首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance to root-knot nematode (Meloidogyne incognita) is determined by a single major gene rkn1 in Gossypium hirsutum Acala NemX cotton. Bulked segregant analysis (BSA) combined with amplified fragment length polymorphism (AFLP) was used to identify molecular markers linked to rkn1. DNA pools from homozygous susceptible (S) and resistant (R) bulks of an F2:3 originating from the intraspecific cross NemX × SJ-2 were screened with 128 EcoR1/Mse1 primer combinations. Putative AFLP markers were then screened with 60 F2:7 RIL plants and four AFLP markers were found linked to rkn1. The linkage of AFLP markers to rkn1 was also confirmed in a F2 population. The closest AFLP marker was converted to a cleaved amplified polymorphic sequence (CAPS) marker (designated GHACC1) by aligning the sequences from both susceptible and resistant parents. GHACC1 linkage to rkn1 was confirmed in the F2 (1R:3S), F2:7 RIL (1R:1S) and the backcross population SJ-2 × F1 (NemX × SJ-2) (1 heterozygous: 1 homozygous). The four AFLP markers, GHACC1 plus two SSR markers (CIR316 and BNL1231) linked to rkn1 from previous work were mapped to intervals of 2.6–14.2 cM from the rkn1 locus, and the genomic region around rkn1 was spanned to about 28.2 cM in the F2:7 population. The PCR-based GHACC1 and CIR316 markers were tested on 21 nematode resistant and susceptible cotton breeding lines and cultivars. GHACC1 was suitable for nematode resistance screening within G.␣hirsutum, but not G. barbadense, whereas CIR316 was useful in both species, indicating their␣potential for utilization in marker-assisted selection.  相似文献   

2.
Fusarium wilt, caused by Fusarium oxysporum f. sp. melonis (F.o.m), is a worldwide soil-borne disease of melon (Cucumis melo L.). The most effective control measure available is the use of resistant varieties. Resistance to races 0 and 2 of this fungal pathogen is conditioned by the dominant gene Fom-1. An F2 population derived from the ‘Charentais-Fom1’ × ‘TRG-1551’ cross was used in combination with bulked segregant analysis utilizing the random amplified polymorphic DNA (RAPD) markers, in order to develop molecular markers linked to the locus Fom-1. Four hundred decamer primers were screened to identify three RAPD markers (B17649, V01578, and V061092) linked to Fom-1 locus. Fragments amplified by primers B17649 and V01578 were linked in coupling phase to Fom1, at 3.5 and 4 cM respectively, whereas V061092 marker was linked in repulsion to the same dominant resistant allele at 15.1 cM from the Fom-1 locus. These RAPDs were cloned and sequenced in order to design primers that would amplify only the target fragment. The derived sequence characterized amplified region (SCAR) markers SB17645 and SV01574 (645 and 574 bp, respectively) were present only in the resistant parent. The SV061092 marker amplified a band of 1092 bp only in the susceptible parent. These markers are more universal than the CAPS markers developed by Brotman et al. (Theor Appl Genet 10:337–345, 2005). The analysis of 24 melon accessions, representing several melon types, with these markers revealed that different melon types behaved differently with the developed markers supporting the theory of multiple, independent origins of resistance to races 0 and 2 of F.o.m.  相似文献   

3.
The columnar phenotype is a very valuable genetic resource for apple breeding because of its compact growth form determined by the dominant gene Co. Using bulked segregant analysis combined with several DNA molecular marker techniques to screen the F1 progeny of Spur Fuji × Telamon (heterozygous for Co), 9 new DNA markers (6 RAPD, 1 AFLP and 2 SSRs) linked to the Co gene were identified. A total of 500 10-mer random primers, 56 pairs of selective AFLP primers and 8 SSR primer pairs were screened. One RAPD marker S1142682, and the AFLP marker, E-ACT/M-CTA346, were converted into SCAR markers designated SCAR682 and SCAR216, respectively. These markers will enable early selection in progenies where Co is difficult to identify. The Co gene was located between the SSR markers CH03d11 and COL on linkage group 10 of the apple genetic linkage map. Finally, a local genetic map of the region around the Co gene was constructed by linkage analysis of the nine new markers and three markers developed earlier.  相似文献   

4.
To identify DNA markers linked to a fertility restorer (Rf) genefor Ogura cytoplasmic male sterility in radish (Raphanus sativus L.),a non-radioactive, amplified fragment length polymorphism (AFLP) analysiswas performed on bulked DNA samples from male-sterile and male-fertileradishes. Ten male-fertile and 10 male-sterile plants selected arbitrarilyfrom an F2 population made by selfing of F1 plant from a crossbetween a male-sterile (`MS-Gensuke') plant and a restorer (`Comet') plantwere used as material. Using 32 AFLP primer pairs, one AFLP fragment(AFLP190) which is specific to the bulked DNA samples from male-fertileF2 plants was identified. AFLP190 was characterized by molecularcloning and nucleotide sequencing, and was converted to a sequence-taggedsite (STS) marker, STS190. A linkage analysis performed in 126individuals of two independent F2 populations showed tight linkageof STS190 to the Rf gene. The rate of recombination between themarker and Rf was estimated to be less than 1%, making STS1901.2 cM from the gene.  相似文献   

5.
The or mutation in Chinese cabbage (Brassica rapa L. ssp. pekinensis) is a recessive, single-locus mutation that causes the head leaves of the plant to accumulate carotenoids and turn orange. In China, considerable attention has been focused in recent years on breeding the variety with orange head leaves. In this study, sequence-characterized amplified region (SCAR) markers linked to the or gene were identified based on random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) by performing a bulked segregant analysis (BSA) using a doubled haploid (DH) population derived from the F1 cross between 91-112 (white head leaves) and T12-19 (orange head leaves) via microspore culture. Two RAPD markers—OPB01-845 and OPAX18-656—and 1 AFLP marker, namely, P67M54-172, were identified to be linked to the or gene, and they were successfully converted into the SCAR markers SCR-845, SCOR204, and SCOR127, respectively. In a linkage analysis, these 3 SCAR markers and 2 previously published simple sequence repeat markers, namely, BRMS-51 and Ni4D09 (located on R9 linkage group), were mapped to the same linkage group with the or gene at a LOD score of 6.0, indicating that the or gene should be located on the linkage group R9 of the A genome. In addition, accuracies of 92%, 90%, and 89.1% were obtained when 110 different inbred breeding lines of Chinese cabbage were used for investigation with these 3 SCAR markers, indicating that these makers could be used in marker-assisted selection in orange head leaf breeding programs for Chinese cabbage.  相似文献   

6.
S. Murakami    K. Matsui    T. Komatsuda  Y. Furuta 《Plant Breeding》2005,124(2):133-136
The Rfm1 gene restores the fertility of the msm1 and msm2 male‐sterile cytoplasms in barley. Rfm1 is located on the short arm of chromosome 6H. To develop molecular markers tightly linked to Rfm1 for use in sophisticated marker‐assisted selection and map‐based cloning, an amplified fragment‐length polymorphism (AFLP) marker system with isogenic lines and a segregating BC1F1 population was used. Nine hundred primer combinations were screened and a linkage map was constructed around the Rfm1 locus by using 25 recombinant plants selected from 214 BC1F1 plants. Three AFLP markers were identified, e34m2, e46m19 and e48m17, linked to the locus. The most closely linked markers were e34m2, at 1.0 cM distally and e46m19, at 1.1 cM proximally. The two AFLP markers were converted to dominant STS markers. These markers should accelerate programmes for breeding restorer lines and will be useful for map‐based cloning.  相似文献   

7.
Papaya ringspot virus‐type W (PRSV‐W) is the most prevalent and important viral pathogen of cucurbits in Brazil. It can be effectively controlled by the incorporation of genetic resistance into susceptible melon cultivars. The present study identified amplified fragment length polymorphic (AFLP) markers linked to the PRSV‐W resistance Prv1 allele. The susceptible yellow‐fleshed melon‐breeding line AF426prv1 and its nearly isogenic‐resistant line AF426Prv1, which carries the Prv1 allele resident in the Indian cantaloupe U.S. Plant Introduction (PI) 180280, were screened for AFLP marker polymorphisms. Of 30 251 AFLP loci, only three were polymorphic between the nearly isogenic lines. Segregation analyses for these three polymorphic markers and the Prv1 allele using a BC1 population of 197 plants indicated close linkage (0.5% recombination frequency) between marker EK190 (HindIII‐CGA and MseI‐GTG; 190 bp) and Prv1. Thus, EK190 might be a useful marker in breeding programmes aiming to develop melon cultivars resistant to PRSV‐W. The other two markers are closely linked to each other, but distantly linked to Prv1.  相似文献   

8.
Amplified fragment length polymorphism (AFLP) and microsatellite (simple sequence repeat, SSR) techniques were used to map the _RGSpeking gene, which is resistant to most isolates of Cercospora sojina in the soya bean cultivar ‘Peking’. The mapping was conducted using a defined F2 population derived from the cross of ‘Peking’(resistant) בLee’(susceptible). Of 64 EcoRI and MseI primer combinations, 30 produced polymorphisms between the two parents. The F2 population, consisting of 116 individuals, was screened with the 30 AFLP primer pairs and three mapped SSR markers to detect markers possibly linked to RcsPeking. One AFLP marker amplified by primer pair E‐AAC/M‐CTA and one SSR marker Satt244 were identified to be linked to ResPeking. The gene was located within a 2.1‐cM interval between markers AACCTA178 and Satt244, 1.1 cM from Satt244 and 1.0 cM from AACCTA178. Since the SSR markers Satt244 and Satt431 have been mapped to molecular linkage group (LG) J of soya bean, the ResPeking resistance gene was putatively located on the LG J. This will provide soya bean breeders an opportunity to use these markers for marker‐assisted selection for frogeye leaf spot resistance in soya bean.  相似文献   

9.
Soybean is a major source of protein meal in the world. Soybean kunitz trypsin inhibitor (SKTI) protein is a responsible for the inferior nutritional quality of unheated or incompletely heated soybean meal. The primary objective of this research was to identify DNA markers linked to the Ti locus controlling presence and absence of kunitz trypsin inhibitor protein. Two mapping populations were developed. Population 1 was derived from a cross between cultivar Jinpumkong2 (TiTi) and C242 (titi). Population 2 was made from a mating between cultivar Clark (TiTi) and C242. The F1 plants were grown in the greenhouse to produce F2 seeds. Each F2 seed from F1 plants was analyzed electrophoretically to determine the presence of the SKTI protein band. One-thousand RAPD primers, 342 AFLP primer sets, and 35 SSR primers were used to map Ti locus in population 1 and 2. The presence of SKTI protein was dominant to the lack of a SKTI protein and kunitz trypsin inhibit protein band was controlled by a single locus. Twelve DNA markers (4 RAPD, 4 AFLP, and 3 SSR) and Ti locus were found to be genetically linked in population 1 consisted with 94 F2 individual plants. Three SSR markers (Satt409, Satt228, and Satt429) were linked with Ti locus within 10 cM. Satt228 marker was tightly linked with Ti locus. Satt228 marker was tightly linked within 0–3.7 cM of the Ti locus and may be useful in a marker assisted selection program.  相似文献   

10.
Abstract: A partial linkage map of melon was constructed from a cross between PI414723 and Dulce. Twenty-two SSR, 46RAPD, 2 ISSR markers and four horticultural markers [female flower form (a), Fusarium resistance, striped epicarp (st), and fruit flesh pH (pH)] were analyzed in an F2/F3 population to produce a map spanning 14 linkage groups. We report for the first time map positions for the st, a, and pH genes. One SSR marker was tightly linked to pH. Mapping the a gene for the female flower form to molecular linkage group 4 enabled the merging of the map of horticultural traits with the of molecular markers in this region. Using the 22 SSR markers of this map, two of the three postulated ZYMV resistance genes were located using a BC1 population (PI414723 recurrent parent). One SSR marker was tightly linked to a ZYMV resistance gene, designated Zym-1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
K. Williams    P. Bogacki    L. Scott    A. Karakousis  H. Wallwork   《Plant Breeding》2001,120(4):301-304
Seedlings of the barley line ‘B87/14’ were resistant to 22 out of 23 Australian isolates of Rhynchosporium secalis, the causal agent of leaf scald.‘B87/14’‐based populations were developed to determine the location of the resistance locus. Scald resistance segregated as a single dominant trait in BC1F2 and BC1F3 populations. Bulked segregant analysis identified amplified fragment length polymorphisms (AFLPs) with close linkage to the resistance locus. Fully mapped populations not segregating for scald resistance located these AFLP markers on chromosome 3H, possibly within the complex Rrs1 scald locus. Microsatellite and restriction fragment length polymorphism markers adjacent to the AFLP markers were identified and validated for their linkage to scald resistance in a second segregating population, with the closest marker 2.2 cM from the resistance locus. These markers can be used for selection of the Rrs.B87 scald‐resistance locus, and other genes at the chromosome 3H Rrs1 locus.  相似文献   

12.
Summary A linkage map for watermelon (Citrullus lanatus) was constructed on the basis of RADP, ribosomal DNA restriction fragment length polymorphism (RFLP), isozyme, and morphological markers using F1BC1. A segregating population of 78 individuals was the result of a backcross of a cultivated inbred line (H-7; Citrullus lanatus; 2n=22) and a wild form (SA-1; C. lanatus; 2n=22), in which the latter was the recurrent (male) parent. A total of 69 RAPD, one RFLP, one isozyme, and three morphological markers was found to segregate in the BC1 population. Linkage analysis revealed that 62 loci could be mapped to 11 linkage groups that extended more than 524 centimorgans (cM), while 12 loci segregated independently of all other markers. The locus for exocarp color was linked to two RAPD markers within a region of 5 cM on linkage group 4. The locus for flesh color was linked to a RAPD marker within a region of 30 cM on linkage group 6. The isozyme marker GOT was located on the linkage group 1. Linkage group 2 contained a locus for ribosomal DNA within 5 cM of a RAPD marker. Half of the RAPD markers on the linkage group 7 displayed severely distorted segregation. The construction of linkage map using molecular markers is necessary for the breeding of watermelon to introduce useful gene of wild watermelon efficiently. However the linkage map that was constructed for the most part on the basis of RAPD markers could not cover significant parts of the genome, the linkage map provides breeders of watermelons the possibility of tagging useful agronomic traits, as well as the gene for exocarp color.Abbreviations RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphism - GOT glutamate oxaloacetate transaminase - MDH malate dehydrogenase - ACP acid phosphatase - 6PGH 6-phosphogluconate dehydrogenase  相似文献   

13.
We have constructed a linkage map of the rice brown planthopper (BPH)resistance gene, Bph1. RFLP and AFLP markers were selected by thebulked segregant analysis and used in the mapping study of 262 F2sthat were derived from a cross of `Tsukushibare', a susceptible japonica cultivar, and `Norin-PL3', an authentic japonicaBph1-introgression line. Twenty markers were mapped within a 28.9-cMregion containing the Bph1 locus on the long arm of rice chromosome12. Combining the result of segregation analysis of BPH resistance by themass seedling test and that of the markers, the Bph1 locus wasmapped within a 5.8-cM region between two flanking markers. The closestAFLP markers, em5814N and em2802N, was at 2.7 cM proximal to theBph1 locus. Together with the previously constructed high-resolutionmap of bph2 locating the locus at ca. 10 cM proximal to the Bph1 locus, this improved version of the linkage map would facilitatepyramiding these two important BPH resistance genes.  相似文献   

14.
Fusarium head blight (FHB) is a destructive disease of wheat worldwide. FHB resistance genes from Sumai 3 and its derivatives such as Ning 7840 have been well characterized through molecular mapping. In this study, resistance genes in Wangshuibai, a Chinese landrace with high and stable FHB resistance, were analyzed through molecular mapping. A population of 104 F2-derived F7 recombinant inbred lines (RILs) was developed from the cross between resistant landrace Wangshuibai and susceptible variety Alondras. A total of 32 informative amplified fragment length polymorphism (AFLP) primer pairs (EcoRI/MseI) amplified 410 AFLP markers segregating among the RILs. Among them, 250 markers were mapped in 23 linkage groups covering a genetic distance of 2,430 cM. In addition, 90 simple sequence repeat (SSR) markers were integrated into the AFLP map. Fifteen markers associated with three quantitative trait loci (QTL) for FHB resistance (P < 0.01) were located on two chromosomes. One QTL was mapped on 1B and two others were mapped on 3B. One QTL on 3BS showed a major effect and explained up to 23.8% of the phenotypic variation for type II FHB resistance.  相似文献   

15.
Anthracnose, caused by the fungus Colletotrichum sublineolum is one of the most destructive diseases of sorghum and has been reported in most areas where the crop is grown. Several control strategies have been developed but host plant resistance has been regarded as the most effective strategy for disease control. Here, we describe the search for molecular markers that co-segregate with Cg1, a dominant gene for resistance originally identified in cultivar SC748-5. To identify molecular markers linked with the Cg1 locus, F2:3 plants derived from a cross to susceptible cultivar BTx623 were analyzed with 98 AFLP primer combinations. BTx623 was chosen as the susceptible parent because it is also one on the parents used in creating RFLP and AFLP maps and BAC libraries for sorghum. Four AFLP markers that cosegregate with disease resistance were identified, of which Xtxa6227 mapped within 1.8 cM of the anthracnose resistance locus and all four AFLP markers have been previously mapped to the end of sorghum linkage group LG-05. Sequence scanning of BAC clones spanning this chromosome led to the discovery that Xtxp549, a polymorphic simple sequence repeat (SSR) marker, mapped within 3.6 cM of the anthracnose resistance locus. To examine the efficacy of Xtxa6227 and Xtxp549 for marker-assisted selection, 13 breeding lines derived from crosses with sorghum line SC748-5 were genotyped. In 12 of the 13 lines the Xtxa6227 and Xtxp549 polymorphism associated with the Cg1 locus was still present, suggesting that Xtxp549 and Xtxa6227 could be useful for marker-assisted selection and for pyramiding of Cg1 with other genes conferring resistance to C. sublineolum in sorghum.  相似文献   

16.
Summary Molecular mapping is a promising strategy for studying and understanding traits with complex genetic control, such as partial resistance to oat crown rust. The objectives of this research were to develop molecular maps from the progenies of the cross UFRGS7 (susceptible) × UFRGS910906 (partially resistant) and to identify QTLs (quantitative trait loci) associated to partial resistance to oat crown rust in two generations of that population.DNA of 86 genotypes of the F2 and 90 genotypes of the F6 UFRGS7 × UFRGS910906 population were used to generate AFLP markers. Molecular maps were constructed using Mapmaker Exp. 3.0 and QTLs for partial resistance to oat crown rust were identified with Mapmaker/QTL software. Five hundred and fifty seven markers in the F2 and 243 markers in the F6 generations were identified. The F2 map integrated 250 markers in 37 linkage groups. The F6 map integrated 86 markers in 17 linkage groups.Five QTLs were identified for partial resistance to oat crown rust in the F2 generation and three QTLs in the F6. The QTL identified on F6 through the PaaaMctt340 AFLP marker showed consistency across two environments and two generations (F4 and F6), and appear to have potential for marker-assisted selection in oat.  相似文献   

17.
Cultivated alfalfa (Medicago sativa L., 2n= 4x= 32) is one of the most important forage crops in temperate climates. The genus Medicago includes diploid species that are a valuable source of wild germplasm for studying the reproductive system of alfalfa and its abnormalities. A linkage map of an apomeiotic mutant of Medicago falcata (L.) Arcang. (2n= 2x= 16) that spanned 368.6 cM and included 29 amplified fragment length polymorphism (AFLP), 35 random amplified polymorphic DNA (RAPD) and three restriction fragment length polymorphism (RFLP) loci was constructed using a one-way pseudo-testcross mapping strategy. The success of such a strategy depends on the presence of sufficiently high levels of heterozygosity in the individual plant which is being mapped and on the informativeness of the marker system that is used. In general: (1) highly informative and reproducible RAPD and AFLP fingerprints were generated and several genome-specific primers selected; (2) of 67 marker loci mapped, 51 were arranged in 11 main linkage groups and eight additional couples of linked marker loci were detected; (3) mapping of an F1 population theoretically allowed a better estimation of linkage distances since it avoided segregation distortion (x2 analyses revealed segregation distortion in only 5.2% of marker loci); (4) the high frequency of unlinked marker loci obtained suggests that, in this alfalfa genotype, DNA markers are distributed throughout the genome. This type of genetic map should find application and prove useful in marker-assisted selection and map-based breeding programmes in meiotic mutants of alfalfa for which there is a lack of suitable genetic markers.  相似文献   

18.
Previously, novel cytoplasmic male-sterility (CMS) caused by DCGMS cytoplasm was discovered in radish (Raphanus sativus L.) introduced from Uzbekistan. We performed extensive progeny tests and identified two fertility restorer lines (‘R171’ and ‘R121’) for this new CMS. Two F1 hybrid populations were self-pollinated and backcrossed to produce F2 and BC populations. Inheritance patterns of male-sterility in segregating populations varied depending on paternal lines. Segregation of male-sterility in F2 populations originating from the cross between MS19 and R121 showed that a single locus was involved in fertility restoration. However, populations originating from the cross between MS15 and R171 showed the involvement of more than one restorer-of-fertility genes. The single fertility restorer locus identified in the cross between MS19 and R121 was designated Rfd1 locus. Bulked segregant analysis was performed using RAPD and AFLP, which identified one marker each. Both RAPD and AFLP markers were converted into simple PCR-based co-dominant markers after their isolated flanking sequences were analyzed. Indels 773-bp and 67-bp in length were identified between two Rfd1 allele-linked flanking sequences of the RAPD and AFLP fragments, respectively, then utilized to develop simple PCR markers. In addition, we prove that the newly identified Rfd1 locus is independent of the Rfo locus, another radish fertility restorer for CMS caused by Ogura cytoplasm.  相似文献   

19.
Fusarium wilt is one of the most widespread diseases of pea. Resistance to Fusarium wilt race 1 was reported as a single gene, Fw, located on linkage group III. The previously reported AFLP and RAPD markers linked to Fw have limited usage in marker‐assisted selection due to their map distance and linkage phase. Using 80 F8 recombinant inbred lines (RILs) derived from the cross of Green Arrow × PI 179449, we amplified 72 polymorphic markers between resistant and susceptible lines with the target region amplified polymorphism (TRAP) technique. Marker–trait association analysis revealed a significant association. Five candidate markers were identified and three were converted into user‐friendly dominant SCAR markers. Forty‐eight pea cultivars with known resistant or susceptible phenotypes to Fusarium wilt race 1 verified the marker–trait association. These three markers, Fw_Trap_480, Fw_Trap_340 and Fw_Trap_220, are tightly linked to and only 1.2 cM away from the Fw locus and are therefore ideal for marker‐assisted selection. These newly identified markers are useful to assist in the isolation of the Fusarium wilt race 1 resistance gene in pea.  相似文献   

20.
The objective of this study was to identify polymorphic molecular markers associated with partial resistance to coffee leaf rust, Hemileia vastarix. A segregating F 2 population derived from a cross between the susceptible Coffea arabica cv. Caturra and a C. canephora-introgressed Arabica line exhibiting high partial resistance was analyzed. Rust resistance measured as rust incidence (RI) and defoliation (DEF) was evaluated in field conditions in three consecutive years (2003–2005). During the 2003 season, which was characterized by favorable conditions for a rust epidemic, the F 2 plants exhibited different levels of resistance ranging from very susceptible (50.1% for DEF and 49.5% for RI) to highly partial resistance (9.1% for DEF and 3.7% for RI). Molecular analysis enabled identification of seven polymorphic markers (5 AFLP and 2 SSR) exhibiting significant association with partial resistance. Coexistence of resistance homozygous alleles (RR) at codominant SSR loci was correlated with high resistance. This study is the first attempt to develop PCR-based sequence specific markers linked to partial rust resistance in coffee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号