of the dough and improved the form ratio of hearth loaves compared to unfermented whole grain barley flour. However, sourdough showed little effect on the breads prepared with sifted barley flour or oat bran. The breads made with oat bran showed highest bread volume, lowest crumb firmness and highest β-glucan calcofluor weight average molecular weight (MW). The heat treatment of oat bran inactivated endogenous enzymes resulting in less β-glucan degradation. High MW β-glucans will increase the viscosity of the doughs water phase, which in turn may stabilise gas cells and may therefore be the reason for the higher bread volume of the oat bran breads observed in our study.  相似文献   

19.
Freezing deteriorates the baking quality of frozen bread dough by causing lethal injury to yeast cells and depolymerization to the gluten network. To investigate the potential of biogenic ice nucleators in frozen food applications, the effect of extracellular ice nucleators (ECINs) from Erwinia herbicola on the baking quality of frozen dough upon three freeze/thaw cycles were investigated. With addition of ECINs to the activity of 2.4 × 106 units per gram of dough, hardening of bread crumb caused by three freeze/thaw cycles was alleviated by about 50% compared to the control. Additionally, the bread from frozen dough with added ECINs showed 50% larger specific volume compared to the control. The mechanism of cryoprotective effects from ECINs was possibly that ECINs helped in preserving the viability of yeast cells during freeze/thaw cycles. ECINs were able to improve the viability of log-phase and stationary-phase yeast cells in suspensions by about 100 and 10 fold, respectively, and viability of yeast in the frozen dough by 17%. This study revealed the potential of ECINs as a cryoprotectant for applications in the food and biotechnology industries.  相似文献   

20.
This work evaluates rheological properties of dough and quality of bread prepared from the flour of ancient varieties and modern breeding lines of spelt compared to common wheat. Spelt flours of old varieties exhibited similar water absorption; the largest was noted in the STH-8 line flour. Spelt doughs had longer development time and were more stable than wheat dough. The doughs made of old spelt varieties were more resistant to extension than that produced from new lines flours. Of the spelt breads, this of the STH-8 line spelt line had the largest loaf volume but smaller than wheat bread. In addition, spelt doughs had similar porosity; the most porous was the bread baked from the Frankenkorn cv, Schwabenkorn cv and STH-8 line flours. Moreover, the crumb of the bread manufactured from the flours of spelt variety Frankenkorn and the STH 28-4614 line showed the greatest resistance to compression and the smallest compressibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号