首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Milk thistle [Silybum marianum (L.) Gaertn] is an annual plant belonging to the Asteraceae family whose ripe seeds contain flavonoid substances, which are important in the modern pharmaceutical industry. Seed germination is a major factor limiting the establishment of plants under saline conditions. The effect of salinity and temperatures on germination and seedling establishment was studied in two genotypes of milk thistle, an Iranian wild type and German (Royston) type in the laboratory and in the field. Experiments were done with seven salt concentrations [0.1 (control), 1, 3, 6, 9, 12, and 15 dS/m] and three temperatures (15, 25, and 35°C). There were three replications for each treatment, and the experiment was run three times. The results showed that the percentage of germination and the number of normal seedlings at different salt treatment at 15°C were higher than at 25 or 35°C. The mean time to 50% germination was least at this temperature for both genotypes. Results suggested all germination indices and seedling emergence (50%) were achieved at levels up to 9 dS/m salinity at 15°C. Also, seeds at a salinity of 9–15 dS/m will germinate and up to 25% of the control nonstress treatment could emerge at the low temperature of 15°C.  相似文献   

2.
Salinity is the major environmental stress that affects the growth and productivity of plants. The present study was conducted to determine the effect of salinity on growth and ions uptake by moringa (Moringa oleifera L.) plant. The experiment was carried out in two phases. Initially, a germination test was conducted in the laboratory under the different salinity levels (control, 5, 10, 15, and 20 dS m?1) and found that moringa seeds were germinated only at 5 and 10 dS m?1 salinity levels, and no germination occurred at higher salinity levels (15 and 20 dS m?1). The experiment was laid out in a completely randomized design (CRD) with five replications. In the second phase, three-week old nursery grown plants of moringa were shifted in pots under the five salinity levels (control, 5, 10, 15, and 20 dS m?1). The experiment was laid out in CRD and replicated four times. In pot experiment, the root, shoot length, and dry weights were significantly affected by increasing the salinity levels. The uptake of K+ and Ca2+ was highly affected at different salinity levels as compared to control and Na+ ions accumulation was higher in roots rather than shoot. The results reveal that moringa plant can germinate, survive, and can be cultivated in areas with moderate saline condition.  相似文献   

3.
The hypothesis was that arbuscular mycorrhizal (AM) fungi are able to alleviate salt stress on plant growth by enhancing and adjusting mineral uptake. The objectives were to determine (1) the effects of soil salinity on mineral uptake by different wheat genotypes and (2) the effectiveness of different mycorrhizal treatments on the mineral uptake of different wheat (Triticum aestivum L.) genotypes under salinity. Wheat seeds of Chamran and Line 9 genotypes were inoculated with different species of AM fungi including Glomus mosseae, G. intraradices, and G. etunicatum and their mixture at planting using 100 g inoculum. Pots were treated with the salinity levels of 4, 8, and 12 dS/m before stemming. Different arbuscular mycorrhizal treatments, especially the mixture treatment, increased wheat mineral uptake for both genotypes. Although Line 9 genotype resulted in greater nutrient uptake under salinity stress, Chamran was more effective on adjusting sodium (Na+) and chloride (Cl?) uptake under salt stress.  相似文献   

4.
The effects of foliar fertilization and a growth regulator 5-tert-butyl-N-m-tolylpyrazine-2-carboxamide (MD148/II) on the growth, seed yield, and silymarin content of milk thistle (Silybum marianum Gaertn.) plants were evaluated. The study was conducted over two years at an experimental field on a slightly acid-leached cinnamonic meadow soil. The MD148/II was applied in the beginning of milk thistle flowering stage. Foliar fertilizer was applied at different plant developmental stages with different proportions of nitrogen (N), phosphorus (P), and potassium (K). Treatments with foliar fertilizer and MD148/II resulted in improvement of plant biomass, number of plant lateral shoots, flowering rate, and seed yield and the content of some active substances in milk thistle seeds. A reduction of high molecular fatty acids was observed. The increase of seed yield was a result of the flower head setting enhancement. Therefore the combined treatment of foliar fertilizer and MD148/II was efficient in elicitation milk thistle production under field conditions.  相似文献   

5.
The sensitivity of crop genotypes determines the level of growth reduction by salinity. Effect of salinity levels (7.5 and 15 dihydrate m?1) using completely randomized design (CRD) with four replications per treatment were compared on germination, chlorophyll content, water potential, ionic sodium and potassium (Na+, K+) balance, and other growth-related parameters of six wheat genotypes for varietal differences under long-term salinity stress. Chlorophyll contents at flowering stage and yield aspects at maturity of all the wheat genotypes decreased with increasing salinity. The maximum Na+ concentration was observed at 7.5 and 15 dS m?1 in Bhakhar and Saher-2000, respectively, while minimum Na+ concentration was observed for 9476. However, the maximum K+ concentration and water potential was noticed in 9476 at 7.5 dS m?1. Careful selection of salt-tolerant genotypes for field crops is an important perspective especially in the developing countries facing salinity problem. Our results revealed that the wheat genotype 9476 performed best regarding growth and physiological parameters compared to other wheat genotypes.  相似文献   

6.
The effects of increased salinity [NaCl + CaCl2] on seedling of three tepary and four common bean cultivars/lines, of known resistance and susceptibility at germination stage, grown for thirty‐eight‐days in salinized hydroponic and sand cultures were assessed at electrical conductivity (EC) of 1.89 (control), 4.00, 8.00, and 12.00 dS/m of half strength Hoagland solution inside a glasshouse at 30/25±2°C day/night temperature. The hydroponic culture screening method was more severe than the sand culture method. Common bean cultivars/lines expressed genetic variability to salinity stress at thirty‐eight‐days old seedlings. ‘Badrieh’ was tolerant to salinity as the tolerant tepary bean T#l line under sand culture. However, this was not evident under hydroponic culture. T#l showed salinity injury symptoms at EC = 4 dS/m, while ‘Badrieh’ showed’ no salinity injury symptoms at EC = 4 dS/m. These results indicate that the mechanisms involved for tolerating salinity in the tepary could be different from that involved in common beans. Inverse and significant correlations between salinity injury symptoms and several root and shoot characters were evident from the data, indicating that variation in whole‐plant foliar injury symptoms to salinity would thus seem to provide the best means of initial selection of salinity tolerant genotypes by plant breeders.  相似文献   

7.
Three olive (Olea europaea L.) cultivars Nabali Baladi (NB), Nabali Muhassan (NM), and Grossi Di'Espagna (GE) were evaluated under salt stress. Seedlings were treated with salinity induced by a 3:1 ratio of calcium chloride and sodium chloride to four concentration levels measured as electrical conductivity (EC) [1.2, 4.1, 7.0, and 14.0 dS/m] for 122 days. Olive seedlings varied in their response to salinity. In all treatments, NB had the highest root; stem and leaf dry weights had among the highest total plant dry weights, specific stem length (SSL) and relative water content (RWC). NB seedlings maintained the highest stomatal conductance at 7.0 dS/m and highest chlorophyll index at 14.0 dS/m. Olive seedlings that tolerated salt tolerance developed mechanisms of nutrient acquisition and distribution in the organs, by storing minimal amounts of sodium (Na+) and chloride (Cl?) in the stems and loading the most in the leaves and roots.  相似文献   

8.
This research has experimentally investigated the interactive influences of salinity stress and leaf thinning on the growth, yield, water use efficiency, and fruit quality of cherry tomatoes cultivated under soilless conditions. The experiment was conducted in a plastic house (width of 5 m and length of 11 m) located in Gifu University. The seedlings were transplanted in a randomized complete block design with six plants per treatment, and a total of 36 plants in 18 pots (two plants per pot). The experiment received salinity treatment (no-salinity and salinity with electrical conductivity (EC) of 0.8 dS m?1 and 3.0 dS m?1, respectively) and leaf thinning treatment (no leaf thinning, basal leaf thinning and intersegment leaf thinning except the closest two). The experimental results showed that salinity stress negatively affected the growth, yield, marketable yield and water use efficiency of cherry tomatoes, but positively affected the fruit quality. Basal leaf removal significantly decreased the biomass, chlorophyll, and yield but significantly improved the fruit quality; that basal leaf removal coupled with salinity stress showed no influence on plant growth, but reduced the yield and greatly improved the fruit quality. Besides, tender leaves around truss removal significantly decreased the biomass, chlorophyll, yield, and water consumption, but improved the fruit quality; that tender leaves around truss removal coupled with salinity stress greatly decreased the biomass, chlorophyll, yield, and water consumption, but significantly improved the fruit quality.  相似文献   

9.
Two experiments were carried out in 2013 and 2014, to investigate changes in grain filling rate (GFR), grain filling duration (GFD) and yield of mung bean in response to salicylic acid (SA) and silicon (Si) under salt stress (0, 3, 6 and 9 dS m?1). In experiment 1, four levels of SA (0, 0.5, 1 and 1.5 mM), but in experiment 2, two levels of SA (0 and 1 mM) and Si (0 and 2 mM) were applied. In experiment 1, GFR, GFD, yield components, biological and grain yields and harvest index were decreased with increasing salt stress. Application of different levels of SA, especially 1 mM, increased GFR, but decreased GFD. In experiment 2, GFD under salinity was shorter than that under non-saline condition, resulting in comparatively smaller grains. Application of Si and particularly SA accelerated grain development under all salinity treatments. The superiority of SA treated plants in GFR, grain weight and grains per plant resulted in greater grain yield per plant under saline and non-saline conditions.  相似文献   

10.
ABSTRACT

Salinity is one of the most important abiotic stresses limiting agricultural production worldwide. Here, we investigated the biometric, physiological and anatomical changes of Passiflora edulis plants propagated from seeds, cuttings and grafts and exposed to salt stress (0.3 – control and 6.3 dS m?1). Saline stress significantly reduced plant height, the number of leaves, total chlorophyll, stomatal conductance, shoot dry weight, total dry weight, total water consumption and root volume. Among the propagation methods evaluated, plants propagated from seeds were more sensitive to salinity, while plants propagated from cuttings showed smaller alterations when subjected to salinity. Similar behavior was observed for anatomical characteristics, since plants propagated from seeds presented more pronounced anatomical alterations, such as greater thicknesses of the leaf mesophyll, upper epidermis, lower epidermis, palisade parenchyma and spongy parenchyma and also was observed presence of calcium oxalate crystals in the form of druses in greater quantity in the root cortex, in comparison to plants propagated from cuttings. The approach used in this study allowed identifying the type of yellow passion fruit propagation (cuttings) that was best for physiological and anatomical adaptation to salt stress and will be potentially useful in programs for improvement of the crop.  相似文献   

11.
Disruption in the nitrogen (N) cycle balance has a negative impact on the overall trend of sustainable development, and using soil amendments is necessary to reduce these hazards. This study was carried out as a factorial experiment in a completely randomized design. The treatments consisted of three levels of amendments (0, 7.5 g/kg of pistachio residues, and 7.5 g/kg of biochar) and four levels of irrigation water salinity including 0.5 (urban water), 5.5, 8, and 10.5 dS/m and in three replications. Two pistachio seedlings were transferred to all columns and then in three steps, and in each step, 25 mg N/kg of potassium nitrate was added. The results indicated that pistachio residuals and its biochar increased nitrate outflow from effluent by 9% and 52%, respectively. The effects of amendment treatment and irrigation water salinity on all three characteristics of output nitrate, soil nitrate, and absorbed plant nitrate were significant at 1% level.  相似文献   

12.
Agaves are long-lived semelparous plants that produce a high number of seeds, in dehiscent capsules, on the apical section of a stalk, up to 5 m long, after 8–25 years. These and other characteristics such as yield and yield components are scarcely evaluated in the plants of the Agave genus. The objective of this study was to quantify the capsules and seeds yield of A. salmiana Otto ex Salm-Dyck plants simultaneously maturing and growing in the same region. Infructescences of three plants simultaneously growing at San Luis Potosí, Mexico, were harvested. On them we evaluated the number of umbels, capsules and seeds (normal and sterile) and their mass per plant. The study was developed on a completely randomized design with each infructescence as an experimental unit. Also, the type distribution of the number and mass of these yield components along the stalk was evaluated with the Chi square test for goodness of fit, the Shapiro–Wilks for normality tests, asymmetry and kurtosis. Data were analyzed with the ANOVA and multiple comparisons by the Tukey test (p?≤?0.05). The number of umbels per plant (17–25), capsule per umbel (2–179) and per plant (554–1990), normal seed per capsule (0–297), normal seeds per plant (30,610–186,209) and sterile seeds per plant (211,059–619,251) widely and significantly varied among infructescences. Biomass of capsules per plant umbel (3–795 g), biomass of sterile and normal seeds per capsule (0.071–1.449 and 0–3.320 g), per umbel (0.34–97.76 and 0.21–185.26 g) and per plant (182–1052 and 334–2069 g) also varied widely. Seed yield was statistically different between plants simultaneously growing and maturing at the same site.  相似文献   

13.
Suaeda aegyptiaca is an important native annual halophyte in salt-affected soils around coastal areas of the Persian Gulf. In order to study the effects of different levels of saturation paste soil salinity (10, 20, 40, 60, and 80 dS m?1) and nitrogen supply (25, 50, and 75 mg kg?1 N as urea) on growth and physiological characteristic of S. aegyptiaca, a greenhouse factorial experiment in completely randomized design was conducted with three replications. Salinity treatments were established after early growth of plants and nitrogen was applied in two steps. Results showed that increasing salinity up to 20 dS m?1 led to increase in dry weight (DW) of plants and this decreased by increasing salinity. Also, DW of plants was significantly increased by application of 75 mg kg?1 nitrogen. Increasing salinity significantly decreased plant height, chlorophyll index, and total nitrogen content; while proline content and total soluble solids (TSS) were significantly increased. The electrolyte leakage (EL) and sodium concentration were increased under salinity stress. However, further increase in salinity decreased these two parameters. By increasing the nitrogen levels, relative water content (RWC), chlorophyll index, proline, and total nitrogen contents were increased, whereas EL was decreased.  相似文献   

14.
Abstract

Among major constraints to crop production, salt stress affects the morphological structure and yield in crop plants. Nano-fertilizers, have made their hierarchy to supplement the traditional fertilizers in mitigating the effect of abiotic stress due to their slow release and efficiency. Three products were tested namely lithovit®-standard(LITHO), monopotassium-phosphate(MKP:0-52-34), and aspirin(ASP) on salt-stressed tomato crop. These products were applied through foliar spraying (foliar) or fertigation (ferti) on tomato plants irrigated with 4 saline solutions (4, 6, 8 and 10dS/m). Control plants were subjected to five salinity levels (0, 4, 6, 8 and 10dS/m) without any treatments. Results showed that increasing in salinity levels adversely affected all parameters in the control plants. The ameliorating effect of MKP-ferti was prominent in plant height, stem diameter, number of fruits, fruit weight and yield/plant at 4 and 6S/m. Whereas, the effect of salinity was mitigated by LITHO-foliar regarding flowers number and total chlorophyll content at all salinity level. Leaf N, P and K contents were accumulated higher when MKP-ferti was used whereas, Ca2+ and Mg2+ contents were accumulated higher in the plants treated with LITHO-foliar. The cellular leakage of electrolyte was reduced at 4, 6 and 10dS/m with MKP-ferti and at 8dS/m with LITHO-foliar application. Among the two methods of application, foliar spraying of LITHO and ASP, and fertigation of MKP improved plant performance more than their complementary methods of application. The better performance of MKP necessitates the use of phosphorous and potassium-based nano-fertilizers. It can reduce the production cost of vegetables using conventional fertilizers.  相似文献   

15.
Two Safflower (Carthamus tinctoriusL.) cultivars' seeds were used to study the influence of inoculation with mycorrhiza arbuscular fungi under salinity stress condition. Factorial experiment based on completely randomized design (three-way analysis of variance (ANOVA)) with 3 replications was used. Salinity treatment with 3 levels (0.5, 6, and 12 dS/m) and mycorrhizal arbuscular inoculation with two species (three levels consist of non-inoculation, and inoculation with Glomus intraradices and G. moseae) were applied on two cultivars of safflower (Goldasht and Padide) in this experiment. Some important biochemical, mineral, and growth traits were measured in this study. Salinity had a significant negative effect on all growth and morphological parameters including shoot and root dry weight, stem and root height. On the other hand, colonized plants showed better growth parameters under saline conditions compared with the control. The colonization of both mycorrhizal species decreased with salinity. Sugar and pigment content decreased with salinity, but their levels in colonized plants under saline conditions were higher than that in non-colonized plants. Mineral elements including phosphorus (P), nitrogen (N), and magnesium (Mg) were higher in colonized plants, while salinity decreased the absorption of these elements in both inoculated and non-inoculated plants. Higher activity of the enzymatic antioxidant means higher removal of these compounds and higher resistance to stress condition. Overall, it is clear that salinity had a negative effect on both cultivars of safflower, but these negative effects were lower in inoculated plants than in the non-inoculated ones; so, the use of mycorrhizal inoculation is a proper way to control the effect of salinity and maintain plant production.  相似文献   

16.
Inappropriate crop management and long-term use of heavy agricultural equipment can lead to soil compaction. On the other hand, soil and water salinity causes reduction in the plant yield in addition to adverse effects on plants tolerance to the various stresses. The aim of this study was to investigate the interaction between soil compaction and salinity on the macronutrients uptake and wheat yield as well as its agronomic traits. The pot experiment was carried out on the loamy soil in a completely randomized block design with three replications. The treatments consisted of two salinity types (saline, EC = 6 dS/m and non-saline soil) and five levels of compaction; control, 5%, 10%, 15% and 20%. The results showed that soil compaction had significant effect on the amount of N, P and K in wheat grain, so that the uptake of N, P and K by grain has been decreased by increasing the compaction level of soil. Soil salinity had significant effect on N, P and K content in grain that the content of N, P and K has been diminished in the saline treatments compared to non-saline treatments. Results on the agronomic traits and yield of wheat also revealed that soil compaction and salinity had significant effect (p < 0.01) on straw weight, number of ears, number of grain, and thousand grain weight which caused reduction in these parameters. The interaction between compaction and salinity had only significant correlation (p < 0.01) with thousand grain weight leading to the decrement of thousand grain weight with increasing compaction levels, particularly in the saline treatment.  相似文献   

17.
Germination of plants is one of the most important stages during their growth, which is often influenced by environmental stresses, especially drought and salinity. This study was conducted to investigate the effects of salinity and drought on seed germination and growth of Lathyrus sativus. The experiment was laid out in a completely randomized design with factorial arrangement in four replications. Salinity treatments were 0, 2, and 4 dS/m and drought treatments included 0, 0.4, 0.8, and 1.2 MPa. Salinity and drought treatments were prepared by using sodium chloride and polyethylene glycol 6000, respectively. The results showed that salinity and drought stresses decreased germination percentage, and root and radicle length.  相似文献   

18.
Salinity as a major abiotic stresses is one of the main challenges in world’s agricultural productions. The aim of this work was to study the effect of salinity on growth parameter and these ratio ionics responses of three cultivars pistachio. The experiment was arranged in a randomized complete block design consisting of a 3 × 4 factorial combination of three pistachio cultivars (Akbari, Aghaei, and Kalle-Ghuchi) and four salinity levels (1, 5, 10, and 15 dS/m sodium chloride) with three replications. The results showed that the Aghaei cultivars having a high ratio of potassium (K)/sodium (Na) and maintain this ratio at different levels of salinity and Akbari cultivars is sensitive to salinity because of the less ratio of K/Na.  相似文献   

19.
ABSTRACT

This study reports the relationship of the leaf ionic composition with the grain yield and yield components of wheat in response to salinity x sodicity and salinity alone. The study was conducted in soil culture in pots with three treatments including control (ECe 2.6 dS m? 1 and SAR 4.53), salinity (ECe 15 dS m? 1 and SAR 9.56), and salinity x sodicity (ECe 15 dS m? 1 and SAR 35). The soil was treated before being put in the pots and the pots were arranged in a completely randomized factorial arrangement with five replications. The seeds of three wheat genotypes were sown directly in the pots and the study was continued till the crop maturity. At booting stage, the leaf second to the flag leaf of each plant was collected and analyzed for sodium (Na+), potassium (K+), and chloride (Cl?). At maturity, plants were harvested and data regarding grain yield and yield components were recorded. This study shows that salinity and sodicity in combination decreases the grain yield of wheat more than the salinity alone with a greater difference in the sensitive genotype. This study also shows that as for salinity, the maintenance of lower Na+ and higher K+ concentrations and higher K+: Na+ ratio in the leaves relates positively with the better development of different yield components and higher grain yield in saline sodic soil conditions. Although, the leaf Cl? concentration was increased significantly by salinity as well as salinity x sodicity and would have affected the growth and yield, yet it does not seem to determine the genotypic tolerance or sensitivity to either salinity or salinity x sodicity.  相似文献   

20.
Abstract

An important consideration for milk thistle (Silybum marianum L.) cultivation is regulating development to lengthen the reproductive stage and increase seed yield with high silymarin content. The treatment of milk thistle with foliar fertilizers and growth regulators—thidiazuron (Dropp®), 2,3,5‐triiodobenzoic acid (Tiba®), mepiquat chloride (Pix®), and prohexadione‐Ca (Regalis®)—resulted in an increase in the proportion of mature flower heads. Highest seed yield was observed in plants treated with Pix® and mineral soil fertilization, whereas in plants treated with foliar fertilizers, highest yields were observed with Pix® and Regalis®. The highest content of silymarin was found in plants treated with Dropp® and foliar fertilizer. Generally, treatment of milk thistle with plant‐growth regulators in combination with soil or foliar mineral fertilizers increased the total amount of silymarin by increasing seed yield per hectare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号