首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Cefoperazone pharmacokinetics were studied in unweaned calves. The antibiotic was administered to 10 calves intravenously, to eight calves intramuscularly at 20 mg kg-1 and to 10 calves intramuscularly at 20 mg kg-1 together with probenecid at 40 mg kg-1. Serum concentration versus time data were analysed by non-compartmental methods based on the statistical moment theory. The intravenous data were also fitted by a linear, open two-compartment model. The terminal halflife of cefoperazone was 127.9 +/- 28.2 min (mean +/- SD) after intravenous and 136.9 +/- 19.6 min after intramuscular administration. The t1/2 was increased to 257.3 +/- 127.3 min by the co-administration of probenecid. The total body clearance was 8.16 +/- 1.60 ml min-1 kg-1 and the volume of distribution at steady state was 0.713 +/- 0.167 litre kg-1. The mean residence time values were 87.2 +/- 10.6 min after intravenous and 140.3 +/- 20.6 min after intramuscular injection and were increased to 264.5 +/- 99.8 min by the co-administration of probenecid. The estimated mean absorption time was 53.1 min and the estimated bioavailability after intramuscular administration was 76.3 per cent. The minimal inhibitory concentration (MIC90) values of cefoperazone ranged from 0.5 to 2 micrograms ml-1 for Escherichia coli, salmonella groups C, D and E and Pasteurella multocida isolates. Salmonella group B strains appeared to be highly resistant to cefoperazone with MIC90 greater than 32 micrograms ml-1. There were no significant differences between the pharmacokinetic variables calculated by statistical moment theory or compartmental analysis indicating central compartment output of cefoperazone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Ceftazidime pharmacokinetic values were studied in unweaned calves given the antibiotic alone or in combination with probenecid. Ceftazidime was administered IV to 9 calves at a dosage of 10 mg/kg of body weight and IM (10 mg/kg) to 8 calves, to 7 calves (10 mg/kg plus probenecid [40 mg/kg]), and to 9 calves (10 mg/kg plus probenecid [80 mg/kg]). Serum concentration-vs-time data were analyzed, using noncompartmental methods based on statistical moment theory. The data for IV ceftazidime administration also were fitted by use of a linear, open 2-compartment model. The mean (+/- SD) terminal half-life was 138.7 +/- 23.6 minutes and 126.3 +/- 10.5 minutes after IV and IM administrations, respectively. The mean residence time was 167.3 +/- 21.1 minutes and 201.4 +/- 16.8 minutes after IV and IM administrations, respectively. Coadministeration of probenecid did not affect the terminal half-life or mean residence time values. The total body clearance was 1.75 +/- 0.26 ml/min/kg, and the volume of distribution at steady state was 0.294 +/- 0.064 L/kg. The estimated mean absorption time was 34.1 minutes. There were no significant differences between the mean residence time calculated by statistical moment theory or by compartmental analysis, indicating central compartment output of ceftazidime. The 90% minimal inhibitory concentration values of ceftazidime determined for Escherichia coli, Salmonella spp, Pasteurella multocida, and P haemolytica isolates ranged from less than 0.01 to 0.1 micrograms/ml.  相似文献   

3.
4.
The pharmacokinetics of ticarcillin and clavulanic acid following administration by the intravenous (i.v.) and intramuscular (i.m.) routes were investigated in six normal adult horses. Following i.v. administration, the ticarcillin disposition data conformed to a two-compartment model with an elimination half-life of 1.0 h. The disposition of clavulanic acid was described by a one-compartment model with an elimination half-life of 0.40 h. Following i.m. administration, the half-lives of both drugs were prolonged (ticarcillin 1.8 h, clavulanic acid 1.2 h). The bioavailability of ticarcillin was 84.4% and clavulanic acid 94.3%.  相似文献   

5.
Enrofloxacin was given to broiler chickens, 3 groups of 6 birds each, at a dose of 5 mg/kg. Routes of administration were intravenous (i.v.), intramuscular (i.m.) and oral (p.o.) and blood samples were collected from the jugular vein for determination of serum drug levels over a 54-hour period after administration. Drug levels were determined using Bacillus subtilis spore suspension on Meuller-Hinton antibiotic medium. Intravenous administration produced drug levels which followed a bi-exponential decay according to the model C = 101e(-1.84(t)) + 1.30e(-0.06(t)). After i.m. administration, the mean Cmax observed (2.01 microg/mL) occurred at 1 h and levels were detected for up to 48 h. The mean time to maximum concentration (Tmax) for the birds occurred at 0.79 h. The model describing serum concentrations after i.m. administration was C = 1.35e(-0.48(t)) + 1.27e(-0.07(t)) - 2.06e(-2.1(t)). Serum concentrations after oral administration were lower and the mean +/- standard error of mean, of the maximum concentrations (Cmax) was 0.99 microg/mL at 2 h after administration. The mean residence times after the 3 routes of administration were not significantly different and ranged from 12.5-13.7 h. Bioavailability by the oral route was 80.1%. Dialysis of chicken plasma vs saline indicated that the protein binding was 22.7%.  相似文献   

6.
7.
Serum and peritoneal fluid concentrations of metronidazole were determined in 6 healthy adult horses given the drug (25 mg/kg) by IV or oral routes. The disposition of metronidazole in horses given the drug by the IV route conformed to a 2-compartment model with a distribution half-life of 0.16 hours, an elimination half-life of 2.9 hours, and a body clearance of 0.40 +/- 0.05 L/kg/hr. The oral absorption half-life was 0.40 hours, and the bioavailability, 85.0 +/- 18.6%. Peritoneal fluid concentrations were approximately equal to serum concentrations at all times, regardless of the route of administration. On the basis of reported minimal inhibitory concentrations for anaerobic bacteria, a dosage of 15 to 25 mg/kg given orally 4 times daily was recommended.  相似文献   

8.
The disposition of florfenicol after single intravenous and intramuscular doses of 20 mg of florfenicol/kg of body weight (b.w.) to feeder calves was investigated. Serum florfenicol concentrations were determined by a sensitive high performance liquid chromatographic method with a limit of quantitation of 0.025 μg/ml. The extent of serum protein binding of florfenicol was only 13.2% at a serum florfenicol concentration of 3.0 μg/ml. Serum concentration-time data after intravenous administration were best described by a triexponential equation. Total body clearance and steady state volume of distribution were 3.75 ml/min/kg b.w. and 761 ml/kg b.w., respectively. The terminal half-life after intravenous administration was 159 min. The absolute systemic availability after intramuscular administration was 78.5% (range: 59.3–106%) and the harmonic mean of the terminal half-life was 1098 minutes, indicating slow release of the florfenicol from the formulation at the intramuscular injection site.  相似文献   

9.
The purpose of this study was to investigate the pharmacokinetics of ceftriaxone after single intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) doses in healthy dogs. Six mongrel dogs received ceftriaxone (50 mg/kg) by each route in a three-way crossover design. Blood samples were collected in predetermined times after drug administration. Results are reported as mean +/- standard deviation (SD). Total body clearance (Cl(t)) and apparent volume of distribution (V(z)) for the i.v. route were 3.61 +/- 0.78 and 0.217 +/- 0.03 mL/kg, respectively. Terminal half-life harmonic mean (t(1/2 lambda)) was 0.88; 1.17 and 01.73 h for the i.v., i.m and s.c. routes, respectively. Mean peak serum concentration (C(max)) was 115.10 +/- 16.96 and 69.28 +/- 14.55 microg/mL for the i.m and s.c. routes, respectively. Time to reach C(max) (t(max)) was 0.54 +/- 0.24 and 1.29 +/- 00.64 h for the i.m and s.c. routes, respectively. Mean absorption time (MAT) was 1.02 +/- 0.64 and 2.23 +/- 00.73 h for the i.m and s.c. routes, respectively. Bioavailability was 102 +/- 27 and 106 +/- 14% for the i.m and s.c. routes, respectively. Statistically significant differences were determined in C(max), t(max), MAT and t(1/2 lambda) of s.c. administered ceftriaxone when compared with the i.v and i.m. routes. These findings suggest that once or twice s.c. or i.m. daily administered ceftriaxone should be adequate to treat most susceptible infections in dogs.  相似文献   

10.
Plasma and endometrial tissue concentrations of ticarcillin were measured in healthy mares. In the first of the 3 separate phases comprising the study, ticarcillin disodium (30 mg/kg) was administered IV. The mean peak concentration in endometrial tissue, 12.9 micrograms/g, was attained at 30 minutes. The plasma half-life of the drug in the 6 mares was 0.83 +/- 0.22 hour. Six grams of the drug was diluted in 250 ml of sodium chloride injection USP (2nd phase) and in 60 ml of sodium chloride injection USP (3rd phase). These dilutions were administered by intrauterine infusion. In phase 2, the mean peak concentrations of the drug in plasma and endometrium were 2.76 micrograms/ml and greater than 150 micrograms/g, respectively, at 60 minutes after it was administered. Endometrial concentrations greater than 150 micrograms of ticarcillin/g persisted through 2 hours after the drug was administered. Mean peak plasma and endometrial concentrations of the drug in phase 3 were 2.78 micrograms/ml and greater than 150 micrograms/g at 45 and 30 minutes after administration was done, respectively. At 1 hour after the drug was administered, endometrial concentrations of ticarcillin were significantly higher (P less than 0.01) after the drug was infused intrauterinely in the 250-ml volume than those after the 60-ml volume was infused. It was concluded that the volume of fluid in which the drug was infused into the uterus markedly influenced the duration of concentrations greater than 20 micrograms/g in endometrial tissue.  相似文献   

11.
The pharmacokinetics of a 2:1 ampicillin-sulbactam combination after intravenous (i.v.) and intramuscular (i.m.) injection at a single dose rate of 20 mg/kg bodyweight (13.33 mg/kg of sodium ampicillin and 6.67 mg/kg of sodium sulbactam) were studied in 10-day-old neonatal calves (n = 10). The plasma concentration-time data of both antibiotics were best fitted to an open two-compartment model after i.v. administration. After i.m. administration, an open two-compartment model demonstrated first order absorption. The apparent volumes of distribution of ampicillin and sulbactam, calculated by the area method, were 0.20+/-0.01 and 0.18+/-0.01 L/kg, respectively, and the total body clearances were 0.51+/-0.03 and 0.21+/-0.01 L/kg h. The elimination half-lives of ampicillin after i.v. and i.m. administration were 0.99+/-0.03 and 1.01+/-0.02 h, respectively, whereas for sulbactam the half-lives were 2.24+/-0.02 and 3.44+/-0.94 h. The bioavailability after i.m. injection was high and similar for both drugs (70.31+/-0.2% for ampicillin and 68.62+/-4.44% for sulbactam). The mean peak plasma concentrations of ampicillin and sulbactam were reached at similar times (0.47+/-0.02 and 0.72+/-0.01 h, respectively) and peak concentrations were also similar but not proportional to the dose administered (17.88+/-0.91 mg/L of ampicillin and 12.92+/-0.79 mg/L of sulbactam). Both drugs had similar pharmacokinetic behaviour after i.m. administration. Since the plasma concentrations of sulbactam were consistently higher during the elimination phase of their disposition, consideration could be given to formulating the ampicillin-sulbactam combination in a ratio higher than 2:1.  相似文献   

12.
The disposition and absorption kinetics of gentamicin were studied in healthy, mature male and female turkeys (n = 10). Single doses of gentamicin (5 mg/kg) were injected either i.v. or i.m. with a 30-day rest period between each treatment. Baseline and serial venous blood samples (n = 17) were collected from each turkey. Serum concentrations of gentamicin were determined in duplicate for 24 h after each treatment, using radio-immunoassay. Using nonlinear least-square regression methods, the combined data of the i.v. and i.m. treatments were best described by a two-compartment open model. Kinetic analysis of the data after a single i.v. dose provided the following mean values: t1/2 alpha = 0.170 +/- 0.093 h, t1/2 beta = 2.57 +/- 0.79 h, MRT = 3.62 +/- 0.96 h, Vc = 0.090 +/- 0.017 l/kg, Vd(ss) = 0.172 +/- 0.024 l/kg, Vd(area) = 0.190 +/- 0.030 l/kg, and Clt = 49.8 +/- 9.8 ml/h/kg. After a single i.m. dose, the following mean values were determined: MRT = 5.10 +/- 1.73 h, t1/2abs = 0.74 +/- 0.66 h, tlag = 0.07 +/- 0.19 h, Clt/F = 50.7 +/- 12.5 ml/h/kg, Vd(area)/F = 0.193 +/- 0.044 l/kg, and F = 102 +/- 21%. Kinetic calculations made with the single i.m. data predicted that an i.m. injection of gentamicin at the dosage rate of 3 mg/kg q. every 12 h would provide average steady state serum concentrations of 4.93 micrograms/ml.  相似文献   

13.
Pharmacokinetics of phenobarbital was studied in 10 healthy dogs after single IV or oral administration. Phenobarbital sodium was administered IV to 5 dogs in group A (5.5 mg/kg of body weight) and 5 dogs in group B (15 mg/kg). Serial venous blood samples (n = 21) were collected from each dog before (base line) and after the administration of phenobarbital sodium for pharmacokinetic evaluation. After a 30-day resting period, 3 dogs in group A and 3 in group B were randomly selected and used for an IV crossover treatment. The IV treatment mean half-life of phenobarbital sodium was 92.6 +/- 23.7 and 72.3 +/- 15.5 hours, whereas mean total clearance was 5.60 +/- 2.31 and 6.66 +/- 0.78 ml/hr/kg for doses of 5 and 15 mg/kg, respectively. The mean residence time was 124 +/- 34 hours and 106 +/- 23 hours for the 5.5 and 15 mg/kg, IV doses, respectively. Significant differences (P greater than 0.05) were not observed in pharmacokinetic parameters between the 2-dose study. After a 35-day resting period, dogs in groups A and B were treated as described for the single IV treatment, except that they were given a phenobarbital tablet orally. Serial venous blood samples (n = 24) were collected before (base line) and after the administration of phenobarbital. Mean bioavailability was 88.1 +/- 12.4% and 96.8 +/- 9.0%, half life of absorption was 0.263 +/- 0.185 and 0.353 +/- 0.443 hour, and lag time was 0.611 +/- 0.683 and 0.741 +/- 0.554 hour for groups A and B, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Twenty-nine healthy 17- to 29-day-old unweaned Israeli-Friesian male calves were each given a single IV or IM injection of 10 or 20 mg of moxalactam disodium/kg of body weight. Serum concentrations were measured serially during a 12-hour period. Serum concentration vs time profiles were analyzed by use of linear least-squares regression analysis and the statistical moment theory. The elimination half-lives after IV administration were 143.7 +/- 30.2 minutes and 155.5 +/- 10.5 minutes (harmonic mean +/- SD) at dosages of 10 and 20 mg of moxalactam/kg of body weight, respectively. Corresponding mean residence time values were 153.1 +/- 26.8 minutes and 169.9 +/- 19.3 minutes (arithmetic mean +/- SD). Mean residence time values after IM administration were 200.4 +/- 17.5 minutes and 198.4 +/- 19.9 minutes at dosages of 10 and 20 mg/kg, respectively. The volumes of distribution at steady state were 0.285 +/- 0.073 L/kg and 0.313 +/- 0.020 L/kg and total body clearance values were 1.96 +/- 0.69 ml/min/kg and 1.86 +/- 0.18 ml/min/kg after administration of dosages of 10 and 20 mg/kg, respectively. Moxalactam was rapidly absorbed from the IM injection site and peak serum concentrations occurred at 1 hour. The estimated bioavailability ranged from 69.8 to 79.1%. The amount of serum protein binding was 53.4, 55.0, and 61.5% when a concentration of moxalactam was at 50, 10, and 2 micrograms/ml, respectively. The minimal inhibitory concentrations of moxalactam ranged from 0.01 to 0.2 micrograms/ml against Salmonella and Escherichia coli strains and from 0.005 to 6.25 micrograms/ml against Pasteurella multocida strains.  相似文献   

15.
The objective of this study was to investigate the pharmacokinetics of cefquinome following single intramuscular (IM) administration in six healthy male buffalo calves. Cefquinome was administered intramuscularly (2 mg/kg bodyweight) and blood samples were collected prior to drug administration and up to 24 hr after injection. No adverse effects or changes were observed after the IM injection of cefquinome. Plasma concentrations of cefquinome were determined by high‐performance liquid chromatography. The disposition of plasma cefquinome is characterized by a mono‐compartmental open model. The pharmacokinetic parameters after IM administration (mean ± SE) were Cmax 6.93 ± 0.58 μg/ml, Tmax 0.5 hr, t½kα 0.16 ± 0.05 hr, t½β 3.73 ± 0.10 hr, and AUC 28.40 ± 1.30 μg hr/ml after IM administration. A dosage regimen of 2 mg/kg bodyweight at 24‐hr interval following IM injection of cefquinome would maintain the plasma levels required to be effective against the bacterial pathogens with MIC values ≤0.39 μg/ml. The suggested dosage regimen of cefquinome has to be validated in the disease models before recommending for clinical use in buffalo calves.  相似文献   

16.
17.
18.
Sulbactam-ampicillin combines ampicillin, a broad spectrum beta-lactam antibiotic, with sulbactam, an irreversible beta-lactamase inhibitor. The sulbactam component prevents the degradation of ampicillin by several major classes of bacterial beta-lactamases and restores the activity of ampicillin against most strains of bacteria in which resistance is mediated by beta-lactamase production.A crossover study was conducted in Friesian calves of 98–119 kg bodyweight in which the plasma kinetics of sulbactam-ampicillin adminstered by the intramuscular and subcutaneous routes were defined, and the plasma kinetics of ampicillin derived from sulbactam-ampicillin and a commercially available formulation of ampicillin trihydrate were compared. Subsequent to both intramuscular and subcutaneous administration of sulbactam-ampicillin, peak plasma concentrations of sulbactam and ampicillin were recorded two hours post-injection. Higher peak plasma concentrations of both sulbactam and ampicillin were achieved by the subcutaneous route of administration and, for ampicillin, the difference between the two routes was statistically significant (p < 0·01). However, there was no significant difference in bioavailability (as measured by area under the curve) between the two routes of administration for either component. In addition, there were no significant differences between the peak plasma concentrations or areas under the curves for ampicillin derived from intramuscular administration of sulbactam-ampicillin, and ampicillin alone, indicating that combination with sulbactam does not alter the plasma kinetics of ampicillin.  相似文献   

19.
Lincomycin 10 mg kg?1, IV in buffalo calves followed two-compartment open model with high distribution rate constant α (11.2?±?0.42 h?1) and K 12/K 21 ratio (4.40?±?0.10). Distribution half-life was 0.06?±?0.01 h and AUC was 41.6?±?1.73 μg mL?1 h. Large Vdarea (1.15?±?0.03 L kg?1) indicated good distribution of lincomycin in various body fluids and tissues. Peak plasma level of lincomycin (71.8?±?1.83 μg mL?1) was observed at 1 min as expected by IV route. The elimination half-life and MRT of lincomycin were short (3.30?±?0.08 and 4.32?±?0.11 h, respectively). Lincomycin 10 mg kg?1 IV at 12-h interval would be sufficient to maintain T?>?MIC above 60 % for bacteria with minimum inhibitory concentrations (MIC) values ≤1.6 μg mL?1. Favourable pharmacokinetic profile in buffalo calves and a convenient dosing interval suggest that lincomycin may be an appropriate antibacterial in buffalo species for gram-positive and anaerobic bacterial pathogens susceptible to lincomycin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号