共查询到10条相似文献,搜索用时 0 毫秒
1.
Archana A. Sharbidre Vimal Metkari Priyanka Patode 《Pesticide biochemistry and physiology》2011,101(2):132-141
Tests of acute toxicity were performed on the most common species of aquarium fish, Poecilia reticulata. Guppies (P. reticulata) were exposed to progressive concentrations of methyl parathion (MP) and chlorpyrifos (CPF); a semi-static method according to guidelines of OECD was used. Tests of acute toxicity were conducted using 10 fish for each separate concentration and for the control group. The results were subjected to probit analysis to determine the 96 h LC50 values. The 96 h LC50 values of MP and CPF to P. reticulata were 8.48 ppm/L (5.98–10.89) and 0.176 ppm/L (0.313–0.224) respectively. In addition, behavioral changes at each concentration were observed for the individual fish. Fish were exposed for 96 h to different sublethal concentrations of MP and CPF (¼ LC50, 1/8 LC50 and 1/10 LC50) and their oxidative stress-induction potential was estimated in brain, liver and gills of fish. MDA content is induced in all tissues but maximum rise was observed in gills (161% and 153% for MP and CPF respectively). With regard to antioxidant defense system (ADS), GSH level decreased in the brain, liver and gills of tissues of MP treated fishes (22%, 6% and 13% respectively) and showed increase in brain and gills CPF treated (23% and 21% respectively). CAT, GST, GR and SOD levels fluctuated in all treatment groups relative to the control. Brain AChE showed dose-dependent inhibition in fish exposed to the higher concentrations reached 45% and 66% for MP and CPF respectively. Collective findings demonstrated that pesticide exposure of fish induced an increase in MDA and fluctuated ADS along with inhibited AChE. These findings may be used as valuable biomarkers for evaluation of water pollution. 相似文献
2.
Oxidative damage in bone and erythrocytes of suckling rats exposed to 2,4-dichlorophenoxyacetic acid
Afef TroudiMadiha Sefi Ibtissem Ben Amara Nejla SoudaniAhmed Hakim Khaled Mounir ZeghalTahia Boudawara Najiba Zeghal 《Pesticide biochemistry and physiology》2012,104(1):19-27
Nowadays, people’s exposure to pesticides such as 2,4-dichlorophenoxyacetic acid (2,4-D) is increasing continuously. This compound is suspected to produce in excess free radicals which have adverse effects on human health causing several cell alterations in the organism. The present study investigated oxidative stress in the bone and erythrocytes of suckling rats whose mothers were treated with 2,4-D. Experiments were carried out on adult Wistar rats given 600 mg/L of 2,4-D in their drinking water from the 14th day of pregnancy until day 14 after delivery. Exposing dams to 2,4-D caused disorders in the bone of their progeny. Indeed, it induced changes in bone mineralization, especially calcium and phosphorus levels. Moreover, total tartrate-resistant acid phosphatase, which reflected bone resorption, was enhanced while total alkaline phosphatase, which reflected bone formation, was reduced suggesting that this herbicide accelerated bone resorption. The impairment of bone function corresponded histologically.Rats exposed to 2,4-D showed in both bone and erythrocytes an increase in malondialdehyde, advanced oxidation protein products and protein carbonyl levels and a decrease in non-enzymatic (glutathione, non-protein thiol, and vitamin C) and enzymatic (superoxide dismutase, catalase, and glutathione peroxidase) antioxidant system. 相似文献
3.
Salicylic acid induced alleviation of oxidative stress caused by clethodim in maize (Zea mays L.) leaves 总被引:1,自引:0,他引:1
Deya Eldeen Mohammed Radwan 《Pesticide biochemistry and physiology》2012,102(2):182-188
Salicylic acid is used for regulation of oxidative stress in plants subjected to unfavorable environmental conditions. Application of herbicides for the purpose of weed killing can affect not only the weeds but also the main crop as well. Many herbicides have the ability to cause oxidative stress and further degradation of cell components. In this work, SA was used to alleviate the oxidative stress caused in response to clethodim herbicide in maize leaves. The results demonstrated that, spraying of clethodim caused yellowing of leaves and sometimes browning or drying of leaf tips with high clethodim doses. Contrary, leaves showed no injuries when treated with 1 mM SA 3 days prior clethodim application. Elevated amounts of H2O2 and MDA were detected in clethodim treated leaves compared with control indicating ROS formation and lipid peroxidation. Excessive ROS formation led to oxidative stress which followed by degradation of membranous structures. In SA treated leaves, the contents of H2O2 and MDA were more or less similar to the corresponding controls. A change in the antioxidant enzymes activities due to clethodim and SA treatment was noticed. For example, the activities of POD and APX were induced while SOD and CAT were more or less reduced in response to clethodim. SA treatment prior clethodim application could induce POD but inhibit CAT. Moreover, SOD and APX activities were adjusted to be similar to those of the control. Another mechanism of SA regulation of the oxidative stress occurred through the formation of antioxidants in the form of phenolic compounds. For that, spraying SA with or without clethodim could accumulate phenolic compounds greatly. The DPPH free radical scavenging assay for leaf extracts had confirmed a change in antioxidant status. Furthermore, SA could enhance accumulation of total proteins and free amino acids in clethodim and SA treated leaves compared with the control. This work was to provide evidence for the ability of SA to regulate clethodim herbicide detoxification through regulation of the antioxidant status of maize leaf cells. 相似文献
4.
Ibtissem Ben AmaraNejla Soudani Ahmed Hakim Afef TroudiKhaled Mounir Zeghal Tahia BoudawaraNajiba Zeghal 《Pesticide biochemistry and physiology》2011,101(3):165-174
Pesticides have been used in agriculture to enhance food production by eradicating unwanted insects and controlling disease vectors, nevertheless occupational exposure to high levels of these compounds can lead to neurodegenerative disorders, characterized by serious oxidative and neurotoxic effects. However, there is a lack of consensus as to which determinations are best used to quantify future risks arising from xenobiotic exposure and natural antioxidant interventions. Our study aims to determine the potential ability of selenium and/or vitamin E, used as nutritional supplements, to alleviate oxidative stress in cerebral cortex tissue induced by dimethoate, an organophosphorus pesticide. Adult Wistar rats were exposed either to dimethoate (0.2 g/L of drinking water), dimethoate + selenium (0.5 mg/kg of diet), dimethoate + vitamin E (100 mg/kg of diet), or dimethoate + selenium + vitamin E, for 30 days. Exposure to dimethoate increased malondialdehyde levels, protein carbonyl groups and advanced oxidation protein products, while Na+K+-ATPase, acetylcholinesterase and butyrylcholinesterase activities decreased in the cerebral cortex. An increase in glutathione peroxidase, superoxide dismutase and catalase activities and a decrease in glutathione, non-protein thiols and vitamin C levels were observed. Administration of selenium and/or vitamin E through the diet in dimethoate treated rats ameliorated the biochemical parameters cited above. The histological findings confirmed the biochemical results. The model of this study that we employed characterized the relationships between dimethoate-induced neurotoxicity and its alleviation by natural antioxidants like selenium and vitamin E. These elements may be considered beneficial for the protection of cerebral cortex against injury induced by dimethoate. 相似文献
5.
The erythrocyte, due to its role as O2 and CO2 transporter, is under the constant exposure to reactive oxygen species and oxidative stress. The objective of this study was to investigate the ability of 2,4-D to induce oxidative stress in blood of male wistar rats. Rats were randomly divided into four groups: a control group and three treated groups receiving by gavage 15, 75 and 150 mg, respectively, of 2,4-D/kg/BW/day for 28 days. Results showed that 2,4-D caused significant negative changes in the investigated biochemical parameters. In fact, 2,4-D exposition strongly increases LDH, by contrast, there is a statistically significant decrease in Hgb levels. The malondialdehyde level was significantly increased in 2,4-D treated groups. Fatty acid composition of the erythrocytes was also significantly changed with 2,4-D exposure, in favor of the peroxidation of polyunsaturated fatty acids. Furthermore, antioxidant enzyme (SOD, CAT, GPx, and GR) activities in erythrocytes were significantly decreased. Thus, our results indicated the potential effects of 2,4-D to cause oxidative stress in rat erythrocytes. Therefore, at higher doses, 2,4-D may play an important role in the development of vascular disease via lipid peroxidation and oxidative stress. 相似文献
6.
Mediha Sefi Hanen Bouaziz Nejla Soudani Tahia Boudawara Najiba Zeghal 《Pesticide biochemistry and physiology》2011,101(2):71-79
Fenthion (FEN) is an organophosphate insecticide used in both agricultural and urban areas throughout the world including Tunisia. Recent investigations have proved the crucial role of natural antioxidants to prevent the damage caused by toxic compounds. In this study, we investigated the role of Artemisia campestris (Ac) leaf powder in protection against oxidative damage and hepatotoxicity induced by fenthion in female rats and their pups. Female Wistar rats were divided into four groups: group I served as controls which received standard diet, group II received orally FEN 551 ppm, group III received both 551 ppm of FEN and experimental diet (5% Artemisia) and group IV received experimental diet (5% Artemisia). Oral administration 551 ppm of FEN by drinking water to adult rats caused hepatotoxicity as monitored by the increase in the levels of hepatic markers enzymes (transaminases and lactate dehydrogenase), total cholesterol (TC) and triglycerides (TG), as well as hepatic malondialdehyde (MDA) levels thus causing a drastic alteration in antioxidant defence system. Particularly, the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) and the level of reduced glutathione (GSH) increased by FEN. These biochemical alterations were accompanied by histological changes marked by leucocytes infiltration, sinusoidal dilatation (moderate peliosis), granuloma inflammatory disorders and necrosis in hepatocytes of dams. While, slight leucocytes infiltration was shown in pups. Treatment with Ac prevented the liver damage induced by FEN, as revealed by inhibition of hepatic lipid peroxidation accompanied by an improvement of liver histopathological changes, CAT and GPx activities except GSH and SOD which were not modified. It could be concluded that A. campestris is promising a protective agent against hepatotoxicity during the exposure to fenthion. 相似文献
7.
Evaluation of the antioxidant and antiteratogenic role of ginger Zingiber officinale polyphenols against the toxicity induced by fenitrothion and/or lead in female albino rats were investigated. Adult virgin females were divided into 8 groups and were orally treated as follow: control (C), 1% w/w of ginger (G), 120 μg/animal lead as lead acetate (L), 10 mg/kg of fenitrothion (F), lead (120 μg/animal) fenitrothion (10 mg/kg) (LF), ginger (1%w/w) + fenitrothion (10 mg/kg) (GF), ginger (1%w/w) + lead (120 μg/animal) (GL), ginger (1%w/w) + lead (120 μg/animal) + fenitrothion (10 mg/kg) (GLF). Treatments were expanded for 28 days before pregnancy and during gestation period from zero to 6th day. Blood samples were taken at the day 20th of gestation and animals were sacrificed to investigate the effect of tested substances on dams and development of their fetuses. Inhibition in AchE in (F) and (LF) groups and elevation in plasma AchE in (L) groups were observed. Elevation in oxidative stress biomarker malondialdehyde (MDA) was recorded in all intoxicated groups concomitants with reduction in total reduced glutathione (GSH) and reduction in the activity of glutathione S-transferase (GST). Elevation in liver function biomarkers alanin amintransferase (ALT) and aspartate aminotransferase (AST) and reduction in plasma total protein and albumin were recorded in (F), (L) and (LF). Supplementation with ginger in diet attenuates the alteration in MDA, GSH, GST, ALT and AST, however, it failed to counteract the effect of F, L and LF on AchE, total protein and albumin. Significant alterations in maternal toxicity were recorded in (GF, GL, LF and GLF) compared with control group. Also, parameters of embryotoxicity and fetotoxicity indicated significant decrease in litter number that observed in F and L and the number of dead fetus/dam and litters number increased in L group. Supplementation with ginger decreased each of the number of died fetus, growth retardation and fetal length, while, it increased fetal weight. As regards to, teratological aspects, the percentage of skeletal malformations and visceral anomalies were observed in all feti obtained from treated groups with different percentages. Supplementation with ginger slightly attenuates the developmental toxicity of fenitrothion and/or lead. 相似文献
8.
El?bieta KielakCezary Sempruch Halina MioduszewskaJózef Klocek Bogumi? Leszczyński 《Pesticide biochemistry and physiology》2011,99(3):237-243
Glyphosate-based herbicides (e.g. Roundup Ultra 360 SL) are extensively used in aquatic environment. Although glyphosate is more environmental favorable than many other herbicides, it may be exceptionally dangerous for aquatic ecosystems through high water solubility. Thus, the aim of the work was quantification of influence of Roundup Ultra 360 SL (containing isopropylamine salt of glyphosate as an active ingredient) on biomass and chlorophyll content within duckweed (Lemna minor L.). Moreover, changes in polyamine content and activity of such antioxidative enzymes as catalase (CAT) and ascorbate peroxidase (APX) were assayed in order to determine the biochemical mechanisms of L. minor response to the herbicide treatment. Obtained results showed that phytotoxicity of the herbicide was connected with decrease in chlorophyll-a, b and a+b content, and reduction of biomass growth. Roundup, similarly to some abiotic and biotic stressors, caused over-accumulation of putrescine, spermidine and total polyamines (PAs) within duckweed tissues. In addition an increase in CAT and APX activities suggested that stress generated by the herbicide treatment was at least partially connected with oxidative burst. Intensity of the duckweed responses to the herbicide was dependent on the applied herbicide level and/or duration of treatment. 相似文献
9.
The effect of avermectin was studied on King pigeon brain nerve cells by cytotoxicity [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide, MTT] and apoptosis [acridine orange/ethidium bromide (AO/EB) assay, transmission electron microscope (TEM) evaluation, measurement of mitochondrial membrane potential (Δψm), phosphatidylserine (PS) exposure, caspases activities, DNA fragmentation, reactive oxygen species (ROS) and caspase-3 mRNA expression] within the 2.5–10 μg L−1 concentration-range. The results revealed that within the concentrations of 2.5–10 μg L−1, avermectin showed obvious cytotoxicity and induced apoptosis in a dose-dependent manner to neurons of King pigeon in vitro. Cell viability were 99.93 ± 8.52%, 82.02 ± 4.99% and 78.23 ± 5.67% after 24 h of treatment with avermectin at the concentrations of 0, 2.5 and 5 μg L−1, which decreased to 56.36 ± 2.17% of 10 μg L−1. Treated cells showed typical apoptosis morphological changes including cytoplasmic vacuolation, chromatin condensation, unclear nuclear membrane and decreased/swollen mitochondria. Typical biochemical hallmarks of apoptosis including Δψm loss, PS exposure, activations of caspase-3, caspase-8 and caspase-9, DNA fragmentation were observed too. Moreover, the levels of ROS in the avermectin treatment groups increased significantly compared to control group. Furthermore, the caspase-3 mRNA levels increased significantly following AVM treatment. In conclusion, our experimental results show that avermectin has cytotoxicity to brain neurons of King pigeon in vitro and the mechanism of neurotoxicity induced by avermectin is closely related to apoptosis. 相似文献
10.
Overproduction of reactive oxygen species involved in the pathogenicity of Fusarium in potato tubers
Differences in virulence between Fusarium sulphureum and Fusarium sambucinum were compared. Changes in reactive oxygen species production and metabolism in inoculated slices of potato tubers were also compared. The result showed that Fusarium infection induced significant production of ROS, lipid peroxidation and loss of cell membrane integrity, but low activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX). Compared to F. sambucinum, F. sulphureum led larger lesion diameters on potato tubers and slices. It resulted in more superoxide anion () and earlier peak of hydrogen peroxide (H2O2), but lower activity of catalase (CAT) and APX, and accompanied with higher malondialdehyde (MDA) content and lower cell membrane integrity. These findings suggested that overproduction of ROS involved in the pathogenicity of Fusarium in potato tubers. 相似文献