首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mantle plume helium in submarine basalts from the galapagos platform   总被引:1,自引:0,他引:1  
Helium-3/helium-4 ratios in submarine basalt glasses from the Galapagos Archipelago range up to 23 times the atmospheric ratio in the west and southwest. These results indicate the presence of a relatively undegassed mantle plume at the Galápagos hot spot and place Galápagos alongside Hawaii, Iceland, and Samoa as the only localities known to have such high helium-3/helium-4 ratios. Lower ratios across the rest of the Galápagos Archipelago reflect systematic variations in the degree of dilution of the plume by entrainment of depleted material from the asthenosphere. These spatial variations reveal the dynamics of the underlying mantle plume and its interaction with the nearby Galápagos Spreading Center.  相似文献   

2.
Liu M  Yuen DA  Zhao W  Honda S 《Science (New York, N.Y.)》1991,252(5014):1836-1839
Solid-state phase transitions in time-dependent mantle convection can induce diapiric flows in the upper mantle. When a deep mantle plume rises toward phase boundaries in the upper mantle, the changes in the local thermal buoyancy, local heat capacity, and latent heat associated with the phase change at a depth of 670 kilometers tend to pinch off the plume head from the feeding stem and form a diapir. This mechanism may explain episodic hot spot volcanism. The nature of the multiple phase boundaries at the boundary between the upper and lower mantle may control the fate of deep mantle plumes, allowing hot plumes to go through and retarding the tepid ones.  相似文献   

3.
The Hawaiian-Emperor hotspot track has a prominent bend, which has served as the basis for the theory that the Hawaiian hotspot, fixed in the deep mantle, traced a change in plate motion. However, paleomagnetic and radiometric age data from samples recovered by ocean drilling define an age-progressive paleolatitude history, indicating that the Emperor Seamount trend was principally formed by the rapid motion (over 40 millimeters per year) of the Hawaiian hotspot plume during Late Cretaceous to early-Tertiary times (81 to 47 million years ago). Evidence for motion of the Hawaiian plume affects models of mantle convection and plate tectonics, changing our understanding of terrestrial dynamics.  相似文献   

4.
Rapid lithospheric thinning by mantle plumes has not been achieved in numerical experiments performed to date. Efficient thinning depends on small-scale instabilities that convectively remove lithospheric material. These instabilities are favored by hotter plumes or stronger temperature dependence of viscosity, and a simple scaling independent of rheology controls their onset. This scaling allows extrapolation of the results of numerical experiments to the Earth's mantle. Mantle plumes between 100 and 150 kelvins hotter than the background mantle should exhibit small-scale convective rolls aligned with the plate motion. The unusual variation in heat flow across the Hawaiian swell may be due to such instabilities. It was found that the spreading of the plume creates a downwelling curtain of material that isolates it from the rest of the mantle for distances of at least 1000 kilometers from the plume origin. This isolation has important consequences for the geochemical heterogeneity of the lithosphere and upper mantle.  相似文献   

5.
The effects of multiple phase transitions on mantle convection are investigated by numerical simulations that are based on three-dimensional models. These simulations show that cold sheets of mantle material collide at junctions, merge, and form a strong downflow that is stopped temporarily by the transition zone. The accumulated cold material gives rise to a strong gravitational instability that causes the cold mass to sink rapidly into the lower mantle. This process promotes a massive exchange between the lower and upper mantles and triggers a global instability in the adjacent plume system. This mechanism may be cyclic in nature and may be linked to the generation of superplumes.  相似文献   

6.
Geochemical evidence for excess iron in the mantle beneath Hawaii   总被引:1,自引:0,他引:1  
Chemical interaction of Earth's mantle with the liquid outer core should influence the mantle's iron content. Osmium isotope ratios in Hawaiian lavas indicate a mass flux of 相似文献   

7.
An extensive helium plume in the north central Pacific emanates from Loihi Seamount on the flanks of Hawaii. The maximum helium signal is found at a depth of about 1100 meters, the same depth as the near-field plume directly above Loihi Seamount. Although this helium plume is strongest near Hawaii, where the 3He/4He ratio at a depth of about 1100 meters reaches values 28 percent above the atmospheric ratio, it can be detected quite clearly at latitude 24°N, over 400 kilometers to the north. Excess 3He is also present on the same isopycnal between 15°N and 20°N at 135°W, some 2000 kilometers east of the Hawaiian Islands.  相似文献   

8.
Excess volcanism and crustal swelling associated with hot spots are generally attributed to thermal plumes upwelling from the mantle. This concept has been tested in the portion of the Mid-Atlantic Ridge between 34 degrees and 45 degrees (Azores hot spot). Peridotite and basalt data indicate that the upper mantle in the hot spot has undergone a high degree of melting relative to the mantle elsewhere in the North Atlantic. However, application of various geothermometers suggests that the temperature of equilibration of peridotites in the mantle was lower, or at least not higher, in the hot spot than elsewhere. The presence of H(2)O-rich metasomatized mantle domains, inferred from peridotite and basalt data, would lower the melting temperature of the hot spot mantle and thereby reconcile its high degree ofmelting with the lack of a mantle temperature anomaly. Thus, some so-called hot spots might be melting anomalies unrelated to abnormally high mantle temperature or thermal plumes.  相似文献   

9.
Optical absorption spectra have been measured at pressures up to 80 gigapascals (GPa) for the lower-mantle oxide magnesiowüstite (Mg,Fe)O. Upon reaching the high-spin to low-spin transition of Fe2+ at about 60 GPa, we observed enhanced absorption in the mid- and near-infrared spectral range, whereas absorption in the visible-ultraviolet was reduced. The observed changes in absorption are in contrast to prediction and are attributed to d-d orbital charge transfer in the Fe2+ ion. The results indicate that low-spin (Mg,Fe)O will exhibit lower radiative thermal conductivity than high-spin (Mg,Fe)O, which needs to be considered in future geodynamic models of convection and plume stabilization in the lower mantle.  相似文献   

10.
The global tectonics of Venus may be dominated by plumes rising from the mantle and impinging on the lithosphere, giving rise to hot spots. Global sea-floor spreading does not take place, but direct convective coupling of mantle flow fields to the lithosphere leads to regional-scale deformation and may allow lithospheric transport on a limited scale. A hot-spot evolutionary sequence comprises (i) a broad domal uplift resulting from a rising mantle plume, (ii) massive partial melting in the plume head and generation of a thickened crust or crustal plateau, (iii) collapse of dynamic topography, and (iv) creep spreading of the crustal plateau. Crust on Venus is produced by gradual vertical differentiation with little recycling rather than by the rapid horizontal creation and consumption characteristic of terrestrial sea-floor spreading.  相似文献   

11.
High-precision noble gas data show that the Hawaiian and Icelandic mantle plume sources contain uniquely primitive neon that is composed of moderately nucleogenic neon-21 and a primordial component indistinguishable from the meteoritic occurrence of solar neon. This suggests that Earth's solar-type rare gas inventory was acquired during accretion from small planetesimals previously irradiated by solar wind from the early sun. However, nonradiogenic argon, krypton, and xenon isotopes derived from the mantle display nonsolar compositions and indicate an atmosphere-like fingerprint that is not due to recent subduction.  相似文献   

12.
Flood basalts and hot-spot tracks: plume heads and tails   总被引:4,自引:0,他引:4  
Continental flood basalt eruptions have resulted in sudden and massive accumulations of basaltic lavas in excess of any contemporary volcanic processes. The largest flood basalt events mark the earliest volcanic activity of many major hot spots, which are thought to result from deep mantle plumes. The relative volumes of melt and eruption rates of flood basalts and hot spots as well as their temporal and spatial relations can be explained by a model of mantle plume initiation: Flood basalts represent plume "heads" and hot spots represent continuing magmatism associated with the remaining plume conduit or "tail." Continental rifting is not required, although it commonly follows flood basalt volcanism, and flood basalt provinces may occur as a natural consequence of the initiation of hot-spot activity in ocean basins as well as on continents.  相似文献   

13.
Sen G  Jones RE 《Science (New York, N.Y.)》1990,249(4973):1154-1157
The maximum depth at which large (>1000 km(3)) terrestrial mafic magma chambers can form has generally been thought to be the Moho, which occurs at a mean depth of about 35 kilometers beneath the continents and 8 kilometers beneath ocean basins. However, the presence of layers of cumulus magnesium-rich spinel and olivine and intercumulus garnet in an unusual mantle xenolith from Oahu, Hawaii, suggests that this rock is a fragment of a large magma chamber that formed at a depth of about 90 kilometers; Hawaiian shield-building magmas may pond and fractionate in such magma chambers before continuing their ascent. This depth is at or near the base of the 90-million-year-old lithosphere beneath Oahu; thus, rejuvenated stage alkalic magmas containing mantle xenoliths evidently also originate below the lithosphere.  相似文献   

14.
An olivine nephelinite from the lower part of a thick alkalic ultrabasic and mafic sequence of volcanic rocks of the northeastern part of the Siberian flood basalt province (SFBP) yielded a (40)Ar/(39)Ar plateau age of 253.3 +/- 2.6 million years, distinctly older than the main tholeiitic pulse of the SFBP at 250.0 million years. Olivine phenocrysts of this rock showed (3)He/(4)He ratios up to 12.7 times the atmospheric ratio; these values suggest a lower mantle plume origin. The neodymium and strontium isotopes, rare earth element concentration patterns, and cerium/lead ratios of the associated rocks were also consistent with their derivation from a near-chondritic, primitive plume. Geochemical data from the 250-million-year-old volcanic rocks higher up in the sequence indicate interaction of this high-(3)He SFBP plume with a suboceanic-type upper mantle beneath Siberia.  相似文献   

15.
In Hawaii, flies of the genus Drosophila have undergone spectacular adaptive radiation, resulting in the evolution of more than 500 species of Drosophila that are found nowhere else on earth. This taxonomic uniqueness is reflected in behavior and morphology. Hawaiian Drosophila sing songs, as do continental Drosophila; however, the Hawaiian songs have diverged strongly in form and mechanism of production. The click-song of D. fasciculisetae's (Maui) has a carrier frequency an order of magnitude higher than those reported in familiar continental species, such as D. melanogaster (170 hertz). Drosophila fasciculisetae's song resembles a cicada's more than a fly's song. The song of D. cyrtoloma (Maui) has a complex pulse rhythm more typical of crickets than flies. The pulse song of D. silvestris (Hawaii) closely resembles that of D. melanogaster in both pulse rhythm and carrier frequency, but D. melanogaster sings by vibrating its wings, whereas D. silvestris sings through abdominal vibrations. These mechanisms are radical departures from the continental wing song mechanism and are further examples of the remarkable behavioral innovation that has occurred in the Drosophila of Hawaii during their evolutionary transit through these islands.  相似文献   

16.
Several of the world's flood basalt provinces display two distinct times of major eruptions separated by between 20 million and 90 million years. These double flood basalts may occur because a starting mantle plume head can separate from its trailing conduit upon passing the interface between the upper mantle and the lower mantle. This detached plume head eventually triggers the first flood basalt event. The remaining conduit forms a new plume head, which causes the second eruptive event. The second plume head is predicted to arrive at the lithosphere at least 10 million years after the first plume head, in general agreement with observations regarding double flood basalts.  相似文献   

17.
Three-dimensional, spherical models of mantle convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of mantle circulation. Thus, subduction zones and descending sheetlike slabs in the mantle are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding mantle. Cylindrical mantle plumes that cause hotspots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale mantle circulation. Active sheetlike upwellings that could be associated with mid-ocean ridges did not develop in the model simulations, a result that is in agreement with evidence suggesting that ridges are passive phenomena resulting from the tearing of surface plates by the pull of descending slabs.  相似文献   

18.
Liu M 《Science (New York, N.Y.)》1994,264(5167):1904-1907
Recent high-pressure experiments and thermodynamic calculations have shown that the Clapeyron slope of the spinel-perovskite phase transition at a depth of 660 kilometers in the Earth's mantle changes from negative to positive at temperatures above 1700 degrees to 2000 degrees C. In numerical experiments that account for this phase behavior, cold downwelling flows were impeded at the phase boundary, but hot plumes ascended to the upper mantle with ease. The resultant mantle convection was partially layered and strongly time-dependent. Mantle layering was weaker when the mantle was hotter and when the Rayleigh number was larger.  相似文献   

19.
Finite-frequency tomography reveals a variety of plumes in the mantle   总被引:8,自引:0,他引:8  
We present tomographic evidence for the existence of deep-mantle thermal convection plumes. P-wave velocity images show at least six well-resolved plumes that extend into the lowermost mantle: Ascension, Azores, Canary, Easter, Samoa, and Tahiti. Other less well-resolved plumes, including Hawaii, may also reach the lowermost mantle. We also see several plumes that are mostly confined to the upper mantle, suggesting that convection may be partially separated into two depth regimes. All of the observed plumes have diameters of several hundred kilometers, indicating that plumes convey a substantial fraction of the internal heat escaping from Earth.  相似文献   

20.
Forward modeling of differential travel times of phases sensitive to lowermost mantle beneath the central Pacific reveals lateral heterogeneity that is higher in amplitude than predicted by tomographic models. A broad zone of low S velocity (-4 percent with respect to standard models), which may correspond to the base of a thermal "plume," narrows and is deflected as it extends to about 1000 kilometers above the core-mantle boundary. To the east of this zone, a localized region of fast S velocity (+5 percent) suggests strong heterogeneity or anisotropy related to the presence of high pressure and temperature assemblages, which may or may not involve core material. Its presence could also explain the observation of precursors to core reflected phases in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号