首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The effects of 1000-grain weight, its stability and the correlation coefficients with other traits of 50 barley varieties were studied at 18–20 environments. Additional material was used to study genotypic correlations among traits. Significant differences in stability of 1000-grain weight were found among varieties. Two-row varieties were on average more stable than 6-row varieties. The 1000-grain weight was among the most stable and grain yield the most variable traits. This was discussed in connection with stem reserves translocation to the grain. Consistently high yielding varieties had around average stability of 1000-grain weight. Regression coefficient, b, for 1000-grain weight was positively correlated with variance of log transformed data, both valid estimates for stability of 1000-grain weight. The correlation coefficient of 1000-grain weight with grain yield was positive or non-significant, with number of grains per tiller mainly negative and with volume weight it was positive. In 6-row barley, 1000-grain weight was positively correlated with grain yield, straw yield, total biological yield, and plant height, and negatively with number of tillers per m2 and number of grains per tiller.  相似文献   

2.
Grain yield and some of its physiological determinants were analysed in a field study conducted over two growing seasons with standard-height (SH), semi-dwarf (SD) and dwarf (DD) isogenic lines of a spring wheat sown at recommended and delayed dates. The objective was to test whether the action of Rht1 and Rht2 alleles in improving grain yield depended upon sowing date. As expected, the dwarfing genes significantly reduced plant height in both sowings and growing seasons. There was a tendency for the SD line to produce more biomass than the SH and DD lines, although the differences were mostly not significant. Harvest index was linearly and negatively related to plant height. Consequently, the SD and SH line showed the highest and lowest grain yields in all environments. The optimum height for grain yield was estimated to be c. 70 cm, and this value was not affected by sowing date. Lines carrying Rht1 and/or Rht2 alleles always showed more grains/m2 (owing to an increased number of grains per spike and spikes/m2) than the SH line. Conversely, average grain weight was negatively associated with the number of grains/m2. Because the slope of this negative relationship was smaller (less negative) than that representing complete compensation, the relationship between grain yield and number of grains/m2 was hyperbolic. Although these relationships are frequently regarded as a reflection of increased competition among grains when the number of grains/m2 is increased owing to the use of semi-dwarf genes, two alternative hypotheses are analysed and discussed.  相似文献   

3.
Summary The response to phosphate fertilizer by modern wheat genotypes was examined in the field under natural rainfall in three seasons. Models were developed which show that grain yield was positively correlated with biological yield and harvest index. In one of the seasons, which was relatively dry, shorter statured wheats gave higher yields at each level of applied phosphate. Higher levels of phosphate tended to offset the reduction in yield associated with late heading and the importance of biological yield on grain yield. The genotypes which produced the largest number of grains m-2 produced the highest yields.Implications for plant breeding programs are discussed.  相似文献   

4.
Summary Two hundred genotypes of Coriandrum sativum L. exhibited genetic variation for plant height, primary and effective branches, days to flowering and maturity, umbels and umbellets per plant, grains per umbellet, thousand seed weight, straw yield and grain yield per plant and harvest index. Heritability estimates were high for days to flowering, thousand seed weight and days to maturity; moderate for plant height, straw yield, umbels per plant, umbellets per plant and number of primary branches; and low for harvest index, effective branches, grain yield per plant and grains per umbellet. Phenotypic correlations of grain yield per plant were highly significant and positive with umbellets per plant, umbels per plant, number of effective branches, straw yield per plant, number of primary branches, plant height, number of grains per umbellet and harvest index. Maximum direct contribution to grain yield per plant was made by umbellets per plant, followed by straw yield per plant, umbels per plant and grains per umbellet. Umbellets per plant made sizeable indirect effect via straw yield per plant. Straw yield per plant made sizeable indirect contribution via umbellets per plant.  相似文献   

5.
小麦籽粒产量及穗部相关性状的QTL定位   总被引:12,自引:7,他引:5  
由小麦品种花培3号和豫麦57杂交获得DH群体168个株系,种植于3个环境中,利用305个SSR标记对籽粒产量和穗部相关性状(穗长、穗粒数、总小穗数、可育小穗数、小穗着生密度、千粒重和粒径)进行了QTL定位。利用基于混合线性模型的QTLNetwork 2.0软件,共检测到27个加性效应和13对上位效应位点,其中 8个加性效应位点具有环境互作效应。相关性高的性状间有一些共同的QTL位点,表现出一因多效或紧密连锁效应。5D染色体区段Xwmc215–Xgdm63,检测到控制籽粒产量、穗粒数、总小穗数、可育小穗数和小穗着生密度5个性状的QTL位点,各位点的遗传贡献率较大且遗传效应方向相同,增效等位基因均来源于豫麦57,适用于分子标记辅助育种和聚合育种。控制千粒重与穗粒数的QTL位于染色体不同区段,有利于实现穗粒数与粒重的遗传重组。  相似文献   

6.
Summary Environmental correlation coefficients were computed among all pairs of five traits, namely grain yield, heading date, number of tillers per m2, plant height and 1000-grain weight (grain size) using 30 Triticum durum and 30 Triticum aestivum varieties grown in 18 environments. Grain yield was significantly correlated with the other four traits in almost all of the varieties. The mean correlation coefficient over all varieties ranged from 0.58 to –0.83 for durum wheat and 0.66 to 0.88 for aestivum wheat. The correlation coefficients between heading date and the other traits were also significant, ranging from –0.45 to –0.79 in durum wheat and –0.61 to –0.85 in aestivum wheat. The correlation coefficient between number of tillers with plant height and 1000-grain weight were the smallest, 0.19–0.32 in durum wheat and 0.39–0.60 in aestivum wheat. It was concluded that agronomic practices favouring early and good stand establishment in the dry regions will favour the yield components and important adaptive traits, which contribute towards larger yields. Significant differences were found among genotypes in the environmental correlation coefficients and the associated changes in one trait as a result of changes in other traits.  相似文献   

7.
为更精准筛选和选育不同用途二棱大麦品种,对38份不同来源及用途的二棱大麦品种(系)的株高、穗长、千粒重、穗粒数、有效穗数、籽粒产量和不孕粒数等主要农艺性状及籽粒蛋白质含量进行综合评价。结果表明,参试二棱大麦品种(系)有效穗数、产量、穗长、不孕粒数及蛋白质含量变异丰富,株高、千粒重及穗粒数变异相对较小,二棱大麦育种的增产效应主要体现在穗长和有效穗数的适度增加。相关性分析表明,二棱大麦各性状间存在复杂的相关性,且多个性状均可影响产量,有效穗数与产量呈极显著正相关。供试二棱大麦品种(系)在遗传距离10水平上可聚为中秆大粒型和矮秆多穗型两类。主成分分析将38份二棱大麦品种(系)的主要农艺性状分为4个主成分,其累计贡献率达85.5807%;以前4个主成分得分值为指标进行主成分二维排序分析,分析38份二棱大麦品种(系)在特定因子性状上的差异,结果为创制优异种质及亲本选择提供依据。  相似文献   

8.
Two experiments were conducted in the Rift Valley, Ethiopia (8°N and 39°E) to determine associations between eight plant traits and seed yield, and to obtain estimates of narrow sense heritability for the traits. Experiment I evaluated seven dry edible bean cultivars/lines at two locations to simulate different soil moisture stress, including, Debre Zeit(non-stress) and Dera (moderate-stress). Experiment II evaluated 25 cultivars/lines in three environments including, Melkassa early planted (non-stress), Melkassa late planted (high-stress), and Dera (moderate-stress). A randomized-complete-block design with three replicates was used in both experiments. Plant traits evaluated were seed yield, pods plant-1, seeds pod-1, 100 seed weight, root dry weight, hypocotyl diameter, plant biomass, plant height and days to flowering. Plant traits that were significantly associated with seed yield were included in a stepwise-regression model to determine which trait or combination of traits provided the best model to estimate seed yield in each environment. An analysis of variance was conducted to test main effects and interactions between plant traits and environments. Significant variation among lines occurred for seed yield and all plant traits in both experiments. Strong positive correlations were observed between plant biomass and seed yield in all environments. Seed yield and pods plant-1 were also highly associated in four of the five environments. Stepwise regression models indicated that the combination of pods plant-1 and plant biomass consistently contributed to seed yield prediction, while other traits did not. Because both plant biomass and pods plant-1 had moderate to high narrow sense heritability estimates and low GE interactions, they should be useful as indirect selection criteria to improve and stabilize seed yield in a breeding program. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Nineteen common wheat cultivars and advanced lines carrying a 6VS.6AL translocation and five parents were sown at two locations in Jiangsu in 2004–05 season to assess the effects of the translocation on grain yield and dough properties. In general, there were no significant differences between 6VS.6AL lines and their recurrent parents in agronomic, mixograph and starch pasting traits, including grain yield, grains/spike, grain weight/spike, mixing time and peak viscosity. 6VS.6AL lines showed slightly but significantly higher thousand-kernel weight and plant height, and small negative effects on test weight, flour yield and flour colour. However, significant variation occurred for all traits among sister lines from the same cross, indicating that additional selection could lead to further improvement. It was concluded that the 6VS.6AL translocation can be used in wheat breeding programs as a donor of resistance to powdery mildew with no obvious undesirable effects on agronomic and quality traits.  相似文献   

10.
The components of grain yield are altered by adverse growing conditions as the effects of certain environmental factors on crop growth and yield differ depending upon the developmental stages when these conditions occur. Path-coefficient analysis was used to investigate the main processes influencing grain yield and its formation under Mediterranean conditions. Twenty-five durum wheat genotypes, consisting of four Spanish commercial varieties and 21 inbred lines from the ICARDA durum wheat breeding program, were grown during 1997 and 1998 under both rainfed and irrigated conditions in southern Spain. {P}ath-coefficient analysis revealed that under favourable conditions grain yield depended in equal proportion on the three primary yield components (i.e. spikes m−2, grains spike−1, and mean grain weight), whereas in the rainfed experiments, variations in grain yield were due mainly to spikes m−2 and to a lesser extent to grains spike−1. Compensatory effects were almost absent under irrigated treatments; however, under water shortage, spikes m−2 exerted a negative influence on grain spike−1 due mainly to a negative interrelationship between tiller production and apical development. These compensatory effects could partially explain the restricted success in durum wheat breeding observed in water-limited environments of the Mediterranean region. Under rainfed conditions the number of spikes m−2 depended mainly on the ability for tiller production, whereas in the irrigated experiments the final number of spikes was determined mostly by tiller survival.  相似文献   

11.
旱稻297非结构性碳水化合物的生产与产量构成因子的关系   总被引:4,自引:0,他引:4  
魏凤桐  陶洪斌  王璞 《作物学报》2010,36(12):2135-2142
以旱稻297为试验材料,比较了在不施氮肥和150 kg hm-2的施氮量下旱稻297非结构性碳水化合物的生产能力、运转特点及其与产量构成因子的关系,分析了旱稻297氮肥投入与碳水化合物生产和产量形成间的关系。试验结果表明,开花前储藏的非结构性碳水化合物对产量的贡献率为32%~54%,施氮降低了开花前非结构性碳水化合物对产量的贡献率,相对而言开花后光合产物对产量的贡献率略有提高;开花前非结构性碳水化合物的转移效率为48%~65%,施氮后转移效率略有降低;总体而言,施氮降低了开花前后分配给单个籽粒的非结构性碳水化合物的数量,导致千粒重降低;在一定的范围内,随着开花期叶片中可溶性糖浓度的提高,结实率显著提高,但是随着穗中淀粉浓度的提高,结实率显著降低。因此,施氮后非结构性碳水化合物积累不足和转移效率降低同时限制了千粒重和结实率的提高,而叶片中可溶性糖浓度偏低和穗中淀粉浓度偏高限制了结实率的提高,是限制产量提高的主要原因。此外,旱稻297花后光合产物生产能力较低,是限制产量提高的又一原因。  相似文献   

12.
Twelve field experiments comparing 24 durum wheat varieties from three periods—old (<1945), intermediate (1950–1985) and modern (1988–2000)—were carried out in order to ascertain the advances made in durum wheat yield components and related traits in Italian and Spanish germplasm. Grain yield improvements were based on linear increases in the number of grains per m2 and harvest index, while grain weight and biomass remained unchanged. Yield per plant increased at a rate of 0.36 and 0.44% y−1 and the number of grains per m2 improved by 39% and 55% in Italian and Spanish varieties, respectively. The mean rate of increase in the number of grains per m2 was 0.55% y−1. Plants per m2, spikes per plant and grains per spike contributed 20%, 29% and 51%, respectively, to the increase in the number of grains per m2. The enhance of the number of grains per m2 was due to the greater grain set in the modern varieties, since the number of spikelets per spike remained unchanged. Harvest index increased overall by 0.48% y−1 (0.40 and 0.53% y−1 in Italian and Spanish varieties, respectively). Plant height was the trait that suffered the most dramatic changes (it decreased at a rate of −0.81% y−1, with little difference between the varieties of the two countries), as consequence of the presence of the Rht-B1 dwarfing gene. Harvest index and plant height, which were the traits that most contributed to discriminating between periods, remained unchanged from 1980 to 2000. The higher rates of improvement in Spain are discussed in the context of the contrasting strategies followed to improve durum wheat yield in the two countries.  相似文献   

13.
施氮量对冬小麦灌浆期光合产物积累、转运及分配的影响   总被引:31,自引:1,他引:31  
采用花前14C-同位素标记旗叶的方法, 研究了盆栽条件下不同施氮量对两种穗型冬小麦品种光合产物转运及14C同化物积累、分配的影响。结果表明, 冬小麦成熟期14C-同化物主要分配在茎鞘中, 其分配率为44.31%~60.96%; 其次在籽粒中, 分配率为31.81%~40.67%; 其中大穗型品种兰考矮早八茎鞘、叶片中的分配率高于多穗型品种豫麦49-198, 表明成熟时大穗型品种有更多的同化物滞留在茎鞘和叶片中。施氮量对14C-同化物分配率有影响, 在施氮量36 g m-2处理的茎鞘中分配率下降, 而籽粒中的分配率增加, 表明增施氮肥促进花前同化物向籽粒中分配。随着籽粒灌浆进程, 光合产物在营养器官中的分配率逐渐下降, 在籽粒中的分配率逐渐增加, 表明营养器官的同化物逐渐向籽粒转运。小麦籽粒的同化物有34.94%来自花前贮藏物质的转运, 65.06%来自开花后同化量, 但不同品种、不同氮素水平处理之间有较大差异。施氮量36 g m-2处理的花前转运量、转运率、花前贮藏物质对籽粒贡献率均下降, 但花后同化量、对籽粒贡献率以及单穗粒重均增加; 其中兰考矮早八和豫麦49-198的花后贡献率分别为77.84%和56.29%, 表明兰考矮早八花后同化量对籽粒的贡献大于豫麦49-198。两品种籽粒产量均表现为施氮量36 g m-2处理高于18 g m-2处理, 并且大穗型品种的增产幅度大于多穗型品种, 表明增施氮肥对不同冬小麦品种的增产效应存在差异。  相似文献   

14.
Winter rye (Secale cereale L.) will be especially affected by drought induced yield losses in Central and Eastern Europe in the future because it is predominantly cultivated on low-fertile soils with a poor water-holding capacity. In order to examine the performance of winter rye under different drought conditions, field experiments were carried out during the years 2011, 2012, and 2013 near Braunschweig, Germany. Two sets of genotypes were tested under severe, mild, pre-anthesis, and post-anthesis drought stress in rain-out shelters as well as under rainfed and well-watered conditions. The grain, straw, and total above ground biomass yields, harvest index, grain yield components, leaf area index (LAI), and phenological characteristics were examined, as well as phenotypic correlations between grain yield and further characteristics. Drought induced grain yield reduction ranged from 14 to 57%, while straw yield and harvest index were lesser affected by drought than the grain yield. Under drought conditions, fully ripe was reached up to twelve days earlier than under non water-limited conditions. Pre-anthesis drought mainly reduced spikes m−2 and kernels spike−1 while drought during grain filling reduced the 1000-kernel weight (TKW) only. The grain yield was positively associated with straw yield, spikes m−2, and kernels spike−1 under water limited conditions while the TWK was only positively associated with grain yield under drought during grain filling. Consequently, high pre-anthesis biomass as well as high numbers of spikes m−2 and kernels spike−1 are especially important for obtaining high grain yields under water-limited conditions. Focusing on these traits is, therefore, recommendable for developing drought tolerant rye genotypes.  相似文献   

15.
Improved winter wheat (Triticum aestivum L.) cultivars are needed for the diverse environments in Central and West Asia to improve rural livelihoods. This study was conducted to determine the performance of elite winter wheat breeding lines developed by the International Winter Wheat Improvement Program (IWWIP), to analyze their stability across diverse environments, and to identify superior genotypes that could be valuable for winter wheat improvement or varietal release. One hundred and one advanced winter wheat breeding lines and four check cultivars were tested over a 5-year period (2004–2008). Grain yield and agronomic traits were analyzed. Stability and genotypic superiority for grain yield were determined using genotype and genotype × environment (GGE) biplot analysis. The experimental genotypes showed high levels of grain yield in each year, with mean values ranging from 3.9 to 6.7 t ha−1. A set of 25 experimental genotypes was identified. These were either equal or superior to the best check based on their high mean yield and stability across environments as assessed by the GGE biplot analysis. The more stable high yielding genotypes were ID800994.W/Falke, Agri/Nac//Attila, ID800994W/Vee//F900K/3/Pony/Opata, AU//YT542/N10B/3/II8260/4/JI/Hys/5/Yunnat Esskiy/6/KS82W409/Spn and F130-L-1-12/MV12. The superior genotypes also had acceptable maturity, plant height and 1,000-kernel weight. Among the superior lines, Agri/Nac//Attila and Shark/F4105W2.1 have already been proposed for release in Kyrgyzstan and Georgia, respectively. The findings provide information on wide adaptation of the internationally important winter wheat genotypes, and demonstrate that the IWWIP program is enriching the germplasm base in the region with superior winter wheat genotypes to the benefit of national and international winter wheat improvement programs.  相似文献   

16.
Summary Forty-two crosses and their reciprocals in maize (Zea mays L.) involving inbred lines highly diverse for protein content were evaluated in four environments. Data were recorded on crude protein content of grain, protein yield, grain yield, 1000 kernel weight, dry matter content of ear at harves,, days to 50% slking, plant height, ear height, and early vigor. No significant variation due to reciprocal differences was observed for protein content and early vigor. For all other traits the variance component due to reciprocal x environment interactions was significant while the variance component due to reciprocal differences was significant only for kernel weight, dry matter content of ear, plant height, and ear height. The variance components due to nuclear differences and their interactions with environments were always highly significant and larger than the components due to reciprocal differences and reciprocal x environment interactions. The instability and low magnitude of reciprocal differences indicated that it might be difficult to exploit them commercially. However, seeing the presence of reciprocal differences for most of the traits studied, the evaluation of breeding materials for these differences seems to be important.The research work was supported by the Deutsche Forschungsgemeinschaft, Sonderforschungsbereich 142.  相似文献   

17.
为了进一步挖掘矮秆超大穗小麦亲本在遗传育种中的应用潜力,为小麦高产、超高产育种选择优良亲本和最优杂交组合提供理论依据,选用5个矮秆超大穗小麦品种(系)作为父本,8个多抗丰产小麦品种(系)作为母本,按NCII遗传交配设计,采用8×5不完全双列杂交法,配制了40个杂交组合,对小麦亲本及杂种F1的株高、主穗长、单株穗数、结实小穗数、主穗粒数、主穗产量、单株产量、千粒重8个性状进行了考察,并在基因型方差分析显著的基础上进行了配合力评价及遗传力分析。结果表明:父本中A1、A3、A4是综合性状优良的亲本,其多数性状的一般配合力均较高,特别是穗长、主穗粒数、结实小穗数、主穗产量、单株产量的一般配合力高,而株高的一般配合力效应值较低,是很理想的矮秆超大穗多粒亲本材料。母本中B5、B6单株穗数一般配合力较高,株高的一般配合力效应值较低,可作小麦高产杂交育种的矮秆多穗型亲本使用。结合特殊配合力效应分析:组合B5×A3单株穗数、主穗产量、单株产量、千粒重特殊配合力效应最高,株高特殊配合力效应较低,可作为的矮秆、多穗、粒重高且高产的重点杂交组合。B2×A4主穗长、单株产量、单株穗数特殊配合力效应都较高,而株高特殊配合力效应低,可作为矮秆大穗高产的重点杂交组合。遗传力分析表明:单株产量、千粒重、主穗长、主穗产量皆在70%以上,表明这4个性状的广义遗传力较大,受环境影响较小,而狭义遗传力的分析除主穗长、主穗粒数、主穗产量、株高大于50%,其余4个性状均低于50%,说明受环境影响大,不宜早期选择,应该适当推迟选择的代数。  相似文献   

18.
Genetically superior common bean lines will be efficiently selected with the use of more precise experimental statistics. The objectives of this study were to evaluate the experimental precision of grain yield and primary grain yield components in experiments to register common bean cultivars and identify more appropriate statistics for the selection of genetically superior common bean lines. For this purpose, 21 experiments were performed in a randomized block design in southern Brazil. A total of 156 common bean genotypes of the Mesoamerican and Andean gene pool were assessed between 1998 and 2015. Experimental precisions of grain yield and primary grain yield components were evaluated using 11 statistics. Grain yield, number of pods per plant, number of grains per pod, and mass of 100 grains were evaluated with greater experimental precision by the F-test value for genotype, heritability, coefficient of relative variation, and selective accuracy. Mass of 100 grains presented the highest experimental precision among the traits evaluated in this study. The F-test value for genotype, heritability, coefficient of relative variation, and selective accuracy allow the selection of common bean lines with genetic superiority for grain yield and primary grain yield components. Selective accuracy is the most appropriate statistic to select common bean lines with genetic superiority for grain yield and is recommended for breeding programs.  相似文献   

19.
Aluminium (Al) toxicity is a major limiting factor for plant production on acid soils. Breeding of adapted genotypes presents an alternative to corrective lime application. This study estimated genetic and non‐genetic components of variation, heritabilities, and trait correlations for 20 triticale (×Triticosecale Wittmack) genotypes grown for 2 years on naturally acidic, Al‐toxic (pH 4.4) and lime‐amended soils (pH 5.0 and 6.3). Eight traits were assessed. A 51% mean reduction in grain yield as a result of soil acidity was due to 27% fewer grains/spike, 11% fewer spikes/m2 and 7% reduced 1000‐grain weight. Genotypes were the most important source of variation for nearly all traits in the combined analysis across years. Genotype × lime interaction was relevant only for certain traits in a particular year. Despite a substantial genotype × year interaction, the general ranking of genotypes for acid‐soil tolerance did not change across years. Genotypic variation was higher on acidic than on lime‐amended soil. Heritability estimates were similar at the two extreme pH levels. Results suggest that in triticale a wide variation for adaptation to soil acidity exists. Selection under stress appears more effective than under optimal conditions. A visual plant‐development‐stress‐symptom rating can be used to select indirectly for grain yield in a breeding programme.  相似文献   

20.
为了进一步发掘利用高营养物质含量的燕麦籽粒基因和种质资源,以西北农林科技大学引进的60份栽培型燕麦为研究材料,种植于四川成都金堂县和四川甘孜州康定县两个地点,对收获籽粒的6个营养指标、4个产量指标和7个农艺性状进行测定。通过对不同环境中燕麦各营养成分与农艺性状性状进行显著性差异分析、网络相关性分析及主成分分析,筛选出高品质基因型XO-1-6、XO-1-12和XO-1-16,高产基因型XO-1-16、XO-1-17和XO-1-19,而且金堂县的籽粒营养高于康定县,籽粒产量及农艺性状总体低于康定县,营养品质与产量呈负相关,与株高呈正相关,与分蘖数呈负相关,说明燕麦的营养成分和产量除了受遗传性质影响外还受环境的制约;可将17个性状综合为5个主成分。本研究为在该地区选育高品质及高产燕麦资源提供研究材料,为燕麦生产研究奠定理论基础,对燕麦品质的遗传改良具有重要的参考意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号