共查询到20条相似文献,搜索用时 15 毫秒
1.
Domenek S Morel MH Bonicel J Guilbert S 《Journal of agricultural and food chemistry》2002,50(21):5947-5954
Size exclusion high-performance liquid chromatography analysis was carried out on wheat gluten-glycerol blends subjected to different heat treatments. The elution profiles were analyzed in order to follow the solubility loss of protein fractions with specific molecular size. Owing to the known biochemical changes involved during the heat denaturation of gluten, a mechanistic mathematical model was developed, which divided the protein denaturation into two distinct reaction steps: (i) reversible change in protein conformation and (ii) protein precipitation through disulfide bonding between initially SDS-soluble and SDS-insoluble reaction partners. Activation energies of gluten unfolding, refolding, and precipitation were calculated with the Arrhenius law to 53.9 kJ x mol(-1), 29.5 kJ x mol(-1), and 172 kJ x mol(-1), respectively. The rate of protein solubility loss decreased as the cross-linking reaction proceeded, which may be attributed to the formation of a three-dimensional network progressively hindering the reaction. The enhanced susceptibility to aggregation of large molecules was assigned to a risen reaction probability due to their higher number of cysteine residues and to the increased percentage of unfolded and thereby activated proteins as complete protein refolding seemed to be an anticooperative process. 相似文献
2.
Pallos FM Robertson GH Pavlath AE Orts WJ 《Journal of agricultural and food chemistry》2006,54(2):349-352
The quantity of available wheat gluten exceeds the current food use markets. Thermoforming is an alternative technical means for transforming wheat gluten. Thermoforming was applied here to wheat gluten under chemically reductive conditions to form pliable, translucent sheets. A wide variety of conditions, i.e., temperature, reducing agents, plasticizers and additives were tested to obtain a range of elastic properties in the thermoformed sheets. These properties were compared to those of commercially available polymers, such as polypropylene. Elasticity of the gluten formulations were indexed by Young's modulus and were in the range measured for commercial products when tested in the 30-70% relative humidity range. Removal of the gliadin subfraction of gluten yielded polymers with higher Young's modulus since this component acts as a polymer-chain terminator. At relative humidity less than 30% all whole gluten-based sheets were brittle, while above 70% they were highly elastic. 相似文献
3.
Hernández-Muñoz P Kanavouras A Ng PK Gavara R 《Journal of agricultural and food chemistry》2003,51(26):7647-7654
Gliadins and glutenins were extracted from commercial wheat gluten on the basis of their extractability in ethanol and used to produce film-forming solutions. Films cast using these gliadin- and glutenin-rich solutions were characterized. Glycerol was used as a plasticizer, and its effect on the films was also studied. Films obtained from the glutenin fraction presented higher tensile strength values and lower elongation at break and water vapor permeability values than gliadin films. Gliadin films disintegrated when immersed in water. The GAB isotherm model was used to describe the equilibrium moisture sorption of the films. The glycerol concentration largely modified mechanical and water vapor barrier properties of both film types. 相似文献
4.
This study was undertaken to enable the determination of hydrolysis and functionality of proteins in situ during fermentation of wheat doughs. Wheat proteins were fractionated and labeled with fluorescein-isothiocyanate (FITC). Fluorescent proteins were incorporated into wheat sourdoughs inoculated with lactobacilli and into neutral and acid control doughs. Doughs containing fungal protease were furthermore evaluated. Doughs were analyzed by extraction and size exclusion chromatography analysis of sodium dodecyl sulfate soluble proteins. Labeled proteins exhibited characteristics comparable to native proteins, with respect to proteolytic degradation and polymerization. Proteolytic breakdown of proteins was enhanced at low pH. Glutenin subunits were incorporated into the gluten macropolymer at neutral pH. Polymerization of FITC proteins was not observed at low pH. Sourdoughs were comparable to acid control doughs, major effects were attributed to changes of pH, rather than microbial metabolism. A synergistic effect with respect to proteolytic activity was observed between fungal protease and L. pontis. 相似文献
5.
6.
Rombouts I Lagrain B Brunnbauer M Koehler P Brijs K Delcour JA 《Journal of agricultural and food chemistry》2011,59(4):1236-1243
Results in this paper confirm heat-induced isopeptide bond formation in wheat gluten. Heating (24 h, 130 °C) of wheat gluten [moisture content 7.4%] decreased its extractability in sodium dodecyl sulfate containing buffer (pH 6.8), even after reduction of disulfide (SS) bonds. Thus, both SS bonds and non-SS bonds were responsible for the extractability loss. Cross-links of the lysinoalanine and lanthionine type were not present in the heated samples, but heat treatment reduced levels of available amino groups. Heating of purified and alkylated high molecular weight glutenin subunits (HMW-GS) under similar conditions also resulted in extractability loss, demonstrating that cross-linking did not solely depend on the availability of cysteine or cystine. These observations indicated that heat treatment had induced isopeptide bond formation, resulting in larger and unextractable molecules. Heating HMW-GS lysine- and glutamine-containing peptides induced the formation of isopeptide bonds, thereby supporting the above hypothesis. The level of isopeptide bond formation increased with heating time. 相似文献
7.
Micard V Belamri R Morel M Guilbert S 《Journal of agricultural and food chemistry》2000,48(7):2948-2953
Chemical (vapors of formaldehyde), physical (temperature, UV and gamma radiation), and aging treatments were applied to wheat gluten films. Changes in film mechanical properties, water vapor permeability, solubility, and color coordinates were investigated. An aging of 360 h led to a 75 and 314% increase in tensile strength and Young's modulus, respectively, and a 36% decrease in elongation. Severe thermal (above 110 degrees C, 15 min) and formaldehyde treatments highly improved the mechanical resistance of the films. Under these conditions, up to 376 and 654% increase in tensile strength and Young's modulus and up to 66% decrease in elongation have been observed. Water solubility was only slightly modified, whereas water vapor permeability was not affected. Color coordinates of films heated above 95 degrees C changed to a great extent. An almost total insolubilization of proteins in sodium dodecyl sulfate occurred for heat- and formaldehyde-treated films, due to the modification of protein network leading to changes in properties of the films. 相似文献
8.
Fractionation and reconstitution experiments provide insight into the role of gluten and starch interactions in pasta quality 总被引:1,自引:0,他引:1
Delcour JA Vansteelandt J Hythier M Abécassis J Sindic M Deroanne C 《Journal of agricultural and food chemistry》2000,48(9):3767-3773
Commercial durum wheat (Triticum durum desf.) semolina was fractionated into starch, gluten, and water extractables. Starch surface proteins and surface lipids were removed, and two starches with manipulated granule size distributions were produced to influence starch properties, affecting its interaction with other semolina components. Reconstituted spaghetti was made with untreated (control) or treated starches. The pasta made from the starting semolina material had lower cooking time and was of lower quality than the samples made from reconstituted material. This was not due to changes in gluten properties as a result of the first step of the fractionation process. For the reconstituted samples, starch interaction behavior was not changed after surface protein or surface lipid removal. Starch surface properties thus do not influence the starch interaction behavior, indicating that starch-gluten interaction in raw (uncooked) pasta is mainly due to physical inclusion. All reconstituted pasta samples also had generally the same cooking quality. It was concluded that the small changes in starch gelatinization behavior, caused by the above-mentioned starch modifications, are of little importance for pasta quality. 相似文献
9.
10.
The influence of nitrogen (N) fertilizer application rate (0 vs. 70 vs. 140 kg N ha–1) and timing (early = at sowing vs. late = at sowing and before heading) on the amount of protein groups, amount and size distribution of mono‐ and polymeric proteins, and gluten strength was investigated in one set of wheat cultivars (Triticum aestivum L.). Due to their genetic background, the cultivars had different protein concentrations and gluten strengths. Despite this, all of them reacted similarly on rate and timing of nitrogen application. The rate of nitrogen fertilizer increased the variation in protein concentration, gluten strength, and also the variation in most of the investigated protein components. Higher nitrogen fertilizer rate increased protein concentration, decreased gluten strength, and increased the total amount of glutenins and gliadins as well as the amounts of most mono‐ and polymeric proteins. Timing of fertilizer did not influence protein concentration. The gluten strength and the relations of proteins were changed by the timing of fertilizer. Early nitrogen feritilizer applications led to higher gluten strength and a higher percentage of total unextractable polymeric protein in the total polymeric protein and large unextractable polymeric protein in the total large polymeric protein, compared to late nitrogen fertilizer applications. 相似文献
11.
Ruyman Nazco Roberto Javier Peña Karim Ammar Dolors Villegas José Crossa Conxita Royo 《Genetic Resources and Crop Evolution》2014,61(6):1219-1236
With the aim of identifying durum wheat landraces (LR) with a potential use in breeding programs for gluten strength enhancement, the allelic combinations present at five glutenin loci were determined in a collection of 155 LR from 21 Mediterranean countries. A set of 18 modern cultivars (MC) was used for comparison. Gluten strength was determined by SDS-sedimentation test on grain samples from field experiments conducted during 3 years. A total number of 131 different allelic/banding pattern combinations were found. Taking together high (HMW-) and low (LMW-) molecular weight glutenin subunit loci resulted in 126 combinations in LR, but only nine in MC, which are characterized for having strong gluten. Two LMW-2 type models were identified in the collection and LMW-1 types were absent. LMW-2 was present in 78 % of MC, including the only three with outstanding gluten strength (Ocotillo, Claudio and Meridiano), while 14 % of the LR had LMW-2 and 6 % LMW-2?. In the LR a known combination LMW-2 (aaa) and three new ones had a positive effect on the gluten strength. LMW-2 models were found in high frequency in LR from Italy and the three Maghreb countries; from medium to low frequencies in genotypes from Turkey, Jordan, Lebanon, Portugal and Spain, and were absent in the remaining countries. The large variability found in LR proved their potential value in breeding to broaden the genetic basis of gluten quality improvement. Genotypes interesting for breeding purposes are identified. 相似文献
12.
Ferulic acid (FA, 4.9-17.7 microg/100 mg), sinapic acid (SA, 1.4-3.5 microg/100 mg), and traces of p-coumaric acid and vanillic acid were detected after saponification of six wheat glutens from industrial and pilot-scale origins. FA and SA occurred mostly as soluble-bound and insoluble-bound forms according to their extractability by acetone/methanol/water (7:7:6, v/v/v). The major part of FA (50-95%) was found in the unextractable fraction, whereas SA was mostly extractable (64-85%). The carbohydrate contents of the glutens were determined also after acid hydrolysis. The highest levels of glucose, arabinoxylan, and FA were obtained from the unextractable fractions of the pilot-scale extracted glutens, probably in relation with a lower efficiency of washing during extraction compared to industrial processes. On the other hand, SA compounds were in similar concentrations in all samples, suggesting their involvement in specific interactions during gluten protein agglomeration. Saponification of the soluble-bound phenolic acids released mainly glucose, whereas a beta-glucosidase treatment had no effect. FA and SA extractability, especially that of soluble-bound ones, decreased strongly in overmixed gluten/water doughs. These low molecular weight conjugates of phenolic acids could be involved in the dough breakdown phenomenon. 相似文献
13.
施氮水平对小麦子粒蛋白质组分和加工品质的影响 总被引:13,自引:3,他引:13
选用两个优质小麦品种烟农15号和济麦19号,研究了施氮水平对小麦子粒蛋白质组分和加工品质的影响。田间试验设4个施氮水平,即N.0、120、240和360.kg/hm2。结果表明,施用氮肥对子粒发育前期清蛋白和球蛋白含量有明显的提高效应,但随子粒灌浆充实,这种效应逐渐削弱,到成熟期,施氮处理虽能提高子粒清蛋白和球蛋白的含量,但不同施氮水平间无明显差异。施用氮肥还能显著地提高子粒醇溶蛋白和麦谷蛋白的含量,尤其是子粒麦谷蛋白的含量,使子粒麦谷蛋白/醇溶蛋白比值提高。试验还表明,施用氮肥能明显提高子粒湿面筋含量,延长面团形成时间、面团稳定时间和断裂时间。综合分析看出,子粒醇溶蛋白和麦谷蛋白的含量以及麦谷蛋白/醇溶蛋白比值是影响小麦加工品质的重要因素,可以作为小麦品质育种中亲本及后代材料的选择、评价和优质栽培技术评价的依据。 相似文献
14.
Study of the temperature effect on the formation of wheat gluten network: influence on mechanical properties and protein solubility 总被引:9,自引:0,他引:9
Cuq B Boutrot F Redl A Lullien-Pellerin V 《Journal of agricultural and food chemistry》2000,48(7):2954-2959
Modifications of mechanical properties of wheat dough during thermal treatments depend mainly on the capacity of wheat gluten proteins to establish intra- and intermolecular interactions when subjected to high-temperature processing. The present study investigates the effect of thermal treatments on the mechanical properties and protein solubility of wheat gluten-based network. The increase in treatment temperatures (from 80 to 135 C) induces an increase in mechanical resistance of the gluten network (tensile strength increases from 0.26 to 2.04 MPa) and a decrease in deformability (elongation decreases from 468 to 236%). The increase in temperature (from 80 to 135 C) also induces a very strong reduction of protein solubility in 2% SDS (from 68 to 0%) that could be correlated to the mechanical changes observed. It was concluded that the modifications of the wheat gluten network properties seem to depend mainly on the temperature level, as temperatures >108-116 C allow activation of thermosetting reactions. 相似文献
15.
Analysis of taste-active compounds in an enzymatic hydrolysate of deamidated wheat gluten 总被引:6,自引:0,他引:6
Hydrolyzed plant proteins are widely used as ingredients in culinary products for their glutamate-like ("umami") taste. Three hydrolysates were prepared from wheat gluten using different enzymatic approaches. Comparison of their taste profiles revealed the enzymatic hydrolysate of an acid-deamidated wheat gluten (WGH-3) to be the least bitter of all and to elicit an intense glutamate-like taste. Its umami taste intensity was similar to that of an enzymatic hydrolysate in which glutaminase had been employed to convert free glutamine to glutamic acid and which had a 3-fold higher concentration of free glutamate. Reconstitution studies based on the results of the chemical analysis of WGH-3 and sensory comparison of the model solution and WGH-3 indicated that other components in addition to glutamate and organic acids contribute to its glutamate-like taste. WGH-3 was fractionated by gel permeation chromatography and reversed phase high-performance liquid chromatography, and two fractions with a pronounced glutamate-like taste were obtained. In one of them four pyroglutamyl peptides were tentatively identified: pGlu-Pro-Ser, pGlu-Pro, pGlu-Pro-Glu, and pGlu-Pro-Gln. Apparently, these peptides were formed by cyclization of the N-terminal glutamine residues during the preparation of the hydrolysates. 相似文献
16.
Ingelbrecht JA Verwimp T Grobet PJ Delcour JA 《Journal of agricultural and food chemistry》2001,49(4):1783-1789
Three industrial pasta processing lines for different products (macaroni, capellini and instant noodles) were sampled at three subsequent stages (semolina, extruded, and dried end products) in the process. Arabinoxylans (AX) and arabinogalactan peptides (AGP) were analyzed. Although very low endoxylanase activities were measured, the level of water-extractable AX (WE-AX) increased, probably because of mechanical forces. No change was observed in the level and structural characteristics of AGP. The WE-AX molecular weight (MW) profiles showed a very small shift toward lower MW profiles; those of AGP revealed no changes as a result of the production process. After separation of WE-AX and AGP, (1)H NMR analysis and gas chromatography of the alditol acetates obtained following hydrolysis, reduction, and acetylation revealed no changes in the arabinose substitution profile of the WE-AX samples during pasta processing. At optimal cooking times, WE-AX losses in the cooking water are small (maximally 5.9%). However, the loss of AGP is more pronounced (maximally 25.0%). Overcooking led to more losses of both components. 相似文献
17.
18.
Popineau Y Deshayes G Lefebvre J Fido R Tatham AS Shewry PR 《Journal of agricultural and food chemistry》2001,49(1):395-401
The composition of high molecular weight (HMW) subunits of glutenin determines the gluten strength and influences the baking quality of bread wheat. Here, the effect of transgenes coding for subunits 1Ax1 and 1Dx5 was studied in two near-isogenic wheat lines differing in their HMW subunit compositions and mixing properties. The subunits encoded by the transgenes were overexpressed in the transformed lines and accounted for 50-70% of HMW subunits. Overexpression of 1Ax1 and 1Dx5 subunits modified glutenin aggregation, but glutenin properties were much more affected by expression of the 1Dx5 transgene. This resulted in increased cross-linking of glutenin polymers. In dynamic assay, the storage and loss moduli of hydrated glutens containing 1Dx5 transgene subunits were considerably enhanced, whereas expression of the 1Ax1 transgene had a limited effect. The very high strength of 1Dx5 transformed glutens resulted in abnormal mixing properties of dough. These results are discussed with regard to glutenin subunit and glutenin polymer structures. 相似文献
19.
为了探讨了不同脱酰胺处理和双酶协同作用方式对小麦面筋蛋白酶解效率及其产物抗氧化活性的影响,该文研究了小麦面筋蛋白在各种预处理方式和酶解条件下的蛋白回收率、水解度、抗氧化性能及肽分子量分布情况。结果显示,单独热处理(90℃,30 min)小麦面筋蛋白对其酶解效率无显著影响,而采用添加0.5 mol/L柠檬酸溶液进行热处理(质量分数为5%,90℃,30 min)可显著(P0.05)提高其蛋白回收率。此外,酶制剂添加顺序及双酶共同水解作用时间对酶解效率均具有较大影响:加入谷氨酰胺酶预先水解对小麦面筋蛋白的深度水解有促进作用;一定时间内的双酶协同作用有利于酶解的进行,但较长时间的双酶作用反而会抑制酶解效率。采用谷氨酰胺酶(质量分数为0.2%)对经柠檬酸加热处理的小麦面筋蛋白作用12 h后再加入胰酶(质量分数为0.6%)共同作用7 h可使蛋白回收率达70.74%,水解度达到9.88%;另外,酶解产物的自由基清除能力ABTS+(2,2’-Azinobis-(3-ethylbenzthiazoline-6-sulphonate)+)值与氧化自由基吸收能力(ORAC,oxygen radical absorbance capacity)值分别达到478.95 mmol/g和213.85μmol/g,提示该酶解产物是一种潜在优秀食品抗氧化剂。研究结果可为拓宽小麦面筋蛋白的应用领域,以及高效制备抗氧化活性肽提供方法和理论指导。 相似文献
20.
利用动态流变仪对8种小麦面筋系统的进行小形变试验,研究在振动模式下的频率扫描时,面筋系统流变学特性,从分子动力学的角度进行解析,并引入Pierre Gilles de Gennes等人的管式模型理论基础性地对面筋流变行为进行阐述。试验表明:面筋蛋白转变温度在52.6~58.5℃间;0.1~40℃间,频率扫描下,时间-温度叠加法算出20℃时表观活化能在4602.57~6511.16 J/mol间,不同样品间有较大的差异;Arrhenius模型和WLF模型在拟合面筋系统叠合曲线的效果上一致。通过SPSS分析相关性表明:在面筋蛋白转变温度下,固定频率的温度扫描的弹性模量和在不同温度下的频率扫描的弹性模量成显著的正相关;面筋蛋白的转变温度与表观活化能呈较显著的正相关。该试验结果为小麦面筋相关制品的开发提供了参考。 相似文献