首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract. Nitrous oxide (N2O) from animal excreta in grazed pasture systems makes up a significant component (c. 10%) of New Zealand's total greenhouse gas inventory. We report an effective method to decrease N2O emissions from animal urine patches by treating the soil with the nitrification inhibitor dicyandiamide (DCD), in a simulated grazed dairy pasture system under spray irrigation. The soil was a free-draining Lismore stony silt loam (Udic Haplustept loamy skeletal) and the pasture was a mixture of perennial ryegrass ( Lolium perenne ) and white clover ( Trifolium repens ). By treating the soil with DCD, N2O emissions were decreased by 76% following urine application in the autumn, from 26.7 kg N2O-N ha−1 without DCD to an average of 6.4 kg N2O-N ha−1 with DCD over the 6-month experimental period. N2O flux was decreased by 78% following urine application in the spring, from 18 kg N2O-N ha−1 without DCD to 3.9 kg N2O-N ha−1 with the application of DCD over the 3-month period. A single application of DCD immediately after urine was sufficient to effectively mitigate N2O emissions from the urine. The results showed that repeated applications of DCD after urine application, or mixing DCD with urine, offered no advantage over a single application of DCD immediately after urine deposition.  相似文献   

2.
Abstract. Leaching of calcium (Ca), potassium (K) and magnesium (Mg) from urine patches in grazed grassland represents a significant loss of valuable nutrients. We studied the effect on cation loss of treating the soil with a nitrification inhibitor, dicyandiamide (DCD), which was used to reduce nitrate loss by leaching. The soil was a free-draining Lismore stony silt loam (Udic Haplustept loamy skeletal) and the pasture was a mixture of perennial ryegrass ( Lolium perenne ) and white clover ( Trifolium repens ). The treatment of the soil with DCD reduced Ca2+ leaching by the equivalent of 50%, from 213 to 107 kg Ca ha−1 yr−1 on a field scale. Potassium leaching was reduced by 65%, from 48 to 17 kg K ha−1 yr−1. Magnesium leaching was reduced by 52%, from 17 to 8 kg Mg ha−1 yr−1. We postulate that the reduced leaching loss of these cations was due to the decreased leaching loss of nitrate under the urine patches, and follows from their reduced requirement as counter ions in the drainage water. The treatment of grazed grassland with DCD thus not only decreases nitrate leaching and nitrous oxide emissions as reported previously, but also decreases the leaching loss of cation nutrients such as Ca2+, K+ and Mg2+.  相似文献   

3.
Nitrous oxide (N2O) is a potent greenhouse gas and, in New Zealand, about one‐third of the total greenhouse gas emissions from the agricultural sector are of N2O, mostly derived from animal excreta in grazed pasture soils. The aim of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in reducing N2O emissions from animal urine patches in four different soils located in different regions of New Zealand with different soil, climatic and management conditions. The four soils are Templeton fine sandy loam and Lismore stony silt loam in Canterbury in the South Island, Horotiu silt loam in the Waikato region and Taupo pumice sand near Lake Taupo, both in the North Island. Results showed that the application of a fine‐particle suspension nitrification inhibitor, DCD, to grazed pasture soils was very effective in reducing N2O emissions in all four different soils. Total N2O emissions (over 69–137 days) from animal urine patches ranged from 1 to 20.9 kg N2O‐N ha?1 without DCD. These were reduced to 0.31–5.7 kg N2O‐N ha?1 by the use of DCD, representing 61–73% reductions (with an average of 70% reduction). The N2O‐N emission factor from animal urine N, EF3, was reduced from an average of 0.9 to 0.3% by the use of DCD. These results demonstrate the potential of using nitrification inhibitors to mitigate N2O emissions in a wide range of grazed pasture soils under different climatic and management conditions.  相似文献   

4.

Purpose

Climate change is arguably the biggest environmental challenge facing humanity today. Livestock production systems are a major source of greenhouse gases that contribute to climate change. Nitrous oxide (N2O) is a potent greenhouse gas with a long-term global warming potential 298 times that of carbon dioxide (CO2). Nitrate (NO3 ?) leaching from soil causes water contamination, and this is a major environmental issue worldwide. Agriculture is identified as the dominant source for NO3 ? in surface and ground waters. In grazed grassland systems where animals graze outdoor pastures, most of the N2O and NO3 ? are from nitrogen (N) returned to the soil in the excreta of the grazing animal, particularly the urine. This paper reviews published literature on the use of nitrification inhibitors (NI) to treat grazed pasture soils to mitigate NO3 ? leaching and N2O emissions.

Materials and methods

This paper provides a review on: ammonia oxidisers, including ammonia oxidising bacteria (AOB) and ammonia oxidising archaea (AOA), that are responsible for ammonia oxidation in the urine patch areas of grazed pastures; the effectiveness of NIs, such as dicyandiamide (DCD) and 3,4-dimethylpyrazole phosphate (DMPP), in inhibiting the growth and activity of ammonia oxidisers; the efficacy of DCD and DMPP in reducing NO3 ? leaching and N2O emissions in grazed pastures; additional benefits of using NI in grazed pasture, including increased pasture production, decreased cation leaching and decreased NO3 ? concentrations in plants; and major factors that may affect the efficacy of NIs.

Results and discussion

Research from a number of laboratory and field studies have conclusively demonstrated that treating grazed pasture soils with a NI, such as DCD, is an effective means of reducing NO3 ? leaching and N2O emissions from grazed livestock production systems. Results show that N2O emissions from animal urine-N can be reduced by an average of 57 % and NO3 ? leaching from animal urine patches can be reduced by 30 to 50 %. The NI technology has been shown to be effective under a wide range of soil and environmental conditions. The NI technology also provides other benefits, including increased pasture production, reduced cation (Ca2+, Mg2+ and K+) leaching and reduced NO3 ? concentration in pasture plants which would reduce the risk of NO3 ? poisoning for the animal.

Conclusions

The use of NIs such as DCD to treat grazed pasture soil is a scientifically sound and practically viable technology that can effectively mitigate NO3 ? leaching and N2O emissions in grazed livestock production systems.
  相似文献   

5.
Nitrate (NO3?) can contribute to surface water eutrophication and is deemed harmful to human health if present at high concentrations in the drinking water. In grazed grassland, most of the NO3?‐N leaching occurs from animal urine‐N returns. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO3? leaching in three different soils from different regions of New Zealand under two different rainfall conditions (1260 mm and 2145 mm p.a.), and explore the relationships between NO3?‐N leaching loss and ammonia oxidizing bacteria (AOB) and ammonia oxidizing archaea (AOA). The DCD nitrification inhibitor was found to be highly effective in decreasing NO3?‐N leaching losses from all three soils under both rainfall conditions. Total NO3?‐N leaching losses from the urine patch areas were decreased from 67.7–457.0 kg NO3?‐N/ha to 29.7–257.4 kg NO3?‐N/ha by the DCD treatment, giving an average decrease of 59%. The total NO3?‐N leaching losses were not significantly affected by the two different rainfall treatments. The total NO3?‐N leaching loss was significantly related to the amoA gene copy numbers of the AOB DNA and to nitrification rate in the soil but not to that of the AOA. These results suggest that the DCD nitrification inhibitor is highly effective in decreasing NO3? leaching under these different soil and rainfall conditions and that the amount of NO3?‐N leached is mainly related to the growth of the AOB population in the nitrogen rich urine patch soils of grazed grassland.  相似文献   

6.
Abstract. Nitrous oxide (N2O) is involved in both ozone destruction and global warming. In agricultural soils it is produced by nitrification and denitrification mainly after fertilization. Nitrification inhibitors have been proposed as one of the management tools for the reduction of the potential hazards of fertilizer-derived N2O. Addition of nitrification inhibitors to fertilizers maintains soil N in ammonium form, thereby gaseous N losses by nitrification and denitrification are less likely to occur and there is increased N utilization by the sward. We present a study aimed to evaluate the effectiveness of the nitrification inhibitor dicyandiamide (DCD) and of the slurry additive Actilith F2 on N2O emissions following application of calcium ammonium nitrate or cattle slurry to a mixed clover/ryegrass sward in the Basque Country. The results indicate that large differences in N2O emission occur depending on fertilizer type and the presence or absence of a nitrification inhibitor. There is considerable scope for immediate reduction of emissions by applying DCD with calcium ammonium nitrate or cattle slurry. DCD, applied at 25 kg ha–1, reduced the amount of N lost as N2O by 60% and 42% when applied with cattle slurry and calcium ammonium nitrate, respectively. Actilith F2 did not reduce N2O emissions and it produced a long lasting mineralization of previously immobilized added N.  相似文献   

7.

Purpose  

Vegetable production is one of the most intensive agricultural systems with high rates of nitrogen (N) fertilizer use and irrigation, conditions conducive for nitrate (NO3) leaching, and nitrous oxide (N2O) emissions. The objective of this study was to determine the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), in decreasing NO3 leaching and N2O emissions in vegetable production systems.  相似文献   

8.
9.
10.
Urine patches in dairy pastures are major sources of nitrous oxide (N2O). Wet winters result in compaction damage to pastures because of animal trampling. The nitrification inhibitor, dicyandiamide (DCD), is effective at reducing N2O emissions from urine patches. Here, we assessed the extent of damage to the physical quality of the soil by trampling and whether this influenced the ability of DCD to mitigate N2O emissions. A field experiment was conducted where a sandy loam soil was trampled by a mechanical hoof just before urine and DCD application. Trampling reduced air permeability and pore continuity, but this had no effect on bulk density. Urine appeared to have contributed to pore collapse and blockage. Trampling increased average cumulative N2O emissions from 1.74 to 4.66% of urine‐N applied. This effect was attributed to increased water‐filled pore space, aggregate destruction and suppression of grass growth. DCD was highly effective in reducing N2O emissions, with the N2O emission factor of the urine‐N being decreased by 58–63%. Trampling did not significantly affect the effectiveness of DCD in reducing N2O emissions.  相似文献   

11.
Nitrous oxide (N2O) is a potent greenhouse gas, which is mainly produced from agricultural soils. Ammonia oxidation is the rate‐determining step in N2O production, and the process is carried out by ammonia oxidizers, bacteria and archaea. Soil aggregate size has been shown to alter soil properties, which affect N2O emissions and bacterial communities. However, the effect of aggregate size on temporal and total N2O emissions and ammonia‐oxidizing bacteria (AOB) and archaea (AOA) is not fully understood. This incubation study investigated the effect of three different soil aggregate sizes on N2O emissions and ammonia oxidizer abundance under high urine‐N concentrations and the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), at reducing N2O emissions in different aggregate soils. It was found that temporal patterns of N2O emissions were affected by aggregate size with higher peak emissions in the large and medium aggregates. However, the total emissions were the same due to a ‘switch’ in emissions at day 66, after which smaller aggregates produced higher N2O emissions. It is suggested that the switch was caused by an increase in aggregate disruption in the small aggregates, following the urine application, due to their higher surface area to volume ratio. AOB and AOA abundances were not significantly affected by aggregate size. DCD was effective in reducing N2O emissions in all aggregate sizes by an average of 79%. These results suggest that similar ammonia oxidizer abundance is found in soils of different aggregate sizes, and the efficacy of DCD in reducing N2O emissions was not affected by aggregate size of the soil.  相似文献   

12.
Urea fertilizer‐induced N2O emissions from soils might be reduced by the addition of urease and nitrification inhibitors. Here, we investigated the effect of urea granule (2–3 mm) added with a new urease inhibitor, a nitrification inhibitor, and with a combined urease inhibitor and nitrification inhibitor on N2O emissions. For comparison, the urea granules supplied with or without inhibitors were also used to prepare corresponding supergranules. The pot experiments without vegetation were conducted with a loess soil at (20 ± 2)°C and 67% water‐filled pore space. Urea was added at a dose of 86 kg N ha–1 by surface application, by soil mixing of prills (<1 mm) and granules, and by point‐placement of supergranules (10 mm) at 5 cm soil depth. A second experiment was conducted with spring wheat grown for 70 d in a greenhouse. The second experiment included the application of urea prills and granules mixed with soil, the point‐placement of supergranules and the addition of the urease inhibitor, and the combined urease plus nitrification inhibitors at 88 kg N ha–1. In both experiments, maximum emissions of N2O appeared within 2 weeks after fertilization. In the pot experiments, N2O emissions after surface application of urea were less (0.45% to 0.48% of total fertilization) than from the application followed by mixing of the soil (0.54% to 1.14%). The N2O emissions from the point‐placed‐supergranule treatment amounted to 0.64% of total fertilization. In the pot experiment, the addition of the combined urease plus nitrification inhibitors, nitrification inhibitor, and urease inhibitor reduced N2O emissions by 79% to 87%, 81% to 83%, and 15% to 46%, respectively, at any size of urea application. Also, the N2O emissions from the surface application of the urease‐inhibitor treatment exceeded those of the granules mixed with soil and the point‐placed‐supergranule treatments receiving no inhibitors by 32% to 40%. In the wheat growth experiment, the N2O losses were generally smaller, ranging from 0.16% to 0.27% of the total fertilization, than in the pot experiment, and the application of the urease inhibitor and the combined urease plus nitrification inhibitors decreased N2O emissions by 23% to 59%. The point‐placed urea supergranule without inhibitors delayed N2O emissions up to 7 weeks but resulted in slightly higher emissions than application of the urease inhibitor and the urease plus nitrification inhibitors under cropped conditions. Our results imply that the application of urea fertilizer added with the combined urease and nitrification inhibitors can substantially reduce N2O emissions.  相似文献   

13.
Recent lysimeter studies have demonstrated that the nitrification inhibitor, dicyandiamide (DCD), can reduce nitrate (NO) leaching losses from cow urine patches in grazed pasture systems. The objective of this study was to quantify the effects of fine particle suspension (FPS) DCD on soil mineral N components, pasture yield, nutrient uptake and pasture quality under grazed pasture conditions. A field study was conducted on the Lincoln University dairy farm, Canterbury, New Zealand, from 2002 to 2006. FPS DCD was applied to grazed pasture plots at 10 kg ha?1 in early May in addition to applied cow urine patches at a nitrogen (N) loading rate of 1000 kg N ha?1, with DCD reapplied in early August. Soil mineral N levels in the urine patches were monitored. Pasture yield, N and cation concentrations and uptake were measured in treatment urine patches and inter‐urine areas of the pasture. Comparisons were made with control plots which did not receive DCD. NO levels under the DCD‐treated urine patches (0–7.5 cm) were in the order of 10 kg N ha?1 compared with 40–80 kg N ha?1 under untreated patches, and soil ammonium (NH) levels were consistently higher under the DCD‐treated patches. The DCD significantly and consistently increased pasture yield in both the urine patches, and inter‐urine areas of the pasture in all 4 years of the trial. Mean annual dry matter (DM) yields over 4 years were inter‐urine areas, 10.3; inter‐urine + DCD, 12.4; urine, 12.4 and urine +DCD 16.0 t DM ha?1, representing an average DM yield increase of 20 and 29% in inter‐urine and urine patch areas, respectively. On a whole paddock basis, the increase in annual DM yield resulting from DCD application was estimated to be 21%. N, calcium (Ca), magnesium (Mg) and potassium (K) concentrations in pasture were unaffected by treatment with DCD; however, total annual uptake of these nutrients by pasture was significantly higher in all years where DCD had been applied. Pasture DM, protein, carbohydrate, metabolizable energy and fibre levels and sward clover content were not affected by treatment with DCD. The results demonstrate the agronomic value of the DCD treatment in addition to the environmental benefits in a grazed pasture system.  相似文献   

14.
15.

Purpose

Dicyandiamide (DCD) has been used commercially in New Zealand to reduce nitrate leaching and N2O emissions in grazed pastures. However, there is a lack of information in the literature on the optimum rate of DCD to achieve the environmental benefits while at the same time reducing the cost of the technology. The objective of this study was to determine the effect of DCD application rate on its effectiveness to inhibit ammonia oxidizer growth and nitrification rate in a grazed pasture soil.

Materials and methods

The soil was a Templeton silt loam (Immature Pallic Soil; Udic Haplustepts) collected from Lincoln University Research Dairy Farm with a mixed pasture consisting of perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) and was incubated alone (control) or with cow urine at 700 kg N/ha with 6 rates of DCD [0, 2.5, 5, 7.5, 10 (applied twice), 15 and 20 kg/ha] in incubation vessels. The incubation vessels were placed randomly in an incubator with a constant temperature of 12 °C. During 112 days of incubation, soil subsamples were taken at different time intervals to measure the concentrations of NO3 ?-N and NH4 +-N and the amoA gene copy numbers of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA).

Results and discussion

DCD applied at all the different rates inhibited nitrification in urine-treated soils, but the effectiveness increased with DCD application rate. In addition, AOB growth and the amounts of nitrate-N in the soil were significantly related to the application rate of DCD. However, AOA population abundance showed no relationship to the application rate of DCD. The DCD rate at which the AOB growth rate and nitrate-N concentration were halved (effective dosage that causes 50 % reduction in nitrification rate, or ED50) was about 10 kg DCD/ha.

Conclusions

These results suggest that DCD applied at relatively low rates still slowed down the nitrification rate, and the current recommended rate of 10 kg DCD/ha for DCD use in New Zealand grazed pastures would result in a 50 % reduction in nitrification rate in this soil. The actual rate of DCD application used would depend on the cost of the product and the environmental and agronomic benefits that would result from its use.  相似文献   

16.
In a 3-year field experiment, the effect of the nitrification inhibitor (NI) 3,4-dimethylpyrazole phosphate (DMPP) on the release of N2O, CO2, and on CH4 oxidation, was examined in comparison to that of dicyandiamide (DCD) on N-fertilized and unfertilized experimental sites. Soil samples were analysed simultaneously for the concentrations of N2O retained in the soil body, NH4+, NO2-, NO3-, and for the degradation kinetics of DMPP as well as DCD. DMPP decreased the release of N2O on fertilized plots by 41% (1997), 47% (1998) and 53% (1999) (on average by 49%) while DCD reduced N2O emissions by 30% (1997), 22% (1998) and 29% (1999) (on average by 26%). In addition, the NIs seemed to decrease the CO2 emissions of each fertilized treatment. DCD reduced the release of CO2 by an average of 7% for the 3 years (non-fertilized 10%), and DMPP reduced it by an average of up to 28% (non-fertilized 29%). Furthermore, both NIs failed to affect CH4 oxidation negatively. The plots that received either DCD or DMPP even seemed to function as enhanced sinks for atmospheric CH4. DMPP apparently stimulated CH4 oxidation of N-fertilized plots by ca 28% in comparison to the control. In total, DCD and DMPP reduced the global warming potential of N-fertilized plots by 7% and 30%, respectively. Further, DCD and DMPP diminished the amount of N2O retained in the soil by 52% and 61%, respectively. The concentrations of NH4+ remained unaffected by both NIs, whereas the amounts of NO2- diminished in the plots treated with DCD by 25% and with DMPP by 20%. In both NI treatments NO3- concentrations in the soil were 23% lower than in the control. DMPP and DCD did not affect the yields of summer barley, maize and winter wheat significantly. DCD was mineralized more rapidly than DMPP.  相似文献   

17.
High rates of cattle slurry application induce NO inf3 sup- leaching from grassland soils. Therefore, field and lysimeter trials were conducted at Gumpenstein (Austria) to determine the residual effect of various rates of cattle slurry on microbial biomass, N mineralization, activities of soil enzymes, root densities, and N leaching in a grassland soil profile (Orthic Luvisol, sandy silt, pH 6.6). The cattle slurry applications corresponded to rates of 0, 96, 240, and 480 kg N ha-1. N leaching was estimated in the lysimeter trial from 1981 to 1991. At a depth of 0.50 m, N leaching was elevated in the plot with the highest slurry application. In October 1991, deeper soil layers (0–10, 10–20, 20–30, 30–40, and 40–50 cm) from control and slurry-amended plots (480 kg N ha-1) were investigated. Soil biological properties decreased with soil depth. N mineralization, nitrification, and enzymes involved in N cycling (protease, deaminase, and urease) were enhanced significantly (P<0.05) at all soil depths of the slurry-amended grassland. High rates of cattle slurry application reduced the weight of root dry matter and changed the root distribution in the different soil layers. In the slurry-amended plots the roots were mainly located in the topsoil (0–10 cm). As a result of this study, low root densities and high N mineralization rates are held to be the main reasons for NO inf3 sup- leaching after heavy slurry applications on grassland.  相似文献   

18.
The decrease in nitrogen (N) use in agriculture led to improvement of upper groundwater quality in the Sand region of the Netherlands in the 1991–2009 period. However, still half of the farms exceeded the European nitrate standard for groundwater of 50 mg/l in the 2008–2011 period. To assure that farms will comply with the quality standard, an empirical model is used to derive environmentally sound N use standards for sandy soils for different crops and soil drainage conditions. Key parameters in this model are the nitrate-N leaching fractions (NLFs) for arable land and grassland on deep, well-drained sandy soils. NLFs quantify the fraction of the N surplus on the soil balance that leaches from the root zone to groundwater and this fraction represents N available for leaching and denitrification. The aim of this study was to develop a method for calculating these NLFs by using data from a random sample of commercial arable farms and dairy farms that were monitored in the 1991–2009 period. Only mean data per farm were available, which blocked a direct derivation of NLFs for unique combinations of crop type, soil type and natural soil drainage conditions. Results showed that N surplus leached almost completely from the root zone of arable land on the most vulnerable soils, that is, deep, well-drained sandy soils (95% confidence interval of NLF 0.80–0.99), while for grassland only half of the N surplus leached from the root zone of grassland (0.39–0.49). The NLF for grassland decreased with 0.015 units/year, which is postulated to be due to a decreased grazing and increased year-round housing of dairy cows. NLFs are positively correlated with precipitation surplus (0.05 units/100 mm for dairy farms and 0.10 units/100 mm for arable farms). Therefore, an increase in precipitation due to climate change may lead to an increase in leaching of nitrate.  相似文献   

19.

Purpose

The nitrification inhibitor dicyandiamide (DCD) has been shown to be highly effective in reducing nitrate (NO3 ?) leaching and nitrous oxide (N2O) emissions when used to treat grazed pasture soils. However, there have been few studies on the possible effects of long-term DCD use on other soil enzyme activities or the abundance of the general soil microbial communities. The objective of this study was to determine possible effects of long-term DCD use on key soil enzyme activities involved in the nitrogen (N) cycle and the abundance of bacteria and archaea in grazed pasture soils.

Materials and methods

Three field sites used for this study had been treated with DCD for 7 years in field plot experiments. The three pasture soils from three different regions across New Zealand were Pukemutu silt loam in Southland in the southern South Island, Horotiu silt loam in the Waikato in the central North Island and Templeton silt loam in Canterbury in the central South Island. Control and DCD-treated plots were sampled to analyse soil pH, microbial biomass C and N, protease and deaminase activity, and the abundance of bacteria and archaea.

Results and discussion

The three soils varied significantly in the microbial biomass C (858 to 542 μg C g?1 soil) and biomass N (63 to 28 μg N g?1), protease (361 to 694 μg tyrosine g?1 soil h?1) and deaminase (4.3 to 5.6 μg NH4 + g?1 soil h?1) activity, and bacteria (bacterial 16S rRNA gene copy number: 1.64?×?109 to 2.77?×?109 g?1 soil) and archaea (archaeal 16S rRNA gene copy number: 2.67?×?107 to 3.01?×?108 g?1 soil) abundance. However, 7 years of DCD use did not significantly affect these microbial population abundance and enzymatic activities. Soil pH values were also not significantly affected by the long-term DCD use.

Conclusions

These results support the hypothesis that DCD is a specific enzyme inhibitor for ammonia oxidation and does not affect other non-target microbial and enzyme activities. The DCD nitrification inhibitor technology, therefore, appears to be an effective mitigation technology for nitrate leaching and nitrous oxide emissions in grazed pasture soils with no adverse impacts on the abundance of bacteria and archaea and key enzyme activities.  相似文献   

20.
The leaching of nitrate is an important way of N losses from agricultural soils in humid regions. Nitrate leaching is difficult to control as most soils under crop production do not have anion‐exchange properties, and nitrate remains mobile in the solution. The present work evaluated the potential use of a synthetic layered double‐hydroxide (LDH) mineral as a nitrate exchanger in soil. The LDH used was a chloride form of a magnesium‐aluminum layered double hydroxide with the formula: [Mg2+0.82Al3+0.18(OH)2]0.18+[(Cl)0.18 0.5(H2O)]0.18–. Experiments were carried out in aqueous solutions as well as in soil with the following objectives: (1) to characterize the nitrate adsorption capacity on the LDH, (2) to study its selectivity for nitrate adsorption in solution, (3) to evaluate the reversibility for nitrate exchange, and (4) to study the nitrate adsorption capacity and nitrate diffusion towards the LDH in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号