首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.

Background  

The isolation of green fluorescent protein (GFP) and the development of spectral variants over the past decade have begun to reveal the dynamic nature of protein trafficking and organelle motility. In planta analyses of this dynamic process have typically been limited to only two organelles or proteins at a time in only a few cell types.  相似文献   

5.
6.

Background  

There is considerable interest in rapid assays or screening systems for assigning gene function. However, analysis of gene function in the flowers of some species is restricted due to the difficulty of producing stably transformed transgenic plants. As a result, experimental approaches based on transient gene expression assays are frequently used. Biolistics has long been used for transient over-expression of genes of interest, but has not been exploited for gene silencing studies. Agrobacterium-infiltration has also been used, but the focus primarily has been on the transient transformation of leaf tissue.  相似文献   

7.

Background  

The lower eudicot genus Aquilegia, commonly known as columbine, is currently the subject of extensive genetic and genomic research aimed at developing this taxon as a new model for the study of ecology and evolution. The ability to perform functional genetic analyses is a critical component of this development process and ultimately has the potential to provide insight into the genetic basis for the evolution of a wide array of traits that differentiate flowering plants. Aquilegia is of particular interest due to both its recent evolutionary history, which involves a rapid adaptive radiation, and its intermediate phylogenetic position between core eudicot (e.g., Arabidopsis) and grass (e.g., Oryza) model species.  相似文献   

8.

Background  

Plant transformation is an invaluable tool for basic plant research, as well as a useful technique for the direct improvement of commercial crops. Barley (Hordeum vulgare) is the fourth most abundant cereal crop in the world. It also provides a useful model for the study of wheat, which has a larger and more complex genome. Most existing barley transformation methodologies are either complex or have low (<10%) transformation efficiencies.  相似文献   

9.

Background  

Plant genome sequencing has resulted in the identification of a large number of uncharacterized genes. To investigate these unknown gene functions, several transient transformation systems have been developed as quick and convenient alternatives to the lengthy transgenic assay. These transient assays include biolistic bombardment, protoplast transfection and Agrobacterium-mediated transient transformation, each having advantages and disadvantages depending on the research purposes.  相似文献   

10.

Background  

Gene silencing vectors based on Barley stripe mosaic virus (BSMV) are used extensively in cereals to study gene function, but nearly all studies have been limited to genes expressed in leaves of barley and wheat. However since many important aspects of plant biology are based on root-expressed genes we wanted to explore the potential of BSMV for silencing genes in root tissues. Furthermore, the newly completed genome sequence of the emerging cereal model species Brachypodium distachyon as well as the increasing amount of EST sequence information available for oat (Avena species) have created a need for tools to study gene function in these species.  相似文献   

11.

Background  

A common limitation in guard cell signaling research is that it is difficult to obtain consistent high expression of transgenes of interest in Arabidopsis guard cells using known guard cell promoters or the constitutive 35S cauliflower mosaic virus promoter. An additional drawback of the 35S promoter is that ectopically expressing a gene throughout the organism could cause pleiotropic effects. To improve available methods for targeted gene expression in guard cells, we isolated strong guard cell promoter candidates based on new guard cell-specific microarray analyses of 23,000 genes that are made available together with this report.  相似文献   

12.

Background  

The pH is an important parameter controlling many metabolic and signalling pathways in living cells. Recombinant fluorescent pH indicators (pHluorins) have come into vogue for monitoring cellular pH. They are derived from the most popular Aequorea victoria GFP (Av-GFP). Here, we present a novel fluorescent pH reporter protein from the orange seapen Ptilosarcus gurneyi (Pt-GFP) and compare its properties with pHluorins for expression and use in plants.  相似文献   

13.
14.

Background  

We describe novel plasmid vectors for transient gene expression using Agrobacterium, infiltrated into Nicotiana benthamiana leaves. We have generated a series of pGreenII cloning vectors that are ideally suited to transient gene expression, by removing elements of conventional binary vectors necessary for stable transformation such as transformation selection genes.  相似文献   

15.

Background  

Gene silencing is proving to be a powerful tool for genetic, developmental, and physiological analyses. The use of viral induced gene silencing (VIGS) offers advantages to transgenic approaches as it can be potentially applied to non-model systems for which transgenic techniques are not readily available. However, many VIGS vectors are derived from Gemini viruses that have limited host ranges. We present a new, unipartite vector that is derived from a curtovirus that has a broad host range and will be amenable to use in many non-model systems.  相似文献   

16.

Background  

In silico analyses based on sequence similarities with animal channels have identified a large number of plant genes likely to encode ion channels. The attempts made to characterise such putative plant channels at the functional level have most often relied on electrophysiological analyses in classical expression systems, such as Xenopus oocytes or mammalian cells. In a number of cases, these expression systems have failed so far to provide functional data and one can speculate that using a plant expression system instead of an animal one might provide a more efficient way towards functional characterisation of plant channels, and a more realistic context to investigate regulation of plant channels.  相似文献   

17.

Background  

Artificial chromosomes (ACs) are a promising next-generation vector for genetic engineering. The most common methods for developing AC constructs are to clone and combine centromeric DNA and telomeric DNA fragments into a single large DNA construct. The AC constructs developed from such methods will contain very short telomeric DNA fragments because telomeric repeats can not be stably maintained in Escherichia coli.  相似文献   

18.

Background  

Many established PCR-based approaches in plant molecular biology rely on lengthy and expensive methods for isolation of nucleic acids. Although several rapid DNA isolation protocols are available, they have not been tested for simultaneous RNA isolation for RT-PCR applications. In addition, traditional map-based cloning technologies often use ill-proportioned marker regions even when working with the model plant Arabidopsis thaliana, where the availability of the full genome sequence can now be exploited for the creation of a high-density marker systems.  相似文献   

19.

Background  

Plant viruses are useful expression vectors because they can mount systemic infections allowing large amounts of recombinant protein to be produced rapidly in differentiated plant tissues. Pepino mosaic virus (PepMV) (genus Potexvirus, family Flexiviridae), a widespread plant virus, is a promising candidate expression vector for plants because of its high level of accumulation in its hosts and the absence of severe infection symptoms. We report here the construction of a stable and efficient expression vector for plants based on PepMV.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号