首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Variation among isolates of the Sirococcus shoot blight pathogen (attributed to Sirococcus conigenus, Sirococcus sp., or one of many synonyms) was studied. Inter‐simple‐sequence‐repeat‐anchored polymerase chain reaction fingerprints, nuclear rDNA internal transcribed spacers and 5.8S sequences, and 18S rDNA sequences were analysed. In addition, culture morphology as well as sizes and shapes of conidia produced on seed cone scales in culture were compared. Two main groups were distinguished based on both genetic markers and cultural characteristics. The P group consists of isolates mostly from pine and spruce from Europe and both eastern and western North America; the T group consists of isolates mostly from hemlock from western North America. Results provide a benchmark for comparison of other isolates of these fungi and indicate the need for additional sampling and comparative research of these pathogens.  相似文献   

2.
The impact of Sirococcus shoot blight on the radial and height growth of Norway spruce in a young plantation (approximately 20 years old) was investigated by examining the increment losses for four infection intensities (classes). The average diameter at breast height of trees in the lightly damaged class was 72% when compared with the average diameter of the healthy trees, whereas moderately and severely damaged tree classes were 67 and 57%, respectively. Using tree ring analysis, the development of radial growth over time due to intensity of infection was studied. Height growth of affected trees was also significantly reduced (up to 43%) compared with the healthy trees, thus indicating a dramatic impact of Sirococcus conigenus on the growth of young Norway spruce.  相似文献   

3.
4.
The nutrient status of Norway spruce in pure and in mixed-species stands   总被引:1,自引:0,他引:1  
Atmospheric deposition of N and S appears to have caused nutrient imbalance in Norway spruce stands in southern Sweden. This calls for a change of forest management to procedures that promote nutrient balance. Studies have shown lower soil acidity in Norway spruce/deciduous mixed stands than in spruce monocultures, but the tree nutrient status in such mixtures has not been much investigated so far.

The nutrient status of Norway spruce foliage and top mineral soil chemistry in monocultures and in stands mixed with beech, birch, or oak was investigated through paired comparisons on 30 sites in southern Sweden (27 sites) and eastern Denmark (three sites). In total, 45 mixed stands and 34 pure stands were included in the study.

Spruce needles from mixed stands had higher concentrations and ratios to N of K, P, and Zn than needles from pure spruce stands. Among the mixed stands, the K status appeared to be positively correlated with the percentage of deciduous tree basal area. Soil samples from mixed stands had a higher Mg concentration, base saturation, and BC/Al ratio than soil samples from pure stands. The spruce needle nutrient status was comparable in pure stands on fertile sites and in mixed stands on poor sites. We did not detect any differences in spruce tree growth between pure and mixed stands.

This paper discusses possible reasons for a positive effect on the tree nutrient status in mixed-species stands and the possibility of using mixed-species stands as a forest management procedure to avoid nutrient imbalance.  相似文献   


5.
Soil temperature is a main factor limiting root growth in the boreal forest. To simulate the possible soil-warming effect of future climate change, 5-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were subjected to three simulated growing seasons in controlled environment rooms. The seedlings were acclimated to a soil temperature of 16 degrees C during the first (GS I) and third growing seasons (GS III), but were assigned to random soil-temperature treatments of 9, 13, 18 and 21 degrees C during the second growing season (GS II). In GS II, shoot diameter growth was lowest in the 21 degrees C treatment and root growth was lowest in the 9 degrees C treatment. In GS III, shoot height and root length growth improved in seedlings that had been kept at 9 degrees C during GS II, indicating compensatory growth in response to increased soil temperature. The temporary decrease in soil temperature had no long-lasting significant effect on seedling biomass or total nutrient uptake. At the end of GS III, fine roots of seedlings exposed to a soil temperature of 21 degrees C in GS II were distributed more evenly between the organic and mineral soil layers than roots of seedlings in the other treatments. During GS II and GS III, root growth started earlier than shoot growth, decreased during the rapid shoot elongation phase and increased again as shoot growth decreased.  相似文献   

6.

Context

Mediterranean open woodlands (dehesa) have faced a dual process of intensification and abandonment of grazing which has resulted in alteration of the understory vegetation.

Aims

We analysed the effects of land use changes on the physiological status of holm oak in different open woodlands (dehesa) in southern Iberian Peninsula.

Methods

In an area of extensive grazing, we selected six paired plots (one grazed, one abandoned) and grouped them by habitat types according to understory composition (nearly all monospecific Cistus ladanifer L. shrub or mixed shrub). Six plots of moderate and heavy grazing intensity were chosen within a settled area of livestock use. Shoot growth, macronutrient concentrations and water content were assessed in samples of holm oak leaves.

Results

Abandonment of grazing affected some nutrient concentrations and water content of holm oak leaves, but the effects were different according to habitat type. C. ladanifer shrub reduced N and P concentrations and water content while mixed shrub increased P concentration and water content. High grazing intensity improved shoot growth and leaf N and Mg concentrations.

Conclusion

Extensive grazing could be a useful management tool to enhance growth, nutritional and water status of holm oak in a habitat with limited resources such as Mediterranean open woodlands (dehesa).  相似文献   

7.
Effects of elevated temperature and atmospheric CO2 concentration ([CO2]) on spring phenology of mature field-grown Norway spruce (Picea abies (L.) Karst.) trees were followed for three years. Twelve whole-tree chambers (WTC) were installed around individual trees and used to expose the trees to a predicted future climate. The predicted climate scenario for the site, in the year 2100, was 700 micromol mol-1 [CO2], and an air temperature 3 degrees C higher in summer and 5 degrees C higher in winter, compared with current conditions. Four WTC treatments were imposed using combinations of ambient and elevated [CO2] and temperature. Control trees outside the WTCs were also studied. Bud development and shoot extension were monitored from early spring until the termination of elongation growth. Elevated air temperature hastened both bud development and the initiation and termination of shoot growth by two to three weeks in each study year. Elevated [CO2] had no significant effect on bud development patterns or the length of the shoot growth period. There was a good correlation between temperature sum (day degrees>or=0 degrees C) and shoot elongation, but a precise timing of bud burst could not be derived by using an accumulation of temperature sums.  相似文献   

8.
The research was performed in a new and isolated ink disease outbreak. Nine sweet chestnuts of comparable age, growing under same environmental and site conditions, and belonging to three phytosanitary classes (healthy, infected but asymptomatic and symptomatic) were randomly selected. Their ectomycorrhizal community was monitored during two periods, with regard to species abundance, to verify whether the community composition can be useful as an ink disease bioindicator. From the 216 samples, 29 ectomycorrhizal species were recorded, with abundances that changed with the health status of the tree. The results demonstrated that the mycorrhizal community composition was highly related to the ink disease level, allowing the consideration of the use of this parameter as a tool for the quick detection and control of the early stages of the disease.  相似文献   

9.
Whole-tree harvesting (WTH), where logging residues are removed in addition to stems, is widely practised in Fennoscandian boreal forests. WTH increases the export of nutrients from forest ecosystems. The extent of nutrient removals may depend on tree species, harvesting method, and the intensity of harvesting. We developed generalized nutrient equations for Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karsten), and birch (Betula pendula Roth and Betula pubescens Ehrh.) stands to be able to calculate the amounts of nitrogen, phosphorus, potassium, and calcium in stems and above-ground biomass (stem and crown) as a function of stand volume. The equations were based on Fennoscandian literature data from 34 pine, 26 spruce, and 5 birch stands, and they explained, depending on the tree species and nutrient, 61–99% and 56–87% of the variation in the nutrient amounts of stems and above-ground biomass, respectively. The calculations based on the equations showed that nutrient removals caused by stem-only harvesting (SOH) and WTH per harvested stem m3 were smaller in pine than in spruce and birch stands. If the same volume of stem is harvested, nutrient removals are, in general, nearly equal at thinnings and final cuttings in SOH, but larger in thinnings than final cuttings in WTH. If the principal aim is to minimize the nutrient removals per harvested stem m3, the harvesting should be done at mature pine stands. The effect of biomass removal on overall site nutrient status depends on site-specific factors such as atmospheric deposition, weathering of minerals, and the size of the nutrient pools in the soil.  相似文献   

10.
Fifteen, 1-year-old Populus maximowiczii Henry x P. nigra L. 'MN9' trees were decapitated and allowed to sprout. After 8 weeks, all had 6 to 10 coppice shoots. All shoots, except the tallest (dominant) shoot, were removed from five of the trees (pruned treatment), and shoot growth, gas exchange and carbohydrate status were compared in the pruned and unpruned trees. Although photosynthetic rate of recently mature leaves of pruned trees was approximately 50% greater than that of leaves on the dominant shoot of unpruned trees, and the dry weight of leaves of pruned trees was 37% greater than that of the leaves on the dominant shoot of unpruned trees, the shoot dry matter relative growth rate did not differ between treatments. Concentrations of water-soluble carbohydrates and starch in the uppper stem and leaves of the dominant shoot were similar in pruned and unpruned trees. However, relative to that of the dominant shoot in unpruned trees, the lower stem in pruned trees was depleted in both soluble carbohydrates and starch. Starch deposition, assessed as the quantity of (14)C-starch in tissues 24 h after a fully expanded source leaf was labeled with (14)CO(2), was 3.9 times greater in roots of pruned trees than in roots of unpruned trees. We conclude that early removal of all but the dominant shoot reduces the carbohydrate status of the roots and the lower portion of the stem by eliminating the excised shoots as a source of photosynthate.  相似文献   

11.
为了研究营养元素硝酸铵、硝酸钾、葡萄糖酸钙对蓝莓离体繁育的影响,以蓝莓‘夏普蓝’继代增殖苗为试材,就添加了不同浓度的硝酸铵、硝酸钾、葡萄糖酸钙的改良培养基对蓝莓离体增殖的新梢形态及体内超氧化物歧化酶(Superoxide Dismutase,SOD)、过氧化物酶(Peroxidase,POD)、过氧化氢酶(catalase,CAT)活性的影响情况进行了试验研究。试验结果表明:当培养基中硝酸铵的浓度为600 mg·L~(-1)、硝酸钾的浓度为400 mg·L~(-1)、葡萄糖酸钙的浓度为600 mg·L~(-1)时,新梢植株发育良好,植株长势健壮,颜色正常;发育正常的新梢其SOD活性间不存在明显差异,其POD活性间不存在明显差异,其CAT活性间也不存在明显差异;而且其SOD、POD、CAT活性均明显高于发育不正常的新梢。分析结果表明:矿质营养元素能调节蓝莓不定芽抗氧化酶活性;而稳定、平衡的抗氧化酶活性又能促进不定芽的发育。  相似文献   

12.
Following clearcutting applying the conventional stem-only harvesting method in a Norway spruce (Picea abies (L.) Karst.) stand and different levels of removal of logging residue, the nutrient fluxes from the heaps of logging residue and from the O horizon were monitored over four growing seasons and the soil nutrient pools were determined. Three levels of removal of logging residue were carried out using (i) conventional stem-only harvesting (no residues removed); (ii) residues removed; and (iii) removal of branches (foliage left on site). The heaps of logging residue were a minor source of inorganic N entering the soil in the water percolating through the heaps, but they were a significant source of organic N, P, Ca, Mg, and especially K. Nutrient fluxes from the O horizon were in general greater under the heaps of logging residue as compared to soils without overlying logging residue. The leaching of inorganic N from the O horizon under the heaps of logging residue resulted in a net loss of these compounds, while the O horizon without overlying logging residue gained N. The removal of logging residue significantly decreased the extractable K pools in the soil while it or conversely, the presence of residue heaps had no significant effect on the pools of organic matter and the pools of N, P, Ca, and Mg in the O horizon and in the 0–10 cm soil layer. The results show that the short-term effects of logging residue on nutrient dynamics in the soil can be complex and difficult to interpret in terms of site productivity as there are changes in the nutrient fluxes, which imply the opposite effects on site productivity. However, the results do indicate that, in the short-term, the removal of logging residue does not impair pools of N in the soil nor site productivity on sites where the availability of N limits productivity.  相似文献   

13.
The symptoms of ash dieback caused by the fungus Hymenoscyphus fraxineus include wilting of the foliage followed by dieback of shoots, twigs and branches. Necroses in shoots are assumed to develop after infection through leaf petioles; however, clear evidence of this infection pathway has not yet been provided. Considering the multiple pathogen genotypes in dead ash petioles, we aimed to obtain a spatial overview of all H. fraxineus genotypes colonizing individual shoots and their corresponding petioles before leaf shedding to acquire precise information about the infection biology of H. fraxineus and its ability to cross the petiole‐shoot junction. Individual genotypes of H. fraxineus were characterized by the analysis of microsatellites using DNA extracted directly from petiole segments or cultures isolated from the segments. We detected 150 different multilocus genotypes in 10 analysed shoots and their respective petioles; the highest number of genotypes was eight for a single petiole and three for a single shoot. The genotypes of most shoot lesions were identical to particular genotypes from the proximal segments of petioles, implicating the main pathway of shoot infections. To test whether the amount of colonized substrate or intraspecific competition have an effect on successful infection, genotypes that reached the most proximal end of the petioles were scored for the number of invaded petiole segments and for the number of other H. fraxineus genotypes co‐occurring in the segments. However, the extent of colonization of the scored genotypes and intraspecific competition with other H. fraxineus strains did not influence pathogen success in entering the shoot. This study confirms that the majority of ash shoot infections are caused by genotypes of H. fraxineus originating from petioles. Compared to petioles, the frequency of shoot colonization as well as number of H. fraxineus genotypes in shoots was much lower.  相似文献   

14.
As indoor frozen storage is increasing in forest tree nurseries it is important to have accurate methods for assessing seedling storability in autumn and methods to determine post-storage vitality. Storability of spruce (Picea abies (L.) Karst.) and pine (Pinus sylvestris L.) seedlings can be based on determination of dry matter content (DMC) of seedling shoots or by freezing shoots at –25°C and thereafter measure electrolyte leakage (SELdiff–25). To compare these two methods we stored 1-year-old spruce and pine seedlings at different occasions during the autumn. To test if leakage of electrolytes from shoots (SEL) could indicate deteriorated vitality, we measured SEL at the end of storage. After storage seedling viability was determined in a three-week growth test, measuring shoot and root growth capacity (RGC). Determination of freezing tolerance (SELdiff–25) before storage had a better ability to predict the outcome of storage compared to the DMC test. Measuring SEL at the end of the frozen storage period accurately indicated seedling vitality. Seedlings with SEL of 0–5% had a high survival rate whereas SEL over 10% indicated low survival and growth capacity after storage. The SEL method has a potential to become a screening test for identifying batches of seedlings that have been damaged during storage in the nursery.  相似文献   

15.
为了明确平衡施肥对土壤养分状况的影响,应用土壤养分状况系统研究法,研究江西省樟树市的油茶林平衡施肥前后的土壤养分状况。结果表明:油茶林未施肥土壤主要养分限制因子根据亏缺严重程度由高到低排序依次为:Ca、N、P、Mo、K、B、Mg、Cu;平衡施肥后,油茶林土壤主要养分限制因子根据亏缺严重程度由高到低排序依次为:Ca、N、P、Mg、B。通过试验,可以看出合理施肥对于土壤养分状况的改善是具有明显效果的。  相似文献   

16.
We compared the range and variation in shoot silhouette area to projected leaf area ratio (SPAR) in fertilized and unfertilized (control) Norway spruce (Picea abies (L.) Karst.) trees. We measured SPAR for several view directions of 169 shoots at different depths in the crown of fertilized and control trees. There was an increase in SPAR with depth in the crown in both control and fertilized trees. In the fertilized trees, however, mean SPAR was larger overall, the increase with depth in the crown was steeper, and there was a larger variation in SPAR with inclination and rotation angle of the shoot (relative to the view direction). In particular, shoots in the lower crown of fertilized trees were rotationally asymmetrical ("flat") and had high values of the maximum ratio of shoot silhouette area to projected leaf area (SPAR(max)). Differences in SPAR between fertilized and control trees were explained by changes in shoot structure in response to fertilization and shading. Shoots of fertilized trees were larger and had more needle area than shoots of control trees. However, the ratio of needle area to shoot size was smaller in fertilized trees than in control trees, implying less within-shoot shading and, consequently, a larger SPAR. Also, the increase in SPAR with increased shading (depth in the crown) could be explained by a decrease in the ratio of needle area to shoot size. In addition, because fertilized trees had more needle area than control trees, the effect of shading at a given depth in the crown was more pronounced in fertilized trees than in control trees.  相似文献   

17.
To investigate morphological acclimation to differences in nutrient availability, we compared shoot and needle morphology of Picea glehnii (Friedr. Schmidt) M. T. Mast. and Picea jezoensis (Siebold & Zucc.) Carrière trees growing on nutrient-poor volcanic ash and nutrient-rich, brown forest soil. Trees of both species were shorter and had more open canopies when growing on volcanic ash than when growing on brown forest soil. Nutrient-poor conditions limited height growth less in P. glehnii than in P. jezoensis. In both species, trees growing on volcanic ash had shorter annual increments in the previous year and more needles per shoot length and, hence, a smaller shoot silhouette area (SSA) relative to needle dry mass (NDM) than trees growing on brown forest soil. Soil type had less effect on shoot projected needle area (PNA). Total needle area (TNA) of P. glehnii shoots was similar between soil types, whereas TNA of P. jezoensis was lower in trees growing on volcanic ash than in trees growing on brown forest soil. For both species, low SSA in response to nutrient-poor conditions resulted in low shoot SSA/PNA ratios, indicating high within-shoot self-shading. Shoot SSA/TNA of P. glehnii was lower in trees growing on volcanic ash than in trees growing on brown forest soil, indicating that needles were sun-acclimated. In contrast, shoot SSA/TNA of P. jezoensis was higher in trees growing on volcanic ash than in trees growing on brown forest soil. The contrasting response of TNA to low nutrient availability was associated with species-specific differences in needle morphology. Needles of P. glehnii growing on volcanic ash were slightly shorter, wider, thicker and heavier than those of trees growing on brown forest soil, indicating morphological acclimation to high irradiance. Needles of P. jezoensis growing on volcanic ash were shorter than those of trees growing on brown forest soil, but did not show morphological acclimation to high irradiance in width, thickness or mass. For both species, nutrient-poor conditions decreased maximum photosynthetic rate (Amax) per NDM. However, when expressed per PNA, the decrease in Amax was reduced, and when expressed per SSA, Amax was higher in trees growing on volcanic ash than in trees growing on brown forest soil. On volcanic ash, Amax per NDM was lower for P. glehnii than for P. jezoensis. However, morphological changes at the shoot and needle levels reversed this trend when Amax was expressed per SSA or per PNA. The species-specific differences in morphological response to differences in soil nutrient availability suggest that P. glehnii is more tolerant of nutrient-poor conditions, whereas P. jezoensis is better at exploiting nutrient-rich soils.  相似文献   

18.
We report for the first time a tree‐ring isotopic analysis on host trees infected with Heterobasidion parviporum. By measuring carbon and oxygen stable isotope ratios in tree rings over ca. 150 years of forest growth, we obtained evidence that stomatal conductance increases in Picea abies affected by H. parviporum. We put forward this approach as a novel way of providing an insight into plant–pathogen relationships during tree life.  相似文献   

19.
Pools of macro-nutrients in soil and vegetation were studied in an old fertilization experiment with a large previous input of N. Different doses of N, in the form of urea, had been added four times during a 20-year period. In total, between 480 and 2400 kg N ha−1 had been given. The experiment was established in a relatively productive Norway spruce stand and the expectation was that the large N input would cause an accelerated leaching of N, especially nitrate, accompanied by soil acidification and losses of several nutrients. The aim was to test for possible residual effects. Thirteen years after the last N addition, samples from the aboveground part of trees, field layer, S-layer, humus layer and mineral soil (0–10 cm) were analyzed for concentrations of most major nutrients. Nutrient pools were calculated. In the humus layer, the concentration of N increased and the C/N-ratio decreased with increasing N dose. The calculated recovery of added N in soil including ground vegetation was complete for the lowest N dose, while it was 25–50% for higher doses. The amount of N retained was unaffected by the N dose. The amount of extractable P in the upper part of the mineral soil was negatively correlated with N dose, as was also the concentration of total P in the S-layer. Neither soil pH, nor concentrations or amounts of Ca, Mg and K were affected by the previous fertilization. The calculated total soil-plant pool was only influenced by N dose in the case of P, which was 20% lower at the highest N dose compared with unfertilized conditions. Despite the large extra N input, the nutritional changes in plants and soil of the actual study site seemed surprisingly small.  相似文献   

20.
果园营养状况是合理施肥的基础。为了解甘肃省东部地区苹果园的营养状况,对甘肃省静宁县和泾川县的44个苹果园的土壤和苹果树叶片的营养状况进行了调查与测定。结果表明:土壤中有机质含量偏低,最高值仅为1.33%;全氮含量适宜或偏低;大部分果园土壤中有效磷的含量正常或富余;速效钾含量普遍较高,平均值达到了230mg·kg-1;有效锌、有效铁和有效硼的含量适中,分别为1.23、8.98和0.88mg·kg-1。不同果园土壤中的碱解氮、有效磷和速效钾等速效养分的变异系数明显高于全氮、全磷、全钾,中微量元素明显高于大量元素。土壤pH值8.0的果园占81.8%,变异系数为2.81%。不同果园苹果树叶片中氮、磷、钾的含量正常;除铁含量较高外,其余微量元素均为适量。不同果园土壤中的硼(13.94~199.27mg·kg-1)、锌(10.31~70.11mg·kg-1)和铜(2.71~21.78mg/kg)含量的差异最大,变异系数分别为86.74%、49.60%和48.96%;锰、镁、钙、铁的变异系数分别为30.48%、28.08%、27.96%、26.31%;全氮、全磷、全钾含量的差异较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号