共查询到20条相似文献,搜索用时 15 毫秒
1.
Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation 总被引:4,自引:0,他引:4
Takahashi R Ohmori R Kiyose C Momiyama Y Ohsuzu F Kondo K 《Journal of agricultural and food chemistry》2005,53(11):4578-4582
Several studies have demonstrated that the daily intakes of soy foods were associated with a reduced cardiovascular risk. The aim of our study was to investigate the inhibitory effect of black soybeans on low density lipoprotein (LDL) oxidation in comparison to yellow soybeans. The extract from black soybean had a longer LDL oxidation lag time than that from yellow soybean (205 +/- 16 and 65 +/- 3 min, respectively). When both soybeans were divided into the seed coat and the mixture of the germ and cotyledon, the diluted extract solution from the black soybean seed coat prolonged the lag time significantly more than the original extract of the yellow soybean seed coat. On the other hand, antioxidant effects of the extract from the mixture of germs and cotyledons were similar in both soybeans. Regarding total polyphenol contents, the seed coat of black soybean had a higher polyphenol content than that of yellow soybean (29.0 +/- 0.56 and 0.45 +/- 0.02 mg/g, respectively). Interestingly, the mixture of the germ and cotyledon hydrolyzed by beta-glucosidase in both soybeans showed a stronger inhibitory effect on LDL oxidation than that before being hydrolyzed by beta-glucosidase. These results suggest that black soybeans may be more effective in inhibiting LDL oxidation than yellow soybeans because of total polyphenols contents in its seed coat. In addition, aglycones, which are rich in soybeans fermented or hydrolyzed by beta-glucosidase, may play a crucial role in the prevention of oxidation-related diseases. 相似文献
2.
The effects of boiling and steaming processes on the phenolic components and antioxidant activities of whole yellow (with yellow seed coat and yellow cotyledon) and black (with black seed coat and green cotyledon) soybeans were investigated. As compared to the raw soybeans, all processing methods caused significant (p < 0.05) decreases in total phenolic content (TPC), total flavonoid content (TFC), condensed tannin content (CTC), monomeric anthocyanin content (MAC), DPPH free radical scavenging activity (DPPH), ferric reducing antioxidant power (FRAP), and oxygen radical absorbing capacity (ORAC) in black soybeans. Pressure steaming caused significant (p < 0.05) increases in TPC, CTC, DPPH, FRAP, and ORAC in yellow soybeans. The steaming resulted in a greater retention of TPC, DPPH, FRAP, and ORAC values in both yellow and black soybeans as compared to the boiling treatments. To further investigate the effect of processing on phenolic compounds and elucidate the contribution of these compounds to changes of antioxidant activities, phenolic acids, isoflavones, and anthocyanins were quantitatively determined by HPLC. The pressure steaming treatments caused significant (p < 0.05) increases in gallic acid and 2,3,4-trihydroxybenzoic acid, whereas all treatments caused significant (p < 0.05) decreases in two predominant phenolic acids (chlorogenic acid and trans-cinnamic acid), and total phenolic acids for both yellow and black soybeans. All thermal processing caused significant (p < 0.05) increases in aglucones and beta-glucosides of isoflavones, but caused significant (p < 0.05) decreases in malonylglucosides of isoflavones for both yellow and black soybeans. All thermal processing caused significant (p < 0.05) decreases of cyanidin-3-glucoside and peonidin-3-glucoside in black soybeans. Significant correlations existed between selected phenolic compositions, isoflavone and anthocyanin contents, and antioxidant properties of cooked soybeans. 相似文献
3.
Srivastava A Harish R Shivanandappa T 《Journal of agricultural and food chemistry》2006,54(3):790-795
Roots of Decalepis hamiltonii are consumed as pickles and as a health drink in southern India for their health benefits. The antioxidant properties of the root extracts have been shown previously; this paper reports the isolation of antioxidant compounds from the aqueous extract of the roots of D. hamiltonii. Five novel antioxidant compounds were isolated and characterized by NMR and MS. The compounds exhibited free radical scavenging activity in vitro and inhibited low-density lipoprotein oxidation. This study demonstrates that the root extract of D. hamiltonii is a cocktail of several antioxidant compounds with health implications. 相似文献
4.
Black soybeans have been used as an excellent dietary source for disease prevention and health promotion in China for hundreds of years. However, information about the distribution of health-promoting phenolic compositions in different physical parts of black soybean and the contribution of phenolic compositions to overall antioxidant capacity is limited. To elucidate the distribution of phenolic composition and their contribution to antioxidant activities in black soybean, the total and individual phenolic profiles, and antioxidant capacities of seed coat, dehulled and whole black soybean were systematically investigated. The seed coat exhibited much higher total phenolic indexes and antioxidant activities than whole and dehulled black soybean. Dehulled black soybean possessed similar levels of total phenolic content, total flavonoid content, 2-diphenyl-1-picryhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP), and oxygen radical absorbance capacity (ORAC) activities as compared to whole yellow soybean. Cyanidin-3-glucoside, petunidin-3-glucoside, and peonidin-3-glucoside were detected in the seed coat but not in dehulled black soybean and yellow soybean. Among benzoic acid detected, caffeic and chlorogenic acid were the predominant phenolic acids. Whole black soybean and dehulled black soybean exhibited similar isoflavone contents in 7- O-beta-glucosides and malonylglucosides of daidzein and genistein. The seed coat possessed significantly ( p < 0.05) lower 7- O-beta-glucosides and malonylglucosides of daidzein and genistein, acetylglycitin, and total isoflavones than whole and dehulled black soybean. The contribution of phenolics in the seed coat to the antioxidant activity of black soybean parts depends on the assay methods. When measured with the DPPH and FRAP methods, the seed coat contributed 90% of the total antioxidant capacity of black soybean. However, when measured with the ORAC method, the seed coat and dehulled portion contributed approximately equally the total antioxidant capacity of black soybeans. The information generated from this study on the distribution and content of their active components is useful for the effective use of black soybeans as an ingredient for promoting health. 相似文献
5.
Wallace S Vaughn K Stewart BW Viswanathan T Clausen E Nagarajan S Carrier DJ 《Journal of agricultural and food chemistry》2008,56(11):3966-3972
Silymarin encompasses a group of flavonolignans that are extracted from Silybum marianum (Asteraceae) fruits. The silymarins have previously been reported to lower low-density lipoprotein (LDL) levels associated with high-fat diets. The present study reports the efficacy of the silymarins in inhibiting oxidized low-density lipoprotein (oxLDL) generation and subsequent scavenger receptor (SR) mediated monocyte adherence to oxLDL. The flavonolignans that comprise silymarin include silichristin (SC), silidianin (SD), silibinin (SBN), and isosilibinin (IS). These flavonolignans (300 microM) lowered oxLDL generation, measured by the thiobarbituric acid-reacting substances (TBARS) assay, by 60.0, 28.1, 60.0, and 30.1%, respectively. SBN treatment of LDL in the presence of copper sulfate (CuSO 4) resulted in a significant dose-dependent inhibition of monocyte adhesion. Inhibition was paralleled by a decrease in binding of anti-oxLDL antibodies recognized by U937 monocyte Fc gamma receptors (FcgammaR). These results showed that silymarin and SBN, likely through antioxidant and free radical scavenging mechanisms of action, inhibit the generation of oxLDL and oxidation-specific neoepitopes recognized by SR and FcgammaR expressed on monocytes/macrophages. 相似文献
6.
Katsube T Tabata H Ohta Y Yamasaki Y Anuurad E Shiwaku K Yamane Y 《Journal of agricultural and food chemistry》2004,52(8):2391-2396
Oxidation of low-density lipoprotein (LDL) has been implicated in atherogenesis. Antioxidants that prevent LDL from oxidizing may reduce atherosclerosis. This study investigated LDL antioxidant activity in edible plant products for development of dietary supplementation to prevent atherosclerosis. Fifty-two kinds of edible plants were extracted using 70% aqueous ethanol solution, and the antioxidant activity of the extracts, which inhibit human LDL oxidation induced by copper ion, was determined on the basis of the oxidation lag time and represented as epigallocatechin 3-gallate equivalent. 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and total phenolic content were also measured for comparisons with antioxidant activity in LDL. Plant products showing the greatest activity in LDL oxidation assay were akamegashiwa (Mallotus japonicus) leaf, Japanese privet (Ligustrum japonicum) leaf, green tea [Camellia sinensis (L.) O. Kuntze], and astringent persimmon (Diospyros kaki). The present study revealed high levels of LDL antioxidant activity in plant products for which such activity levels are underestimated in the DPPH radical scavenging assay and Folin-Ciocalteu assay. 相似文献
7.
果袋透气性对苹果黑点病、Pb及总酸含量的影响 总被引:2,自引:1,他引:2
选择9种代表性的双层果袋进行试验,果实采收后10 d内对果实各项指标按GB10651-1989进行检测,结果发现:果袋的透气性对苹果果实黑点病指数、总酸含量及重金属Pb含量有显著影响。果袋透气性越大,果实黑点病指数越小;果实中总酸含量越高,口感越好;果实中Pb的含量越大(同种条件下),安全风险越高。在保证苹果安全的前提下,苹果黑点病指数越低越好,总酸含量越高越好,结合中国绿色苹果生产标准及现有的技术水平,宜选用透气性为3~5 μm/(Pa·s)的果袋。 相似文献
8.
Kanner J Gorelik S Roman S Kohen R 《Journal of agricultural and food chemistry》2012,60(36):8790-8796
Recent studies dramatically showed that the removal of circulating modified low-density lipoprotein (LDL) results in complete prevention of atherosclerosis. The gastrointestinal tract is constantly exposed to food, some of it containing oxidized compounds. Lipid oxidation in the stomach was demonstrated by ingesting heated red meat in rats. Red wine polyphenols added to the rats' meat diet prevented lipid peroxidation in the stomach and absorption of malondialdehyde (MDA) in rat plasma. In humans, postprandial plasma MDA levels rose by 3-fold after a meal of red meat cutlets. MDA derived from meat consumption caused postprandial plasma LDL modification in human. The levels of plasma MDA showed a 75% reduction by consumption of red wine polyphenols during the meat meal. Locating the main biological site of action of polyphenols in the stomach led to a revision in the understanding of how antioxidants work in vivo and may help to elucidate the mechanism involved in the protective effects of polyphenols in human health. 相似文献
9.
Effects of animal manure and mineral fertilizer on the total carbon and nitrogen contents of soil size fractions 总被引:1,自引:0,他引:1
Bent T. Christensen 《Biology and Fertility of Soils》1988,5(4):304-307
Summary Soil was sampled in autumn 1984 in the 132 field (sandy loam soil) of the Askov long-term experiments (started in 1894) and fractionated according to particle size using ultrasonic dispersion and sedimentation in water. The unmanured plot and plots given equivalent amounts of N (1923–1984 annual average, 121 kg N/ha) in either animal manure or mineral fertilizer were sampled to a depth of 15 cm, fractionated and analysed for C and N. Mineral fertilizer and animal manure increased the C and N content of whole soil, clay (<2 m) and silt (2–20 m) size fractions relative to unmanured samples, while the C content of the sand size fractions (fine sand 1, 20–63 m; fine sand 2, 63–200 m; coarse sand, 200–2000 m) was less affected. Clay contained 58% and 65°70 of the soil C and N, respectively. Corresponding values for silt were 30% and 26%, while sand accounted for 10% of the soil C. Fertilization did not influence this distribution pattern. The C : N ratio of the silt organic matter (14.3) was higher and that of clay (10.6) lower than whole-soil C:N ratios (12.0). Fertilization did not influence clay and silt C : N ratios. Animal manure caused similar relative increases in the organic matter content of clay and silt size fractions (36%). In contrast, mineral fertilizer only increased the organic matter content of silt by 21% and that of clay by 14%. 相似文献
10.
An experiment was conducted to determine the effects of chloride (Cl) and reduced forms of nitrogen (N) on the nitrate (NO3), total N, and Cl concentrations in onion (Allium cepa L.) plants using a non‐recirculating nutrient film growing system. The reference treatment was a nutrient solution containing 19 mM NO3 and 1.25 mM ammonium (NH4). The results from this treatment were compared with that obtained using mixed amino acid, urea, and glycine treatments with or without additional Cl (10 mM) in which 20% of the NO3 in the reference treatment was substituted with one of these reduced forms of N. Fresh and dry weights of the onion plants were not affected by the treatments. The NO3 content was considerably lower in the mixed amino acid treatment, being 4236 mg NO3/kg FW as compared to either the reference, urea, or glycine treatments. The NO3 contents of the plants in these treatments were 5393, 5339, and 5261 mg NO3/kg FW, respectively. The presence of Cl in the nutrient solution also reduced the NO3 content of the plants from 5816 to 4299 mg NO3/kg FW. The reduced‐N treatments increased the total N contents of the plants. The Cl content of the plants was increased by the Cl supplied and by the reduced forms of N in the nutrient solution. 相似文献
11.
长期有机培肥黑土有机碳、全氮及玉米产量稳定性的变化特征 总被引:2,自引:2,他引:2
12.
Granvogl M Wieser H Koehler P Tucher SV Schieberle P 《Journal of agricultural and food chemistry》2007,55(10):4271-4277
Sulfur (S) fertilization has been long-known to influence the amounts of total free amino acids in plants. To determine the impact of S deficiency in wheat on the concentration of, in particular, free asparagine, the spring wheat cultivar 'Star' was grown in a laboratory scale (5 L pot) at five different levels of S fertilization. After maturity, the kernels were milled into white flours (1-5) and analyzed for their contents of total S and total nitrogen as well as for free amino acids and glucose, fructose, maltose, and sucrose. Extremely high concentrations of free asparagine (Asn; 3.9-5.7 g/kg) were determined in flours 1 and 2 (30 and 60 mg of S), whereas much lower amounts (0.03-0.4 g/kg) were present in flours grown at higher S levels. The amounts of the reducing carbohydrates were, however, scarcely affected by S fertilization. In agreement with the high amount of Asn in flours 1 and 2, heating of both flours led to the generation of very high amounts of acrylamide (1.7-3.1 mg/kg) as well as of 3-aminopropionamide (40-76 mg/kg). Similar concentrations were measured in crispbread prepared from both flours. Application of rheological measurements on doughs prepared from each flour and a determination of the loaf volume of bread baked therefrom clearly indicated that flours 1 and 2 would be excluded from commercial bread processing due to their poor technological properties. Two commercial flours showed relatively low concentrations of acrylamide after a thermal treatment. 相似文献
13.
The content of soil organic matter (SOM) can be considered as an important factor for evaluating soil fertility, crop yields, and environmental effects. Sensitive measurements for the assessment of quantitative changes in SOM shortly after the conversion of the management practice would be helpful to understand the SOM‐transformation cycle in more detail. Changes in SOM are reflected in modifications of total organic‐carbon (TOC) and total organic‐nitrogen (TON) contents. They are initially detectable in the readily decomposable fraction. We used hot water–extractable carbon (HWC) and nitrogen (HWN) as measurement of labile pools of SOM and aimed to quantify changes in contents of these C and N fractions in a sandy soil already few years after changing management strategy. In this context, we examined the impact of the conversion of a succession fallow (F) to organic (O) and intensive (I) agriculture on TOC, total N (TN), HWC, and HWN. The conversion of succession fallow to cultivated land resulted in a significant decrease of TOC, TN, and HWC at 0–10 cm soil depth. On average, TOC decreased approx. 0.70 g C kg–1 (approx. 9% of initial TOC), TN decreased approx. 0.13 g N kg–1 (approx. 17% of initial TN), and HWC decreased approx. 0.05 g C kg–1 (approx. 12% of initial HWC) within 3 years. Relatively rapid changes in TOC and TN contents indicated comparatively high proportions of decomposable C and N. These were reflected in comparable high HWC (ranging from 0.37 to 0.59 g C kg–1 at 0–30 cm soil depth) and HWN (ranging from 0.04 to 0.10 g N kg–1 at 0–30 cm) contents. These high contents as well as the high HWC : TOC and organic hot water–extractable N (HWNorg) : TN ratios (both between 5% and 7%) implied that the soil investigated has a high ability to provide short‐term available organic C and N compounds. Long‐lasting applications of high quantities of organic fertilizer in the past and high quantities of rhizodepositions were assumed as reasons for the high capability of soil to provide short‐term to medium‐term available C and N. Changes in the HWN content due to the fertilization or crop rotation were mainly based on changes in its inorganic part. This ranged between 10% and 30% of HWN. By discriminant function analysis, it could be shown that the HWN represents a suitably sensitive measurement for the determination of management‐specific impacts in terms of the N, but also of the C cycle. In combination with other C and particularly with other N parameters, the HWN allowed a statistically significant separation of comparable sites varying in management practice already 2 years after the conversion of the management system. 相似文献
14.
Monowar Karim Khan Kazunori Sakamoto Tomio Yoshida 《Soil Science and Plant Nutrition》2013,59(4):769-779
Abstract The response of peanut (Arachis hypogaea L.) to inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi (Glomus etunicatum) and Bradyrhizobiurn sp. was studied in pots by the acetylene reduction activity (ARA) and ‘A-value’ methods. The soil used was a Light-coloured Andosol and the treatments consisted of the inoculation of VAM fungi only, inoculation of Bradyrhizobium only, dual inoculation of VAM fungi and Bradyrhizobium and control, under non-sterilized and sterilized soil conditions. In the non-sterilized soil the ARA and nitrogen fixation determined by the ‘A-value’ method increased significantly only by dual inoculation of VAM fungi and Bradyrhizobium at 100 days after planting (DAP), but no significant difference was observed at 70 DAP. In the case of dual inoculation, 75% of the nitrogen of the plant was derived from fixation whereas the plants inoculated only with Bradyrhizobium derived 68% of their nitrogen from fixation and the control plants, 64%. Amount of P in plant increased significantly only by dual inoculation with VAM fungi and Bradyrhizobium. In the sterilized soil a highly significant increase in the ARA was observed of the dual inoculation at all the sampling times. Nitrogen fixation determined by the A-value technique and N and P contents in plant also increased significantly by dual inoculation. Results obtained by the A-value method showed that plants with dual inoculation derived 68% of their nitrogen from fixation while the plants inoculated only with Bradyrhizobium, 38%. From our this study we conclude that nitrogen fixation as well as N and P contents in peanut increased significantly only by dual inoculation with VAM fungi and Bradyrhizobium. 相似文献
15.
Phosphatidylethanolamine (PE), phosphatidylcholine (PC), lysine (Lys), and mixtures of them were tested for antioxidative activity in refined olive oil by the Rancimat method to investigate the role of the chemical reactions produced in the Rancimat vessel on the induction periods (IPs) obtained. PE and Lys, but not PC, increased the IPs of the oil when tested alone. In addition, PE/Lys and PC/Lys mixtures, but not PC/PE mixtures, exhibited a synergistic effect. All these results can be understood considering the in situ formation of oxidized lipid/amino compound reaction products with antioxidative activities. Thus, the formation of pyrroles could be detected after derivatization with p-(dimethylamino)benzaldehyde, and some of these compounds could be unambiguously identified by GC-MS after their conversion into volatile derivatives. In addition, the formed products contributed to the color developed, and a correlation was observed between the Rancimat IPs obtained and the yellowness index of the oxidized oils recovered from the Rancimat. Furthermore, the differences observed in the antioxidative activities of PE, PC, Lys, and their mixtures could be explained according to the lipophility and hydrophility of the oxidized lipid/amino compound reaction products formed. All these results suggest that chemical reactions are being produced in the Rancimat vessel and the Rancimat IPs obtained are a consequence of the antioxidative activities of the products formed in these reactions. Furthermore, Rancimat may be a valuable tool for testing antioxidative activities of antioxidants produced during food processing if favorable conditions for antioxidant formation are employed. 相似文献
16.
试验研究表明,处理前期(7~14d)UV-B辐射增强使“汕优63”水稻精氨酸脱羧酶(ADC)、鸟氨酸脱羧酶(ODC)和S-腺苷蛋氨酸脱羧酶(SAMDC)活性分别增加165.74%、104.60%和89.60%,“南川”(NC)运3种酶活性分别增加59.91%、41.30%和23.68%,新品系“IR_(65600-85)”在UV-B辐射胁迫下多胺脱羧酶活性表现与前2品种略不同,即ADC和ODC活性分别提高115.93%、14.45%,而SAMDC活性下降33.01%。处理后期(21~28d)随UV-B辐射累积量的增加,这3种酶活性均有所下降,其中ODC和SAMDC活性降幅大于ADC,其中“汕优63”ADC、和ODC活性分别比对照增加89.72%、3.71%,“南川”则分别增加73.95%、27.38%,“IR_(65600-85)”ADC活性增加94.41%,ODC、活性却下降13.57%。处理后期(21~28d)3类水稻“汕优63”、“南川”和“IR_(65600-85)”SAMDC分别下降40.06%、19.20%和38.21%。多胺氧化酶(PAO)活性变化趋势则相反,即处理前期(7~14d)呈不同程度下降趋势,处理后期(21~28d)则呈极显著上升趋势,其结果引起多胺(PA)含量特别是腐胺(Put)含量明显上升。水稻对UV-B辐射增强的反应具有基因型差异。 相似文献
17.
Girma Abera Endalkachew Wolde-meskel Lars R. Bakken 《Biology and Fertility of Soils》2012,48(1):51-66
Seasonal drought in tropical agroecosystems may affect C and N mineralization of organic residues. To understand this effect,
C and N mineralization dynamics in three tropical soils (Af, An1, and An2) amended with haricot bean (HB; Phaseolus vulgaris L.) and pigeon pea (PP; Cajanus cajan L.) residues (each at 5 mg g−1 dry soil) at two contrasting soil moisture contents (pF2.5 and pF3.9) were investigated under laboratory incubation for 100–135 days.
The legume residues markedly enhanced the net cumulative CO2–C flux and its rate throughout the incubation period. The cumulative CO2–C fluxes and their rates were lower at pF3.9 than at pF2.5 with control soils and also relatively lower with HB-treated than
PP-treated soil samples. After 100 days of incubation, 32–42% of the amended C of residues was recovered as CO2–C. In one of the three soils (An1), the results revealed that the decomposition of the recalcitrant fraction was more inhibited by drought stress than easily
degradable fraction, suggesting further studies of moisture stress and litter quality interactions. Significantly (p < 0.05) greater NH4+–N and NO3−–N were produced with PP-treated (C/N ratio, 20.4) than HB-treated (C/N ratio, 40.6) soil samples. Greater net N mineralization
or lower immobilization was displayed at pF2.5 than at pF3.9 with all soil samples. Strikingly, N was immobilized equivocally
in both NH4+–N and NO3−–N forms, challenging the paradigm that ammonium is the preferred N source for microorganisms. The results strongly exhibited
altered C/N stoichiometry due to drought stress substantially affecting the active microbial functional groups, fungi being
dominant over bacteria. Interestingly, the results showed that legume residues can be potential fertilizer sources for nutrient-depleted
tropical soils. In addition, application of plant residue can help to counter the N loss caused by leaching. It can also synchronize
crop N uptake and N release from soil by utilizing microbes as an ephemeral nutrient pool during the early crop growth period. 相似文献
18.
不同气候和土壤条件下玉米叶片叶绿素相对含量对土壤氮素供应和玉米产量的预测 总被引:11,自引:1,他引:11
叶绿素仪可以用于估测作物和土壤氮素供应状况,本研究通过野外土壤置换试验评估叶绿素仪在不同区域的适用性。在黑龙江海伦(中温带)、河南封丘(暖温带)和江西鹰潭(中亚热带)设置3种主要农田土壤(黑土、潮土、红壤)的异地置换对比试验,研究了不同气候和土壤条件下玉米叶绿素相对含量对土壤氮素供应的响应及其对玉米产量的预测性。研究结果表明:不同气候和土壤条件下,玉米生长旺盛期功能叶的叶绿素相对含量(叶绿素仪SPAD值)和土壤表层(0—20 cm)硝态氮、无机氮含量相关性显著,说明叶绿素仪测定值可以在玉米生长旺盛期反应土壤氮素供应情况;玉米生长旺盛期功能叶叶绿素相对含量和土壤表层硝态氮含量均与玉米子粒产量呈显著相关,说明叶绿素仪可以在玉米生长旺盛期估测玉米子粒产量,且不受地域、土壤类型的影响。 相似文献
19.
Martin Körschens Erhard Albert Martin Armbruster Dietmar Barkusky Michael Baumecker Lothar Behle-Schalk 《Archives of Agronomy and Soil Science》2013,59(8):1017-1040
Assembled results from 20 European long-term experiments (LTE), mainly from the first decade of the twenty-first century, are presented. The included LTEs from 17 sites are the responsibility of institutional members of the International Working Group of Long-term Experiments in the IUSS. Between the sites, average annual temperatures differ between 8.1 and 15.3°C, annual precipitation between 450 and 1400 mm, and soil clay contents between 3 and 31%. On average of 350 yield comparisons, combined mineral and organic fertilization resulted in a 6% yield benefit compared with mineral fertilization alone; in the case of winter wheat, the smallest effect was 3%, the largest effect, seen with potatoes, was 9%. All unfertilized treatments are depleted in soil organic carbon (SOC), varying between 0.36 and 2.06% SOC. The differences in SOC in unfertilized plots compared with the respective plots with combined mineral (NPK) and organic (10 t ha?1 farmyard manure) fertilization range between 0.11 and 0.72%, with an average of 0.3% (corresponding to ~15 t ha?1). Consequently, the use of arable soils for carbon sequestration is limited and of low relevance and merely depleted soils can temporarily accumulate carbon up to their optimum C content. 相似文献
20.
Newly synthesized amino acids are the principle compounds created after inorganic nitrogen (N) is rapidly immobilized into microbial tissues. However, little is known about the mineralization kinetics of these newly synthesized amino acids compared to the amino acids originally present in the soil, and how substrate availability controls their mineralization. With 15N isotope tracing, the newly synthesized (15N-labeled) amino acids can be differentiated from the amino acids originally present (unlabeled) in soil, making it possible to evaluate the mineralization of the newly synthesized amino acids in tandem with the original amino acids. As amino acids can serve as both N and carbon (C) sources for microorganisms, the mineralization dynamics of amino acids may be manipulated by the availability of extraneous C and N. In this study, an aerobic 30-week intermittent leaching experiment was conducted, using glucose as C source and (14NH4)2SO4 as N source, following separate additions to soil. The newly synthesized amino acids were determined by an isotope-based high performance liquid chromatography/mass spectrometry (HPLC/MS). The newly synthesized soil amino acids mineralized faster than the original ones, which indicated more rapid cycling of N in the newly synthesized soil amino acids pool. Glucose addition significantly decreased the mineralization of both the newly synthesized and the original amino acids. However, when inorganic N was abundant, the newly synthesized amino acids decomposed rapidly, and preferentially as a C source and energy, while N addition inhibited the mineralization of the original amino acids in the soil. We conclude that the presence of readily degradable C (e.g. glucose) and inorganic N controls the mineralization of newly synthesized and original amino acid pools in soil differently, which is a crucial mechanism in adjusting the N supply and sequestration processes in soil ecosystems. 相似文献