首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Quercetin is an abundant flavonoid in the human diet with numerous biological activities, which may contribute to the prevention of human disease but also may be potentially harmful. Quercetin is oxidized in cells to products capable of covalently binding to cellular proteins, a process that may be important for its biological activities. In the present study, using radiolabeled drug and quantifying the products after electrophoretic separation, proteins to which oxidized quercetin is binding irreversibly were identified. The binding of quercetin to human serum albumin (HSA) in human blood and the effect of stimulation of neutrophilic myeloperoxidase on this binding were also measured. The in vitro binding of quercetin to eight proteins in the presence of catalytic amounts of horseradish peroxidase and hydrogen peroxide was highly selective for HSA. For all proteins the binding was dramatically decreased by reduced L-glutathione. In the blood samples, the release of neutrophilic myeloperoxidase by phorbol ester caused a 3-fold increase in the binding of quercetin to HSA. This study shows that quercetin in the presence of peroxidase/hydrogen peroxide covalently links to proteins with a particularly high affinity for HSA and that this also may occur in vivo after exposure to quercetin. This provides further insights into the complex behavior of this major dietary flavonoid.  相似文献   

2.
As endocrine-disrupting chemicals, a few frequently used phthalate plasticizers were banned or restricted for use as additives in food in some countries. The interaction mechanisms between three phthalate plasticizers with human serum albumin (HSA) were studied by fluorescence (quenching, synchronous, and three-dimensional), UV-vis absorption, circular dichroism (CD), and Fourier transform infrared (FT-IR) spectroscopy, in combination with molecular modeling under simulative physiological conditions, respectively. The results obtained from fluorescence quenching data revealed that the plasticizers-HSA interaction altered the conformational strcture of HSA. Meanwhile, the alterations of HSA secondary structure in the presence of phthalate plasticizers were investigated. The binding distances for the plasticizers-HSA system were provided by the efficiency of fluorescence resonance energy transfer. Furthermore, the thermodynamic analysis implied that hydrophobic forces were the main interaction for the plasticizers-HSA system, which agreed well with the results from the molecular modeling study.  相似文献   

3.
Propiconazole (PCZ) is an N-substituted triazole used as a fungicide on fruits, grains, seeds, hardwoods, and conifers. Although the triazole fungicides have shorter half-lives and lower bioaccumulation than the organochlorine pesticides, possible detrimental effects on the aquatic ecosystem and human health also exist. To evaluate the toxicity of PCZ at the protein level, its effects on human serum albumin (HSA) were characterized by molecular modeling and multispectroscopic method. On the basis of the fluorescence spectra, PCZ exhibited remarkable fluorescence quenching, which was attributed to the formation of a complex. The thermodynamic parameters ΔH and ΔS were calculated to be -14.980 KJ/mol and 26.966 J/(mol K), respectively, according to the van't Hoff equation, which suggests hydrophobic and electrostatic interactions are the predominant intermolecular forces in stabilizing the PCZ-protein complex. Furthermore, HSA conformation was slightly altered in the presence of PCZ. These results indicated that PCZ indeed affected the conformation of HSA.  相似文献   

4.
The binding processes of thearubigin, which is one of the two major polyphenols (the other one is theaflavin) that gives black tea its characteristic color and taste, to the bovine serum albumin (BSA) surface have been investigated by quartz crystal microbalance with dissipation monitoring (QCM-D). The mass and thickness of the thearubigin adlayer on BSA surfaces at various thearubigin concentrations, salt concentrations, and pH values have been determined by QCM-D using the Voigt model. Our results show that the adsorption isotherm of thearubigin on the BSA surface can be better described by the Langmuir model than the Freundlich model, suggesting that the thearubigin adsorption on the BSA surface is dominated by specific interactions, such as electrostatic interaction and hydrogen bonding, as evidenced by the stronger thearubigin adsorption at pH below the isoelectric point (pI) of BSA and shifts in the positions of both amide bands in the FTIR spectra of the BSA surface with and without thearubigin adsorption. The addition of salt can also influence the thearubigin binding to BSA surfaces. The salt concentration-enhanced effect at a salt concentration lower than 0.1 M is explained as that an increase of salt concentration can screen the electrostatic repulsion to a larger extent than the electrostatic attraction between thearubigin and BSA. On the other hand, when the salt concentration is higher than 0.1 M, both electrostatic repulsion and attraction can be significantly screened by the higher salt concentration, resulting in the salt concentration-reduced effect. However, when the salt concentration is further increased to 0.4 M, the addition of thearubigin may promote the formation of a certain type of complex with BSA, resulting in the increases of both thickness and mass of the thearubigin adlayer.  相似文献   

5.
Combined measurements of piezoelectric quartz crystal impedance (PQCI) and electrochemical impedance (EI) were utilized in situ to monitor the adsorption of bovine serum albumin (BSA) onto the newly prepared Au colloid-modified electrode and study the binding process of tannic acid (TA) to BSA on the BSA-modified electrode surface. The time courses of the resonant frequency and the equivalent parameters of the sensor were simultaneously obtained during BSA adsorption and TA-BSA binding. Compared with the bare gold electrode, the Au colloid-modified gold electrode showed better biocompatibility, and the absorption capacity for BSA was increased by approximately 2.4 times. The observed frequency decrease was ascribed to the mass increase of the sensor surface resulting from the TA-BSA binding, which is believed to result mainly from the hydrogen bonding from FT-IR characterization. The maximal molar binding ratio of TA binding to immobilized BSA obtained from the frequency shift of the adsorbed BSA and TA was estimated to be 10.3:1. On the basis of the frequency decrease with time, the kinetics of the binding was quantitatively studied. By way of fitting the experimental data, the kinetics parameters, that is, binding and dissociation constant (k1, k(-1)), and the binding equilibrium constant (ka) were determined, giving values of 9.51 x 10(4) M(-1) s(-1), 3.15 s(-1), and 3.1 x 10(4) M(-1), respectively.  相似文献   

6.
人血清白蛋白的研究进展   总被引:1,自引:0,他引:1  
人血清白蛋白作为血浆容量扩充剂用途广泛,是当前的研究热点之一。本文综述了其结构组成、功能和表达现状。用基因工程大幅度提高rHSA的表达产量是目前重组人血清白蛋白研究的关键问题。  相似文献   

7.
The interface of 10 or 25% (w/v) bovine serum albumin (BSA), pH 7, buffered solution against mineral or corn oil was studied with a Raman microscope. A gradient of distribution of protein and oil at the interface was observed. The difference spectrum obtained by subtracting the spectrum of mineral or corn oil from that of the BSA/oil interface indicated interactions involving different functional groups of the BSA and the oil molecules. Against mineral oil, the BSA spectrum showed reduced intensity of the tryptophan band at 750 cm(-1) and reduced intensity ratio of the tyrosine doublet at 850-830 cm(-1), indicating changes in the microenvironment of these hydrophobic residues. A negative band at 2850 cm(-1) indicated the involvement of the CH groups in the mineral oil. However, the amide regions, normally assigned to protein secondary structure, were not significantly changed. When the spectrum of BSA was subtracted from the BSA/mineral oil interface spectrum, the resultant difference spectrum showed changes of symmetric and antisymmetric CCC stretches at 980 and 1071 cm(-1), respectively. In contrast, the difference spectrum of BSA/corn oil interface - BSA showed a decrease of CH(2) symmetric stretching at 2850 cm(-1) and a decrease of unsaturated fatty acid hydrocarbon chain stretch at 3010 cm(-1). Raman spectroscopy is a useful tool to study the nature of protein-lipid interactions.  相似文献   

8.
Methyl linoleate oxidation in the presence of bovine serum albumin   总被引:1,自引:0,他引:1  
The oxidation of methyl linoleate (LMe) in the presence of bovine serum albumin (BSA) was studied to analyze both the processes involved when lipid oxidation occurs in the presence of proteins and the relative progression of the several reactions implicated. The disappearance of LMe, the formation of primary and secondary lipid oxidation products, the loss of essential amino acids, and the production of oxidized lipid/amino acid reaction products (OLAARPs) were studied as a function of incubation time. During the first steps of lipid oxidation, LMe was converted quantitatively to methyl linoleate hydroperoxides, which were very rapidly degraded to either secondary products of lipid oxidation or OLAARPs. No significant differences were identified in the major lipid oxidation products formed in incubations with or without proteins, indicating that mechanisms for formation of these compounds are similar in both cases. In addition, no significant differences were observed between the time-courses of formation of secondary oxidation products and OLAARPs, suggesting that hydroperoxide decomposition and OLAARP formation occur simultaneously when the lipid oxidation process takes place in the presence of proteins. Furthermore, OLAARP formation seems to be an unavoidable process that should be considered as a last step in the lipid peroxidation process.  相似文献   

9.
Crocetin (CRT) and dimethylcrocetin (DMCRT) are derived from crocins which are found in the stigmas of saffron (Crocus sativus L.), while safranal is the main component of saffron's essential oil. The aim of the present study was to examine their interaction with human serum albumin in aqueous solution at physiological conditions using constant protein concentration and various ligand contents. FT-IR and UV-visible spectroscopic methods were used to determine the ligands' binding mode, the binding constant, and the effects of ligand complexation on protein secondary structure. Structural analysis showed that crocetin, dimethylcrocetin, and safranal bind nonspecifically (H-bonding) via protein polar groups with binding constants of Kcrt =2.05 (+/-0.30) x 103 M-1, Kdmcrt = 9.60 (+/-0.35) x 104 M-1, and Ksaf = 2.11 (+/-0.35) x 103 M-1. The protein secondary structure showed no major alterations at low ligand concentrations (1 microM), whereas at higher content (1 mM), decrease of alpha-helix from 55% (free HSA) to 43-45% and increase of beta-sheet from 17% (free HSA) to 18-22% and random coil 7% (free HSA) to 10-14% occurred in the ligand-HSA complexes. The results point to a partial unfolding of protein secondary structure at high ligand content. The antioxidant activity of CRT, DMCRT, and safranal was also tested by the DPPH* antioxidant activity assay, and their IC50 values were compared to that of well-known antioxidants such as Trolox and butylated hydroxy toluene (BHT). The IC50 values of CRT and safranal were 17.8 +/- 1 microg/mL and 95 +/- 1 microg/mL, respectively, while the inhibition of DMCRT reached a point of 38.8%, which corresponds to a concentration of 40 microg/mL, and then started to decrease. The IC50 values of Trolox and BHT were 5.2 +/- 1 microg/mL and 5.3 +/- 1 microg/mL, respectively.  相似文献   

10.
Phenolic compounds are responsible for major organoleptic characteristics of plant-derived food and beverages; these substances have received much attention, given that the major function of these compounds is their antioxidant ability. In the context of this study, our major aim was study the binding of several phenolic compounds such as (+)-catechin, (-)-epicatechin, (-)-epicatechin gallate, malvidin-3-glucoside, tannic acid, procyanidin B4, procyanidin B2 gallate, and procyanidin oligomers to different proteins (bovine serum albumin and human alpha-amylase) by fluorescence quenching of protein intrinsic fluorescence. From the spectra obtained, the Stern-Volmer, the apparent static, and the bimolecular quenching constants were calculated. The structure of polyphenols revealed to significantly affect the binding/quenching process; in general, the binding affinity increased with the molecular weight of polyphenol compounds and in the presence of galloyl groups. For catechin monomer and procyanidin dimer B4, the K(SV) was 14,100 and 13,800 M(-1), respectively, and for galloyl derivatives, the K(SV) was 19,500 and 21,900 M(-1), respectively. Tannic acid was shown to be the major quenching molecule for both proteins. However, comparing different proteins, the same polyphenol showed different quenching effects, which are suggested to be related to the three-dimensional structure of the proteins studied. For (+)-catechin and BSA, the K(SV) was 8700 M(-1), and with alpha-amylase, it was 14,100 M(-1); for tannic acid, the K(SV) was 10,0548 and 11,0674 M(-1), respectively. From the results obtained, besides the main binding analysis performed, we conclude that this technique is more sensitive than thought because we can detect several interactions that have not been proven by other methods, namely, nephelometry. Overall, fluorescence quenching has proven to be a very sensitive technique with many potentialities to analyze the interaction between polyphenols and proteins.  相似文献   

11.
The aqueous extract of Eucommia ulmoides leaves has been commonly known as Du-zhong tea as a functional health food for the treatment of hypertension, hypercholesterolemia, and fatty liver. This study developed a centrifugal ultrafiltration-high-performance liquid chromatography (HPLC) method for screening and identification of bioactive compounds in E. ulmoides leaves binding with bovine serum albumin (BSA). Six active compounds were screened, isolated, and elucidated by their ultraviolet (UV), electrospray ionization-mass spectrometry (ESI-MS), and nuclear magnetic resonance (NMR) data as geniposidic acid (1), caffeic acid (2), chlorogenic acid (3), quercetin-3-O-sambubioside (4), rutin (5), and isoquercitrin (6). The interaction between active compounds and BSA was investigated in the absence and presence of other compounds by quenching the intrinsic BSA fluorescence. The results indicated that the structures significantly affected the binding process. The values of binding constants for compounds 2-6 were in the range of 10(5)-10(6) mol L(-1), while geniposidic acid (1) hardly quenching the BSA intrinsic fluorescence. However, the quenching process of geniposidic acid was easily affected in the presence of other active compounds. The formation of the geniposidic acid-phenylpropanoid (flavonoid) complex could increase the binding affinity of geniposidic acid with BSA; however, the increased steric hindrance of the complex may make phenylpropanoid or flavonoid dissociate from BSA and then decrease their affinities.  相似文献   

12.
Iron chelation by the powerful antioxidant flavonoid quercetin   总被引:1,自引:0,他引:1  
Chelation of the bare and hydrated iron(II) cation by quercetin has been investigated at the DF/B3LYP level in the gas phase. Several complexed species arising from neutral and anionic forms of the ligand have been taken into account. Both 1:1 and 1:2 metal/flavonoid stoichiometries have been considered. Results indicate that among the potential sites of chelation present on quercetin, the oxygen atoms belonging to the 3-hydroxy and 4-oxo, and to the 5-hydroxy and 4-oxo groups, are the preferred ones. Time-dependent density functional theory (TDDFT) calculations, used to reproduce the electronic UV-vis spectra of isolated quercetin and its complexes with Fe2+, were also performed in methanol and dimethylsulfoxide.  相似文献   

13.
Chitin neoglycoconjugates (BSA-CO) were obtained by the conjugation of bovine serum albumin (BSA) with chitin oligosaccharides (CO) through the Maillard reaction (nonenzymatic glycation). CO produced by acid hydrolysis of chitin were fractionated using an ultrafiltration membrane system (1-3 kDa cutoff). The Maillard reaction was carried out by heating a freeze-dried mixture containing BSA and CO at 60 °C (under 43% relative humidity for 6 and 12 h). BSA-CO were characterized by available amino groups content, intrinsic tryptophan emission spectra, gel electrophoresis, and mass spectrometry. Biological assays included interaction with wheat germ agglutinin (WGA) and with bacterial adhesins of Escherichia coli K88+ and Salmonella choleraesuis. Glycation of BSA was revealed by reduction of available amino groups and fluorescence intensity and also retarded migration through SDS-PAGE. Conjugation of BSA with chitin oligomers appeared to be time dependent and was confirmed by mass spectrometry, by which molecular mass increase for monomers and dimers was observed. Monomers were estimated to contain either one or two glycation sites (at 6 and 12 h of treatment, respectively), with one or two tetrasaccharide units attached. Consequently, dimers showed two or four glycation sites. BSA-CO presented biological recognition by WGA and E. coli K88+ and S. cholerasuis adhesins. The strategy used in this work represents a simple method to obtain glycoconjugates to study applications involving protein-carbohydrate recognition.  相似文献   

14.
Quercetin (Que) is a flavonoid widely distributed in vegetables and fruits and exhibits strong antioxidant activity, but the poor stability of Que limits its function and application. The present study developed a nanoparticle (NP) using bovine serum albumin (BSA) as a matrix to encapsulate Que. The stability of encapsulated Que by BSA NP was tracked in a simulated intestinal fluid (SIF). The antioxidant activity of encapsulated Que was evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging assays. Furthermore, the stabilizing mechanism of Que by BSA NP was investigated, using scanning transmisson electron microscopy (STEM), dynamic light scattering (DLS), UV-vis, fluorescence spectrometry, and circular dichroism (CD). The results revealed that Que was effectively encapsulated by BSA and formed spherical NP (<10 nm). BSA NP not only promoted the stability of encapsulated Que but also kept the antioxidant activity of encapsulated Que. The driving forces for BSA-Que association were hydrophobic interaction and hydrogen bond, and the latter was involved in the mechanism of Que stabilization. This suggested that BSA NP could be a good carrier to deliver hydrophobic flavonols.  相似文献   

15.
Beta-1,2,3,4,6-penta-O-galloyl-D-glucopyranose (PGG) and soluble complexes of PGG with bovine serum albumin (BSA) were characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). PGG was also characterized by electrospray ionization mass spectrometry (ESI-MS). Similar fragmentation patterns of PGG were found in ESI-MS and MALDI-TOF MS. The apparent stoichiometries of non-covalent BSA-PGG complexes were determined by MALDI-TOF MS.  相似文献   

16.
This paper is devoted to the application of front-surface fluorescence to the study of aging and oxidation of oil-in-water emulsions. Emulsions with two oil droplet sizes were stabilized with bovine serum albumin (BSA) and stored at 37 or 47 degrees C. Lipid oxidation was demonstrated by measurement of hydroperoxides and headspace pentane. Front-surface fluorescence spectra (excitation wavelength = 355 nm) revealed gradual formation of oxidized lipid-protein adducts during the 4 weeks of storage. Fluorescence (excitation = 290 nm) of BSA tryptophanyl residues (Trp) declined during the first day of aging and then decreased slightly and linearly. Fourth-derivative Trp spectra exhibited peaks at 316 and 332 nm. Their evolution indicated that the ratio of Trp in hydrophobic environments to total Trp increased in small droplet emulsions. This suggests that, during lipid oxidation, the adsorbed and nonadsorbed protein underwent various degrees of Trp degradations, polymerization, and aggregation. Thus, front-surface fluorescence makes it possible to evaluate, noninvasively, protein modification and lipid oxidation end-products during processing and storage of food emulsions.  相似文献   

17.
Six flavone C-glycosides were isolated from young leaves of barley. One of the C-glucosides has a new type of nucleus, a 2',4',5,5', 7-penta-OH-substituted flavone bearing a 6-C-beta-D-glucoside, which has apparently never been isolated before. One mono- and two di-C-glycosyl flavones were isolated for the first time from barley and identified as isoscoparin 7-O-beta-D-glucoside, carlinoside, and shaftoside, respectively. Other flavones were 7-O-beta-D-glucosides of isoorientin and isovitexin. The known problematic NMR structure elucidation of C-glycosyl flavonoids has been solved by using both a temperature close to the freezing point of the solvent (22.5 degrees C in DMSO-d(6)) and a high temperature (70, 90 degrees C) for comparison during NMR measurements. Structural determination of all the compounds was achieved by employing 1D and 2D NMR techniques.  相似文献   

18.
Two diffusion-based NMR techniques are presented and used to investigate the binding of selected flavor compounds to macromolecules. A pulsed field gradient NMR (PFG-NMR) method was applied to measure the apparent diffusion coefficients of four alkanone compounds as they associated with bovine serum albumin (BSA). The change in the apparent diffusion coefficient as a function of the BSA/alkanone ratio was fitted to yield binding constants (K(a)()) and binding stoichiometry (n) for each alkanone. The results showed that the apparent diffusion coefficients of alkanones increased with a decrease in the BSA/alkanone ratios, and the measured values of K(a)() and n were comparable with those obtained with other methods and depended on the alkanone structure. A diffusion-based nuclear Overhauser effect (called diffusion NOE pumping) method was also applied to screen mixtures of flavor compounds and identify those that have a binding affinity to complex macromolecules. Using this technique benzaldehyde and vanillin were observed to bind with bovine serum albumin, whereas 2-phenylethanol was identified as a nonbinding or weakly binding ligand with BSA. The diffusion NOE pumping method was also applied to a hydro alcoholic solution of cacao bean tannin extracts to which a mixture of ethylbenzoate, benzaldehyde, and 2-phenylethanol was added. The diffusion NOE pumping technique clearly indicated that ethylbenzoate had a stronger binding affinity to the polymeric (-)-epicatechin units of the cacao bean tannin extracts than the other two flavor compounds. The results successfully demonstrate the potential applications of diffusion-based NMR techniques for studying flavors and nonvolatile food matrix interactions.  相似文献   

19.
The mechanism of enhanced effect of (-)-epigallocatechin-3-gallate (EGCG) on huperzine A's (HUP) inhibition of acetylcholinesterase (AChE) activity in rats was investigated. The inhibitory effects of HUP at 10 and 5 microg/kg on AChE activity were quite weak in the whole phase. In contrast, upon addition of EGCG (100 mg/kg) to the HUP 10 and 5 microg/kg groups, remarkably enhanced inhibitory effects with maximum inhibitory percentages of 90.94 and 88.13% were observed under the same conditions. EGCG also can greatly prolong the inhibitory time. The mechanism of the enhanced effects of EGCG on HUP's inhibition of AChE activity was investigated by steady fluorescence spectroscopy, infrared spectroscopy, and ultraviolet spectroscopy. HUP hardly interacted with the main transport protein, whereas there was a very strong binding interaction between EGCG and bovine serum albumin. The enhanced transport of HUP is a possible cause of the enhanced effect of EGCG on HUP bioactivity.  相似文献   

20.
The effects of 1:1 flavonoid-Cu(2+) complexes of four flavonoids with different C-ring substituents, quercetin (QU), luteolin (LU), taxifolin (TA), and (+)-catechin (CA), on bovine serum albumin (BSA) were investigated and compared with corresponding free flavonoids by spectroscopic analysis in an attempt to characterize the chemical association taking place. The results indicated that all of the quenching mechanisms were based on static quenching combined with nonradiative energy transfer. Cu(2+) chelation changed the binding constants for BSA depending on the structures of flavonoids and the detected concentrations. The reduced hydroxyl groups, increased steric hindrance, and hydrophilicity of Cu(2+) chelation may be the main reasons for the reduced binding constants, whereas the formation of stable flavonoid-Cu(2+) complexes and synergistic action could increase the binding constants. The changed trends of critical energy transfer distance (R(0)) for Cu(2+) chelation were contrary to those of binding constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号