首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An inactivated virus vaccine was developed for prevention of FeLV infection in domestic cats. When given in 2 doses, 3 weeks apart, to cats that were greater than or equal to 9 weeks old at the time of first vaccination, the vaccine prevented persistent viremia from developing in 132 of 144 (92%) vaccinates after oronasal challenge exposure with virulent FeLV. In contrast, persistent viremia developed after oronasal challenge exposure with FeLV in 39 of 45 (87%) age-matched nonvaccinated control cats. Transient viremia, indicated by early detection of p27 by ELISA in serum of cats protected from persistent viremia at 12 weeks after challenge exposure, was found in 10 of 132 (8%) vaccinates. Cats that were aviremic 12 to 16 weeks after challenge exposure were examined for reactivation of latent FeLV infection; 4 weekly doses of methylprednisolone were administered, followed by in vitro culture of bone marrow cells. Latent infection was readily reactivated in 6 of 8 (75%) nonvaccinated control cats that had been transiently viremic after challenge exposure. However, latent infection was reactivated in only 5 of 48 (10%) protected vaccinates, and in none of 38 vaccinates in which transient viremia had not been detected. In a safety field trial, only 34 mild reactions of short duration were observed after administration of 2,379 doses of vaccine to cats of various ages, breeds, and vaccination history, for a 1.43% reaction rate. Results indicate that the aforementioned inactivated virus vaccine is safe and efficacious for the prevention of infection with FeLV.  相似文献   

2.
A group of 15 cats experimentally infected with a Swiss isolate of feline immunodeficiency virus (FIV) and a group of 15 FIV-negative control cats were inoculated with an FeLV vaccine containing recombinant FeLV-envelope. High ELISA antibody titer developed after vaccination in FIV-positive and FIV-negative cats. Vaccinated and nonvaccinated controls were later challenge exposed by intraperitoneal administration of virulent FeLV subtype A (Glasgow). Although 12 of 12 nonvaccinated controls became infected with FeLV (10 persistently, 2 transiently), only 1 of 18 vaccinated (9 FIV positive, 9 FIV negative) cats had persistent and 2 of 18 had transient viremia. From these data and other observations, 2 conclusions were drawn: In the early phase of FIV infection, the immune system is not depressed appreciably, and therefore, cats may be successfully immunized; a recombinant FeLV vaccine was efficacious in protecting cats against intraperitoneal challenge exposure with FeLV.  相似文献   

3.
The protective immunity induced by 3 experimental FeLV vaccines were evaluated: Prototype inactivated FeLV vaccine developed from a molecularly cloned FeLV isolate (FeLV-FAIDS-61E-A); a mixture of immunodominant synthetic peptides corresponding to regions of the FeLV-Gardner-Arnstein-B (FeLV-GA-B) envelope proteins; and an adjuvant-disrupted but non-activated virus prepared from a non-cloned FeLV field isolate comprised of subgroup A and B viruses (FeLV-05821-AB). Included as controls were parallel groups of cats inoculated with adjuvants alone or with an established commercial FeLV vaccine. After each inoculation and after virulent virus challenge exposure, sera from all cats were assayed for ELISA-reactive antibody against purified FeLV, FeLV neutralizing (VN) antibody, and FeLV antigenemia/viremia--viral p27 antigen in serum and within circulating leukocytes. Immunity was challenged by oral/nasal exposure of vaccinated and control cats with FeLV-FAIDS-61E-A or FeLV-05821-AB, an infective, noncloned, tissue-origin, FeLV field isolate containing subgroup-A and -B viruses. Vaccine-induced immunity was assessed by comparing the postchallenge-exposure incidence of persistent viremia and the pre- and postchallenge exposure titers of VN and ELISA antibody in cats of the control and vaccine groups. The percentage of cats, that resisted development of persistent viremia after FeLV challenge exposure and the preventable fraction (PF) for the vaccine groups (which adjusts for the severity of the challenge and the degree of innate resistance in the controls) were as follows: adjuvant controls, 26%; FeLV-FAIDS-61E-A inactivated virus vaccine, 95% (PF = 93.2%); FeLV-GA-B peptide vaccine, 5% (-28.4%); FeLV-05821-AB noninactivated vaccine, 67% (55.4%); and commercial FeLV vaccine, 35% (12.2%). The prechallenge exposure mean VN antibody titer for each group was: less than 1:8 in the adjuvant controls; 1:43 in the FeLV-FAIDS-61E-A-vaccinated cats; less than 1:8 in the peptide-vaccinated cats; 1:38 in the noninactivated virus-vaccinated cats group; and 1:12 in the cats vaccinated with the commercial vaccine. Thus, induction of VN antibody in the vaccinated cats, although modest, appeared to be correlated with induction of protective immunity as defined by resistance to FeLV challenge exposure. Results of these studies indicate that inoculation of cats with an experimental inactivated virus vaccine prepared from a molecularly cloned FeLV isolate was most effective in stimulating protective immunity against heterologous and homologous FeLV challenge exposure.  相似文献   

4.
A whole killed FeLV vaccine was developed. By use of a chromatography method of purification and concentration, the resulting vaccine has been shown to be significantly lower in bovine serum albumin and total protein contents than were the same ingredients in the starting materials. The virus was inactivated or killed as an essential part of the vaccine development process. Vaccination trials with the vaccine without use of adjuvants indicated appreciable virus-neutralizing serum titer (greater than or equal to 1:10) in 107 of 110 vaccinated cats. Of 43 cats vaccinated and subsequently challenge exposed with virulent FeLV, only 2 developed persistent virus antigenemia (longer than 1 month), whereas 14 of 22 nonvaccinated control cats developed persistent viremia. In field tests, 2,770 cats from 6 states were vaccinated and observed. Postvaccinal reactions were not observed.  相似文献   

5.
The efficacy of a new recombinant FeLV vaccine (rFeLV), delivered transdermally via a needle-free delivery device was compared to that of an inactivated FeLV vaccine (FeLV-k), administered subcutaneously, with a conventional needle and syringe. Kittens were immunized with either rFeLV (0.25 ml, transdermal) or FeLV-k (1 ml, subcutaneous); or they were sham-vaccinated with physiologic saline (0.25 ml, transdermal). Two vaccinations were administered 21 days apart. Injection sites were monitored for any acute or subacute reactions relative to vaccine administration. Four weeks following the final vaccination, all cats were subject to oro-nasal FeLV challenge. Blood was collected for determination of FeLV antigenemia (p27) at weekly intervals beginning three weeks post-challenge. All of the vaccinated cats from both groups resisted FeLV challenge; and 90% of the control cats developed persistent FeLV antigenemia in response to challenge. No acute or persistent injection site reactions were observed. The rFeLV, delivered transdermally, provides protection against persistent FeLV antigenemia following a robust challenge that is equivalent to that of FeLV-k.  相似文献   

6.
A new recombinant gp70 vaccine was found to be safe and effective for prevention of infection by FeLV. The vaccine incorporates a unique purified saponin adjuvant with the recombinant antigen. Serious systemic reactions were not observed during the efficacy trial. Local reactions were transient and mild. More than 2,000 doses were administered to a cross section of household cats in a field safety trial. Only 1 cat had hypersensitivity reaction, which resolved. Among veterinarians who used the vaccine and the cat owners, the vaccine was judged satisfactory and safe. After rigorous intraperitoneal challenge exposure without use of immunosuppressants, 100% of the controls in the efficacy trial became infected, 70% of which remained persistently infected with FeLV. Among vaccinates, 45% were never viremic and 40% cleared transient infection within 12 weeks after challenge exposure. Of the 20 vaccinated cats, 3 were persistently infected. Overall, 85% of cats vaccinated with this recombinant DNA FeLV vaccine resisted persistent FeLV infection after stringent challenge exposure, which translates to preventable fraction of 78.6%.  相似文献   

7.
Three commercial FeLV vaccines, (A, B, and C) were purchased on the open market and administered to 8- to 20-week-old specific-pathogen-free kittens, according to manufacturers' instructions. A similar group of nonvaccinated kittens served as controls. All kittens were challenge-exposed oronasally with virulent FeLV 4 weeks after the final vaccination. Serum samples were monitored for FeLV-p27 antigenemia using an ELISA at 1- to 2-week intervals for at least 16 weeks after the last day of challenge exposure. Kittens that were either transiently (1 to 4 weeks) or never viremic during this period were counted as recovered, whereas kittens that became viremic and retained viremia for at least 10 weeks were counted as persistently viremic. The 3 vaccines were found to be 39% (vaccine C), 28% (vaccine B), and 17% (vaccine A) efficacious in preventing persistent viremia in immunized, compared with nonimmunized kittens.  相似文献   

8.
Tumor necrosis factor alpha (TNF alpha) levels were determined by enzyme-linked immunosorbent assay (ELISA) and by cell culture bioassay in supernatants of lipopolysaccharide-stimulated feline monocyte cultures and in cat serum samples. There was a good correlation between the results obtained by the two methods. From the fact that TNF alpha was neutralized quantitatively by antibodies to human TNF alpha in feline monocyte supernatants and in feline sera, it was concluded that feline TNF alpha immunologically cross-reacts with human TNF alpha and that the human TNF alpha ELISA can be used to quantitate feline TNF alpha. During the first 6 months after experimental feline immunodeficiency virus (FIV) infection no differences in serum TNF alpha values were observed between infected and non-infected cats. TNF alpha levels increased significantly after primary vaccination with a feline leukemia virus (FeLV) vaccine in FIV infected cats over those in the non-infected controls. During secondary immune response TNF alpha levels rose transiently for a period of a few days in both the FIV positive and the FIV negative cats. After FeLV challenge, TNF alpha levels increased in all animals challenged with virulent FeLV for a period of 3 weeks. This period corresponded to the time necessary to develop persistent FeLV viremia in the control cats. It was concluded from these experiments that in the asymptomatic phase of FIV infection no increased levels of TNF alpha are present, similar to the situation in asymptomatic HIV infected humans. Activation of monocytes/macrophages in FIV infected cats by stimuli such as vaccination or FeLV challenge readily leads to increased levels of TNF alpha.  相似文献   

9.
A blind randomized field trial of a commercial FeLV vaccine was conducted. Cats on study were vaccinated with either a commercial FeLV vaccine or a placebo, then housed with FeLV-positive cats in a ratio of approximately 2 study cats to 1 infected cat (results of the first 12 months of the study have been reported). All surviving placebo-treated and FeLV-vaccinated cats were re-vaccinated 1 year after initial exposure to FeLV-infected cats. Exposure continued for an additional 12 months, and the viremia status of the cats was monitored by immunofluorescent antibody (IFA) and ELISA testing at 4-month intervals. During the second year of observation, 1 additional FeLV-vaccinated cat had positive results of 2 consecutive ELISA tests, but remained IFA negative. Classifying this cat as persistently viremic reduced the estimate of the preventable fraction, but did not alter the conclusions drawn earlier, viz, that vaccination appreciably reduces the number of cats that become persistently viremic after long-term natural exposure.  相似文献   

10.
Three adult bengal tigers, 2 immature white tigers, and 3 adult servals were vaccinated IM with three 1-ml doses of a subunit FeLV vaccine with dosage interval guidelines of the manufacturer. All cats had increased antibody titers to FeLV gp 70 capsular antigen and feline oncornavirus cell membrane-associated antigen during the vaccination trial. Three weeks after the third vaccination, 7 of the 8 cats had gp70 antibody titers greater than 0.2 (optical density), and all 8 cats had feline oncornavirus cell membrane-associated antigen antibody titers greater than 1:8.  相似文献   

11.
OBJECTIVE: To compare protection against FeLV challenge obtained following administration of 2 doses of an adjuvanted, chemically inactivated, whole FeLV (FeLV-k) vaccine with protection obtained following administration of 1 dose of an FeLV-k vaccine followed by 1 dose of a canarypox virus-vectored recombinant FeLV (rCP-FeLV) vaccine. DESIGN: Prospective study. ANIMALS: Thirty-two 9-week-old domestic shorthair cats. PROCEDURE: Cats received 2 doses of the FeLV-k vaccine SC, 21 days apart (n = 11); 1 dose of the FeLV-k vaccine SC and, 21 days later, 1 dose of the rCP-FeLV vaccine transdermally (11); or 2 doses of physiologic saline (0.9% NaCl) solution (control; 10). Four weeks after the second vaccine dose, all cats were challenged with FeLV by means of oronasal administration. Blood samples were collected at weekly intervals beginning 21 days after challenge, and serum was tested for FeLV antigen. RESULTS: All 10 control cats became persistently infected (ie, FeLV antigen detected in > or = 3 consecutive serum samples) following FeLV challenge, whereas only 1 of 11 cats that received 2 doses of the FeLV-k vaccine and none of the 11 cats that received 1 dose of the FeLV-k vaccine and 1 dose of the rCP-FeLV vaccine did. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that protection against FeLV challenge obtained following SC administration of a single dose of an FeLV-k vaccine followed, 21 days later, by transdermal administration of a single dose of an rCP-FeLV vaccine was similar to that obtained following SC administration of 2 doses of the FeLV-k vaccine 21 days apart.  相似文献   

12.
A randomized blind trial of a commercial FeLV vaccine was conducted to evaluate its performance in cats under conditions of long-term natural exposure. Seventy-nine nonviremic, seronegative cats were randomized into 2 groups. Cats were given 3 doses of either FeLV vaccine or placebo (killed rabies virus vaccine) sc at weeks 0, 3, and 9 of the trial. Six weeks later, 44 known-viremic cats were added to the colony. Cats were housed in a single large room and food dishes and litter pans were used in common. Blood samples were collected at 4, 8, and 12 months after the addition of the viremic cats and were assayed for viremia by use of ELISA. Twelve-month samples were also assayed independently by use of indirect fluorescent antibody testing. Investigators conducted assays on coded samples without knowledge of the cat's vaccination status; neither the investigators nor colony personnel knew which cats had been given the FeLV vaccine and which had been given the placebo until the twelfth month of exposure. After 12 months of cohabitation with infected cats, vaccinated cats had a significantly (P less than or equal to 0.02) lower incidence of persistent viremia (defined as 2 positive ELISA test results at least 8 weeks apart or 1 positive indirect fluorescent antibody test result), compared with the placebo-inoculated cats. The incidence of persistent viremia was approximately 3 times greater among the placebo-inoculated cats than among vaccinates.  相似文献   

13.
Kittens immunized with purified native FeLV-gp70 or -gp85 envelope proteins developed ELISA, but not virus neutralizing, antibodies in their serum to both whole FeLV and FeLV-gp70. Kittens vaccinated with envelope proteins and infected with feline sarcoma virus (FeSV) developed smaller tumors than nonvaccinates, but a greater incidence of persistent retroviremia. Similarly, FeLV-gp70 and -gp85 vaccinated kittens were more apt to become persistently retroviremic following virulent FeLV challenge exposure than nonvaccinates. Kittens vaccinated with inactivated whole FeLV developed smaller tumors after FeSV inoculation and had a lower incidence of persistent retroviremia than nonvaccinates. The protective effect of inactivated whole FeLV vaccine against persistent retroviremia was also seen with FeLV challenge-exposed cats. Protection afforded by inactivated whole FeLV vaccine was not associated with virus neutralizing antibodies, although ELISA antibodies to both whole FeLV and FeLV-gp70 were induced by vaccination.  相似文献   

14.
Twenty young adult specific pathogen-free cats were randomly divided into two groups of 10 animals each. One group was vaccinated with two doses of feline leukemia virus vaccine according to the manufacturer's recommendations. All 20 cats were challenge exposed oronasally (4 times over a 1-week period), beginning 3 weeks after immunization, with a virulent subgroup A strain of FeLV (CT600-FeLV). The severity of the FeLV infection was enhanced by treating the cats with methylprednisolone acetate at the time of the last FeLV exposure. Ten of 10nonvaccinated cats became persistently viremic compared with 0/10 of the vaccinates. ELISA antibodies to whole FeLV were present at high concentrations after immunization in all of the vaccinated cats, and there was no observable anamnestic antibody response after challenge exposure. ELISA antibodies to whole FeLV appeared at low concentrations in the serum of nonvaccinated cats after infection but disappeared as the viremia became permanently established. Virus neutralizing antibodies were detected in 3/10 vaccinates and 0/10 nonvaccinates immediately before FeLV challenge exposure, and in 8/10 vaccinates and 1/10 nonvaccinates 5 weeks later. Although vaccination did not consistently evoke virus neutralizing antibodies, it appeared to immunologically prime cats for a virus-neutralizing antibody response after infection. Active FeLV infection was detected in bone marrow cells taken 14 weeks after infection from 10/10 nonvaccinates and 0/10 vaccinates. Latent FeLV infection was not detected in bone marrow cells from any of the vaccinated cats 14 weeks after challenge exposure.  相似文献   

15.
Fel-O-Vax FIV is an inactivated virus vaccine designed as an aid in the prevention of infection of cats, 8 weeks or older, by feline immunodeficiency virus (FIV). It contains two genetically distinct FIV strains. The efficacy of this vaccine was demonstrated in a vaccination-challenge study designed to meet various regulatory requirements for registering the vaccine. Eight-week-old kittens were vaccinated with an immunogenicity vaccine which contained minimal release levels of FIV antigens formulated with a proprietary adjuvant system. Twelve months later, all vaccinates and controls were challenged with a heterologous FIV strain. Following the vigorous challenge exposure, cats were monitored for FIV viremia. It was found that 16% of the vaccinated cats developed viremia while 90% of the controls became persistently infected with FIV, which demonstrated that the vaccine was efficacious and the protective immunity lasted for at least 12 months. The safety of the vaccine was demonstrated by a field safety trial in which only 22 mild reactions of short duration were observed following administering 2051 doses of two pre-licensing serials of Fel-O-Vax FIV to cats of various breeds, ages and vaccination histories. Thus, Fel-O-Vax FIV is safe and efficacious for the prevention of FIV infection in cats.  相似文献   

16.
Bone marrow fibroblast colony-forming units (CFU-F) were evaluated in cats experimentally infected with feline leukemia virus (FeLV). Cats that developed persistent viral infection and anemia (progressor cats) had a progressive decrease in the number of CFU-F at 2, 4, 6, 8, and 10 weeks after inoculation with FeLV. This suppression of CFU-F number in progressor cats ranged from 16 to 44% of the preinoculation CFU-F value. Cats that did not develop persistent viral infection or anemia (regressor cats) had decreased numbers of CFU-F (24% of the preinoculation CFU-F value) at 2 weeks after inoculation, but normal CFU-F numbers at 4, 6, 8, and 10 weeks after inoculation. In vitro incubation of bone marrow mononuclear cells from healthy cats with the 15,000-dalton envelope protein of FeLV resulted in decreased number of CFU-F (21% of that of untreated cultures). The number of CFU-F from bone marrow mononuclear cells incubated with the 27,000-dalton core protein of FeLV was similar to that from untreated cultures.  相似文献   

17.
Fifteen specific-pathogen-free cats were experimentally infected with FeLV; 8 cats recovered after transient or nondetectable viremia, and 7 cats became persistently viremic. Four additional cats served as noninfected controls. Antibodies to whole FeLV (ELISA and immunoblot [western] analysis), antibodies to fixed FeLV-infected cells, and virus-neutralizing antibodies were monitored for as long as 3 years after infection. As a group, cats that recovered after acute infection developed higher titer of these various antibodies than did cats that became persistently viremic. However, specific combination or titer of antibodies was not always found in recovered cats or in persistently viremic cats. Six cats that had recovered from acute FeLV infection nearly 3 years earlier were reinfected with the same virus. Three of the cats appeared to be resistant to reinfection, 2 cats became transiently viremic, and 1 cat became persistently viremic. Slight and transient anamnestic ELISA-detectable antibody response to whole virus was seen after reinfection; immunofluorescence- and western blot-detectable responses were not greatly enhanced. Five FeLV-recovered cats were monitored for 2 years; FeLV infection spontaneously recurred in 1 cat.  相似文献   

18.
Forty-two seronegative cats received an initial vaccination at 8 weeks of age and a booster vaccination at 12 weeks. All cats were kept in strict isolation for 3 years after the second vaccination and then were challenged with feline calicivirus (FCV) or sequentially challenged with feline rhinotracheitis virus (FRV) followed by feline panleukopenia virus (FPV). For each viral challenge, a separate group of 10 age-matched, nonvaccinated control cats was also challenged. Vaccinated cats showed a statistically significant reduction in virulent FRV-associated clinical signs (P = .015), 100% protection against oral ulcerations associated with FCV infection (P < .001), and 100% protection against disease associated with virulent FPV challenge (P < .005). These results demonstrated that the vaccine provided protection against virulent FRV, FCV, and FPV challenge in cats 8 weeks of age or older for a minimum of 3 years following second vaccination.  相似文献   

19.
Monoclonal antibodies specific for 3 distinct epitopes of the species-specific determinants of feline leukemia virus (FeLV) p27 were used in an enzyme-linked immunosorbent assay (ELISA) for measurement of serum p27 in cats infected with FeLV. Group-specific antigen (GSA) of FeLV in peripheral blood leukocytes was also determined by an immunofluorescence assay. Antibodies to FeLV and the feline oncornavirus-associated cell membrane antigen (FOCMA) were also measured. Thirty-six cats were surveyed and assigned to 4 categories. Five developed persistent viremia (category 1), characterized by continuous expression of p27, GSA, and low antibody titers to FeLV and FOCMA. Eleven cats with transient viremia (category 2) and 13 cats that were never detectably viremic (category 3), as judged by absence of GSA and p27, developed increased antibody titers to FeLV and FOCMA. Seven cats were never viremic, as judged by the GSA in the peripheral blood leukocytes, but still had detectable serum p27 (category 4). Most category 4 cats developed high antibody titers against FOCMA and/or FeLV. Of 307 field cats examined, 7% of the healthy cats and 10% of the sick cats could be assigned to category 4. However, this difference was not significant (P greater than or equal to 0.05). Of 26 cats with neoplasms 2 (1 of 12 with lymphosarcoma) could be classified as category 4. Because virus could be isolated from 2 category 4 cats, they were considered immune carriers.  相似文献   

20.
Control of feline leukaemia virus   总被引:1,自引:1,他引:0  
Feline leukaemia virus (FeLV) usually occurs in its natural species, the domestic cat. FeLV is also important to human individuals as a comparative model, as it may cause a variety of diseases, some malignant and some benign, such as immunosuppression, which bears a resemblance to AIDS (acquired immune deficiency syndrome) in man. FeLV is transmitted among cats by contagion. The main sources of infection are persistently infected carrier cats which continuously excrete virus. Dissemination of FeLV among cats may be prevented by identifying infected carrier cats and removing them from contact with non-infected cats. Removal programmes using indirect immunofluorescence antibody tests were applied successfully in The Netherlands. The proportion of FeLV-positive cats decreased from 9% in 1974 to approximately 3% in 1985 during such a programme. The results of a removal programme carried out in a catbreeders' society were even better: the incidence of cats positive for FeLV decreased from 11% in 1974 to less than 2% within 4 years. None of the cats tested in this society has been found to be positive for FeLV since 1984. Besides removal programmes, other methods of control, such as pre-exposure treatment, were developed to prevent the spread of FeLV. We attempted to protect kittens against oronasal infection with FeLV by treatment with virus-neutralizing (VN) monoclonal antibodies (MoAbs) directed against an epitope on the viral glycoprotein gp70. However, no protection was achieved. It is unlikely that the amount of VN antibodies, the mode and route of their application or the infectious dose of FeLV used can account for this failure. Other possible explanations for the lack of protective effect are that (i) the restricted epitope specificity of the MoAb preparation used may have led to selection of neutralization-resistant virus mutants, or (ii) other mechanisms than virus neutralization (complement-mediated lysis, antibody-dependent cell cytotoxicity), that may be involved in protection, function less efficiently with MoAb. However, in the light of our finding that an early anti-idiotypic response is observed in all cats following administration of the MoAb preparation, the rapid clearance of anti-FeLV MoAb from the circulation is a more likely explanation. Efforts were further made to develop a vaccine for controlling FeLV infection. The immunostimulating complex vaccine (FeLV-ISCOM vaccine), a subunit vaccine in which FeLV gp70 is presented in a particular manner, looks promising. The protective effect of FeLV-ISCOM vaccine was studied by vaccinating six 8-week-old SPF cats with ISCOM, followed by oronasal challenge with FeLV.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号