首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The effects of 11 different 2- and 3-yr potato crop rotations on soil microbial communities were characterized over three field seasons using several techniques. Assessments included microbial populations determined by soil dilution plate counts on various general and selective culture media, microbial activity by fluorescein diacetate (FDA) hydrolysis, single carbon source substrate utilization (SU) profiles, and fatty acid methyl ester (FAME) profiles. Potato rotation crops evaluated in research plots at Newport, ME, included barley/clover, canola, green bean, millet, soybean, sweet corn, and a continuous potato control. Soil populations of culturable bacteria and overall microbial activity tended to be highest following barley, canola, and sweet corn rotations, and lowest with continuous potato. Differences among rotations were less apparent during the potato phase of the rotations. Populations of actinomycetes and fluorescent pseudomonads tended to be greater in barley rotations than in most other rotations. SU profiles derived from BIOLOG GN2 plates indicated that certain rotations, including barley, canola, and sweet corn tended to have higher overall microbial activity, and barley and sweet corn rotations averaged higher substrate richness and diversity. Soybean and potato rotations tended to have lower substrate richness and diversity. Principal component analyses of SU data revealed differences among rotation soil communities in their utilization of individual carbon sources and substrate guilds, including carbohydrates, carboxylic acids, amines/amides, and amino acids. Analyses of soil FAME profiles demonstrated distinct differences among all the rotation soils in their relative composition of fatty acids, indicating differences in their microbial community structure. Fatty acids most responsible for differentiation among rotation soils included 16:1 ω5c, 16:1 ω7c, 18:2 ω6c, 18:1 ω9c, 12:0, and 13:0 anteiso, with 16:1 ω5c being the single greatest determinant. Overall, monounsaturated fatty acids, particularly 16:1 ω5c, were most prevalent in sweet corn rotations and polyunsaturates were highest in barley and millet rotations. Straight chain saturated fatty acids comprised the greatest proportion of fatty acids in soils under continuous potato. FAME biomarkers for microorganism groups indicated barley and millet rotations had the highest ratio of fungi to bacteria, and soybean and continuous potato had the lowest ratio. This research has demonstrated that different crop rotations have distinctive effects on soil microbial communities that are detectable using a variety of techniques. Further studies will identify more specific changes associated with particular rotations and relate these changes to potential effects on disease management, crop health, and crop productivity.  相似文献   

2.
We sampled soil at four sites in the Laguna Mountains in the western Sonoran Desert to test the effects of site and sample location (between or beneath plants) on fatty acid methyl ester (FAME) and carbon substrate ulilization (Biolog) profiles. The four sites differed in elevation, soil type, plant community composition, and plant percent cover. Soil pH decreased and plant density increased with elevation. Fertile islands, defined as areas beneath plants with greater soil resources than bare areas, are present at all sites, but are most pronounced at lower elevations. Consistent with this pattern, fertile islands had the greatest influence on FAME and Biolog profiles at lower elevations. Based on the use of FAME biomarker and principal components analyses, we found that soil microbial communities between plants at the lowest elevation had proportionally more Gram-negative bacteria than all other soils. At the higher elevation sites there were few differences in FAME profiles of soils sampled between vs. beneath plants. Differences in FAME profiles under plants among the four sites were small, suggesting that the plant influence per se is more important than plant type in controlling FAME profiles. Since microbial biomass carbon was correlated with FAME number (r=0.85,P<0.0001) and with FAME named (r=0.88,P<0.0001) and total areas (r=0.84,P<0.0001), we standardized the FAME data to ensure that differences in FAME profiles among samples were not the result of differences in microbial biomass. Differences in microbial substrate utilization profiles among sampling locations were greatest between samples taken under vs. between plants at the two lower elevation sites. Microbial substrate utilization profiles, therefore, also seem to be influenced more by the presence of plants than by specific plant type.  相似文献   

3.
Using a scheme of agricultural fields with progressively less intensive management (deintensification), different management practices in six agroecosystems located near Goldsboro, NC, USA were tested in a large-scale experiment, including two cash-grain cropping systems employing either tillage (CT) or no-tillage (NT), an organic farming system (OR), an integrated cropping system with animals (IN), a successional field (SU), and a plantation woodlot (WO). Microbial phospholipid fatty acid (PLFA) profiles and substrate utilization patterns (BIOLOG ECO plates) were measured to examine the effects of deintensification on the structure and diversity of soil microbial communities. Principle component analyses of PLFA and BIOLOG data showed that the microbial community structure diverged among the soils of the six systems.Lower microbial diversity was found in lowly managed ecosystem than that in intensive and moderately managed agroecosystems, and both fungal contribution to the total identified PLFAs and the ratio of microbial biomass C/N increased along with agricultural deintensification. Significantly higher ratios of C/N (P 〈 0.05) were found in the WO and SU systems, and for fungal/bacterial PLFAs in the WO system (P 〈 0.05). There were also significant decreases (P 〈 0.05) along with agricultural deintensification for contributions of total bacterial and gram positive (G+) bacterial PLFAs.Agricultural deintensification could facilitate the development of microbial communities that favor soil fungi over bacteria.  相似文献   

4.
Microbial communities vary across the landscape in forest soils, but prediction of their biomass and composition is a difficult challenge due to the large numbers of variables that influence their community structures. Here we examine the use of artificial neural network (ANN) models for extraction of patterns among soil chemical variables and microbial community structures in forest soils from three regions of the Atlantic Forest of Brazil. At each location, variations in soil chemical properties and FAME profiles of microbial community structures were mapped at 20 × 20 m intervals within 10 ha parcels. Geostatistical analyses showed that spatial variability in soil physical and chemical variables could be mapped at scale distances of 20 m, but that FAME profiles representing the microbial communities were highly variable and had no spatial dependence at the same scale in most cases. RDA analysis showed that FAME signatures representing different microbial groups were positively associated with soil pH, OM, P and base cations concentrations, whereas microbial biomass was negatively associated with the same environmental factors. In contrast, ANN models revealed clear relationships between microbial community structures at each parcel location, and generated verifiable predictions of variations in FAME profiles in relation to soil pH, texture, and the relative abundances of base cations. The results suggest that ANN modeling provides a useful approach for describing the relationships between microbial community structures and soil properties in tropical forest soils that were not able to be captured using geostatistical and RDA analyses.  相似文献   

5.
The aim of this work was to study the effects of spreading olive mill wastewater (OMW) on the soil surface of an olive grove on the soil microbial communities. Analyses of ester-linked fatty acid methyl esters (EL-FAME) were used to assess variations in the soil microbial community structure following land spreading of OMW. Our data provide evidence that agronomic application of OMW has important effects on soil microbial community. Bacteria were relatively more reduced by these treatments than fungi and actinomycetes as revealed by an increased index of fungal/bacterial FAME and actinomycetes/bacterial FAME. Specific FAME markers indicated a significant reduction in the Gram-positive bacteria. However, the relative proportion of the Gram-negative bacteria was not significantly different after agronomic application of OMW. The ratios of cyclopropyl/monoenoic precursors decreased and the total monounsaturated/total saturated fatty acids increased in the OMW amended soils, suggesting that the microbes inhabiting the control soil are more carbon limited than the OMW amended soils. The changes in the FAME pattern of the soil organisms possibly were related (i) to an altered substrate quantity, that is the availability of substrates after the treatments, (ii) the complex nature of OMW which also contains high molecular-mass recalcitrant polyphenols.  相似文献   

6.
通过盆栽土培试验研究了玉米幼苗生长期间对芘污染土壤微生物活性及多样性的影响。结果表明,玉米加快了土壤中芘的降解,提高了芘在土壤中的降解速率。试验期间,根际土中可提取态芘含量显著低于非根际土,根际土微生物生物量碳、微生物熵、多酚氧化酶和脱氢酶活性均高于非根际土,代谢熵低于非根际土。脂肪酸(FAME)分析结果表明,与非根际土相比,芘污染玉米根际土微生物群落结构发生了显著的变化,主要表现在真菌特征脂肪酸以及真菌/细菌的比值显著升高,细菌和GN^-细菌特征脂肪酸显著降低,且这种效应随着培养时间的推移在P〈0.01水平显著。根际土和非根际土中丛枝菌根真菌、GN^+细菌和放线菌特征脂肪酸差异随着培养时间的延长逐渐加大,45 d时其差异均在P〈0.05水平显著。  相似文献   

7.
《Soil biology & biochemistry》2001,33(4-5):679-682
Accelerated biodegradation of organic contaminants in planted soil is frequently reported yet our current understanding of plant–microbe interactions does not allow us to predict which plant species can encourage the development of rhizosphere communities with enhanced degradation capacity. In a companion study, five grass species (Sudan grass, ryegrass, tall fescue, crested wheatgrass, and switch grass) were grown in a Matapeake silt loam soil to study the degradation of atrazine and phenanthrene by rhizosphere microorganisms (see Fang et al., 2000, this vol., Fang, C., Radosevich, M., Fuhrmann, J. J., 2000. Atrizine and phenanthrene degradation in grass rhizosphere soil. Soil Biology & Biochemistry, in press). In the present paper substrate utilization patterns (BIOLOG®), and fatty acid methyl ester (FAME) profiles of the same rhizosphere microbial communities were determined. Both FAME and BIOLOG® analyses detected changes in soil microbial community structure among treatments. However, community structure did not directly correlate to either ATR or PHE degradation rates.  相似文献   

8.
 Fatty acid methyl ester (FAME) analysis is commonly used by soil scientists as a sole method for identifying soil bacteria. We observed discrepancies with this method for identifying certain species of bacteria. Therefore, we used carbon substrate oxidation patterns (BIOLOG) and some simple physical and chemical tests to determine the extent of these discrepancies. Identification with FAME profiles gave false positives for Arthrobacter globiformis, Micrococcus kristinae, and M. luteus, and identification with BIOLOG patterns gave a false positive identification for A. globiformis. A visual check and Gram stain are recommended when FAME analysis identifies soil isolates as M. kristinae or M. luteus, and an additional spore formation test is recommended when FAME and BIOLOG analyses identify isolates as A. globiformis. Received: 14 January 2000  相似文献   

9.
Two species of Pseudomonas chromosomally tagged with gfp, which had shown antagonistic activity against the tomato pathogen Ralstonia solanacearum in a previous study, were assessed for their impact in the rhizosphere of maize. Plant growth characteristics, numbers of indigenous heterotrophic bacteria, changes in the bacterial community structure according to the r/K strategy concept, and shifts in MIDI-FAME profiles of culturable bacterial fractions as well as total rhizosphere microbial communities were determined in relation to seed and soil treatment with the exogenous pseudomonads. The maize rhizosphere proved to be a suitable habitat for the introduced P. chlororaphis IDV1 and P. putida RA2, which showed good survival after introduction. However, both inoculants showed a small growth-reducing effect towards maize, which might have been caused by the high densities of inoculants used (i.e. competition for nutrients and action of metabolites produced) and/or changes in microbial community structure (both culturable bacterial fraction and the total microflora). Probably, an altered balance among the indigenous maize rhizosphere populations occurred. Thus, the culturable bacteria, as well as the total microflora in the rhizosphere, changed in response to the introduced pseudomonads, and their development was dependent on the growth stage of the plant. The FAME analyses showed that these microbial communities comprised different populations, and were separated according to, first, the method used (direct versus cultivation-based), second, sampling time, and, finally, inoculation level.  相似文献   

10.
Understanding the impacts of manure amendments on soil microorganisms can provide valuable insight into nutrient availability and potential crop and environmental effects. Soil microbial community characteristics, including microbial populations and activity, substrate utilization (SU) profiles, and fatty acid methyl ester (FAME) profiles, were compared in three soils amended or not amended with dairy or swine manure at two temperatures (18 and 25°C) and two soil water regimes (constant and fluctuating) in laboratory incubation assays. Soil type was the dominant factor determining microbial community characteristics, resulting in distinct differences among all three soil types and some differing effects of manure amendments. Both dairy and swine manures generally increased bacterial populations, substrate diversity, and FAME biomarkers for gram-negative organisms in all soils. Microbial activity was increased by both manures in an Illinois soil but only by dairy manure in two Maine soils. Dairy manure had greater effects than swine manure on SU and FAME parameters such as increased activity, utilization of carbohydrates and amino acids, substrate richness and diversity, and fungal FAME biomarkers. Temperature and water regime effects were relatively minor compared with soil type and amendment, but both significantly affected some microbial responses to manure amendments. Overall, microbial characteristics were more highly correlated with soil physical factors and soil and amendment C content than with N levels. These results indicate the importance of soil type, developmental history, and environmental factors on microbial community characteristics, which may effect nutrient availability from manure amendments and should be considered in amendment evaluations.Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture  相似文献   

11.
Land usage is a strong determinant of soil microbial community composition and activity, which in turn determine organic matter decomposition rates and decomposition products in soils. Microbial communities in permanently flooded wetlands, such as those created by wetland restoration on Sacramento-San Joaquin Delta islands in California, function under restricted aeration conditions that result in increasing anaerobiosis with depth. It was hypothesized that the change from agricultural management to permanently flooded wetland would alter microbial community composition, increase the amount and reactivity of dissolved organic carbon (DOC) compounds in Delta waters; and have a predominant impact on microbial communities as compared with the effects of other environmental factors including soil type and agricultural management. Based on phospholipid fatty acid (PLFA) analysis, active microbial communities of the restored wetlands were changed significantly from those of the agricultural fields, and wetland microbial communities varied widely with soil depth. The relative abundance of monounsaturated fatty acids decreased with increasing soil depth in both wetland and agricultural profiles, whereas branched fatty acids were relatively more abundant at all soil depths in wetlands as compared to agricultural fields. Decomposition conditions were linked to DOC quantity and quality using fatty acid functional groups to conclude that restricted aeration conditions found in the wetlands were strongly related to production of reactive carbon compounds. But current vegetation may have had an equally important role in determining DOC quality in restored wetlands. In a larger scale analysis, that included data from wetland and agricultural sites on Delta islands and data from two previous studies from the Sacramento Valley, an aeration gradient was defined as the predominant determinant of active microbial communities across soil types and land usage.  相似文献   

12.
《Applied soil ecology》2007,37(2-3):216-223
Olive mill wastewater (OMW) creates a disposal problem. The large amounts generated, combined with the high phenol and chemical oxygen demand concentrations, are the main difficulties in finding a solution for the management of these wastewaters. We investigated the short-term effect of spreading OMW on the soil surface of an olive grove on the soil microbial communities. Analyse of ester-linked fatty acid methyl ester (EL-FAME) were used to assess variation in soil microbial community structure after agronomic application of OMW. EL-FAME analysis showed significant shifts of specific groups of fatty acids 30 days after application of OMW to a field of olive trees at rates of 0 (control soil), 30, 60, 100, and 150 m3 ha−1 of OMW. In particular, the branched saturated fatty acids indicative of Gram-positive bacteria decreased and the unsaturated fatty acids commonly found in Gram-negative bacteria and fungi increased. The fungal/bacterial ratio measured increased significantly with increasing OMW. Lower cy19/18:1ω7c and cy17/16:1ω7c ratios were found in the amended soil than the control soil, and we interpret that as an indication that nutrient availability may be more limiting in the control soil. Similarly, the relative abundances of monounsaturated fatty acids increased with added OMW, and this is consistent with the presence of high substrate availability in OMW-treated soil. Principal Components Analysis of the FAME profiles showed discrimination between the control soil and OMW amended soil. Differences in fatty acid profiles between OMW-treated soil and control soil suggests that amendment of soil with OMW favors specific groups of organisms. To our knowledge, this is the first report of alterations in the FAME profile in soils due to agronomic application of OMW.  相似文献   

13.
Soil microbial communities in an apple orchard and its adjacent boundary bush with or without infestation by violet root rot were investigated for 2 years. Effects of season (spring, summer, and fall), land-use (apple orchard and boundary bush), and violet root rot (infested and healthy) on soil microbial populations, microbial activity, and microbial community structures were determined using physiological, cytochemical, and molecular (PCR-DGGE) approaches. Seasonal fluctuations were significant (P<0.05) in viable bacteria and fungal populations, bacterial FAME, fluorescein diacetate (FDA) hydrolysis, and diversity (H′) and evenness (J′) of community-level physiological profile (CLPP) in both years. However, seasonal differences of soil microbial guilds that utilize carbon substrate groups observed in the first year were not reproduced in the second year. The land-use factor differentiated the apple orchard from the boundary bush where viable bacterial population, bacterial FAME and FDA hydrolysis were significantly greater in both years. Infestation status of violet root rot, on the other hand, significantly increased bacterial FAME and FDA hydrolysis in both years. In addition, neither the land-use nor the disease infestation factor significantly influenced the utilization patterns of individual substrate guilds for the 2 years. In both years, saturated fatty acids were significantly more abundant in the orchard than in the bush soil, and monosaturated fatty acids vice versa. Principal component analyses for CLPP, FAME, and denaturing gradient gel electrophoresis (DGGE) consistently exhibited that, although the violet root rot influenced the soil microbial community structures both in the apple orchard and the boundary bush, overall magnitude of the difference in communities between the violet root rot infested and non-infested sites in the bush were greater than in the orchard, irrespective of the season. These results suggested that the seasonal and the land-use factors affected soil microbial community both quantitatively and qualitatively, whereas the impact of the violet root rot on the soil microbial community was mainly qualitative and more pronounced in the adjacent bush than in the orchard.  相似文献   

14.
 Fatty acid methyl ester (FAME) profiles, together with Biolog substrate utilization patterns, were used in conjunction with measurements of other soil chemical and microbiological properties to describe differences in soil microbial communities induced by increased salinity and alkalinity in grass/legume pastures at three sites in SE South Australia. Total ester-linked FAMEs (EL-FAMEs) and phospholipid-linked FAMEs (PL-FAMEs), were also compared for their ability to detect differences between the soil microbial communities. The level of salinity and alkalinity in affected areas of the pastures showed seasonal variation, being greater in summer than in winter. At the time of sampling for the chemical and microbiological measurements (winter) only the affected soil at site 1 was significantly saline. The affected soils at all three sites had lower organic C and total N concentrations than the corresponding non-affected soils. At site 1 microbial biomass, CO2-C respiration and the rate of cellulose decomposition was also lower in the affected soil compared to the non-affected soil. Biomarker fatty acids present in both the EL- and PL-FAME profiles indicated a lower ratio of fungal to bacterial fatty acids in the saline affected soil at site 1. Analysis of Biolog substrate utilization patterns indicated that the bacterial community in the affected soil at site 1 utilized fewer carbon substrates and had lower functional diversity than the corresponding community in the non-affected soil. In contrast, increased alkalinity, of major importance at sites 2 and 3, had no effect on microbial biomass, the rate of cellulose decomposition or functional diversity but was associated with significant differences in the relative amounts of several fatty acids in the PL-FAME profiles indicative of a shift towards a bacterial dominated community. Despite differences in the number and relative amounts of fatty acids detected, principal component analysis of the EL- and PL-FAME profiles were equally capable of separating the affected and non-affected soils at all three sites. Redundancy analysis of the FAME data showed that organic C, microbial biomass, electrical conductivity and bicarbonate-extractable P were significantly correlated with variation in the EL-FAME profiles, whereas pH, electrical conductivity, NH4-N, CO2-C respiration and the microbial quotient were significantly correlated with variation in the PL-FAME profiles. Redundancy analysis of the Biolog data indicated that cation exchange capacity and bicarbonate-extractable K were significantly correlated with the variation in Biolog substrate utilization patterns. Received: 8 March 2000  相似文献   

15.
《Applied soil ecology》2007,35(3):535-545
Water availability is known to influence many aspects of microbial growth and physiology, but less is known about how complex soil microbial communities respond to changing water status. To understand how long-term enhancement of soil water availability (without flooding) influences microbial communities, we measured the seasonal dynamics of several community-level traits following >7 years of irrigation in a drought-prone tallgrass prairie soil. From late May to mid-September, water was supplied to the irrigated treatments based on calculated plant water demand. Phospholipid fatty acids (PLFA) were used to assess changes in microbial community structure and physiology. To assess the community-level physiological profile, microbial utilization of BIOLOG substrates was determined. After incubation for 2 days, the distribution of added 13C-glucose in microbial and respired pools was used as an index of substrate utilization efficiency. We also measured the relative contribution of fungi and bacteria to soil microbial biomass via substrate-induced respiration (SIR). Multivariate analysis of mol% PLFA and BIOLOG substrate utilization indicated that both water availability and sampling time influenced both the physiological and structural characteristics of the soil microbial community. Specific change in biomarker PLFA revealed a decreased ratio of cyclopropyl to ω7-precursors due to water addition, suggesting community-level stresses were reduced. Over the growing season, continuously greater water availability resulted in a 53% greater ratio of fungal to bacterial biomass using SIR, and a 65% increase in fungal PLFA. The number of substrates utilized by the cultivable microbial community tended to be greater in continuously wetted soil, especially during periods of low rainfall. While water dynamics appeared to be associated with some of the shifts in microbial community activity, structural and functional changes in the community appeared to be more closely linked to the cumulative effects of water regime on ecosystem properties. Seasonality strongly influenced microbial communities. The environmental factors associated with seasonal change need to be more closely probed to better understand the drivers of community structure and function.  相似文献   

16.
Differences in the culturable fractions of total and metal-tolerant bacteria inhabiting bulk soil of a metal-mine spoil heap and the rhizosphere of silver birch (Betula pendula) or bushgrass (Calamagrostis epigejos), completed with changes in total microbial community structure in the soil, were assessed by MIDI-FAME (fatty acid methyl ester) profiling of whole-cell fatty acids. In addition, the abundance of metal-tolerant populations among the culturable bacterial communities and their identity and the metal-tolerance patterns were determined. The high proportions of Cu- and Zn-tolerant bacteria that ranged from 60.6% to 94.8% were ascertained in the heap sites. Within 31 bacterial isolates obtained, 24 strains were Gram-positive and Arthrobacter, Bacillus, Rathayibacter, Brochothrix, and Staphylococcus represented those identified. Minimum inhibitory concentration (MIC) data indicated that several strains developed multi-metal tolerance, and the highest tolerance to Cu (10 mM) and Zn (12 mM) was found for Pseudomonas putida TP3 and three isolated strains (BS3, TP12, and SL16), respectively. The analysis of FAME profiles obtained from the culturable bacterial communities showed that Gram-positive bacteria predominated in bulk soil of all heap sites. In contrast, the rhizosphere communities showed a lower proportion of the Gram-positive group, especially for silver birch. For the total microbial community, mostly Gram-negative bacteria (e.g., Pseudomonas) inhabited the heap sites. The results suggest that the quantitative and qualitative development of heterotrophic microbiota in the soil of the metal-mine spoil heap seems to be site-dependent (i.e., rhizosphere vs. bulk soil), according to differences in the site characteristics (e.g., enrichment of nutrients and total metal concentrations) and impact of plant species.  相似文献   

17.
Microbial community responses to alternative management may be indicative of soil quality change. In this study, soils were collected from research plots over 2 years and from commercial grower fields over 1 year. Treatments at the sites included 1-9 years of either winter cover cropping or winter fallow practices. Soils were assayed for microbial fatty acid methyl esters (FAMEs), direct count microscopy and Biolog substrate utilization potentials to assess management and environmental influences on soil communities. The strongest influence was season. Soils in early spring (prior to termination of the cover crop) utilized fewer carboxylic acids and generally were enriched in eukaryotic FAMEs, whereas proportionally more bacterial FAMEs were detected in soils at canopy closure and harvest of the summer vegetable crop. Within a season, community FAME and Biolog patterns were related to field properties. FAME profiles from grower fields in early spring and harvest were correlated significantly with soil texture, cation exchange capacity, and carbon content. Changes in community structure and Biolog potential occurred in some soils in response to winter cover crops, although effects were not observed until cover crop incorporation. Greater amounts of fungal and protozoan FAME markers were detected in some cover-cropped soils compared to winter fallow soils. Cover crop residues increased FAME diversity at one research station and Biolog diversity at two research stations and the grower fields. Although seasonal and field-dependent factors are major determinants of microbial community structure, shifts can occur as soil physical and chemical properties change in response to alternative practices, as demonstrated by this study.  相似文献   

18.
BIOLOG在土壤微生物群落功能多样性研究中的应用   总被引:60,自引:10,他引:60       下载免费PDF全文
微生物功能多样性信息对于明确不同环境中微生物群落的作用具有重要意义 ,而微生物群落的定量描述一直是微生物学家面临的最艰巨的任务之一。目前 ,以群落水平碳源利用类型为基础的BIOLOG氧化还原技术为研究土壤微生物群落功能多样性提供了一种简单、快速的方法 ,并得以广泛应用。但它仍然是一种以培养为基础的方法 ,显示的代谢多样性类型也不一定反映整个土壤微生物群落的功能多样性。因此 ,这种方法优点明显 ,缺陷也存在 ,并且在应用过程中还有很多关键的操作要点与技巧。本文综述了BIOLOG研究土壤微生物群落功能多样性的原理、BIOLOG研究土壤微生物群落功能多样性的方法与技巧、应用过程中容易产生的问题及可能克服的办法 ,同时还提出了值得进一步研究的问题。旨在促进对BIOLOG测定土壤微生物群落功能多样性的了解 ,为正确运用这种方法开展土壤微生物群落功能多样性研究提供科学依据和理论指导。  相似文献   

19.
《Applied soil ecology》2009,41(3):499-509
Redox states affect substrate availability and energy transformation, and, thus, play a crucial role in regulating soil microbial abundance, diversity, and community structure. We evaluated microbial communities in soils under oxic, intermittent, and anoxic conditions along a river floodplain continuum using fatty acid methyl ester (FAME) and 16S rRNA genes-based terminal-restriction fragment length polymorphism (T-RFLP) bacterial fingerprints. In all the soils tested, microbial communities clustered according to soil redox state by both evaluation techniques. Bacteria were dominant components of soil microbial communities, while mycorrhizal fungi composed about 12% of the microbial community in the oxic soils. Gram-positive bacteria consisted >10% of the community in all soils tested and their abundance increased with increasing soil depth when shifting from oxic to anoxic conditions. In the anoxic soils, Gram-positive bacteria composed about 16% of the total community, suggesting that their growth and maintenance were not as sensitive to oxygen supply as for other microbes. In general, microorganisms were more abundant and diverse, and distributed more evenly in the oxic layers than the anoxic layers. The decrease in abundance with increasing oxygen and substrate limitation, however, was considerably more drastic than the decrease in diversity, suggesting that growth of soil microorganisms is more energy demanding than maintenance. The lower diversity in the anoxic than the oxic soils was attributed primarily to the differences in oxygen availability in these soils.  相似文献   

20.
The sensitivity of creeping bentgrass (Agrostis palustris Huds.) to the extreme heat found in the southeastern United States has led to the development of new greens-management methods. The purpose of this study was to examine the effects of subsurface aeration and growth regulator applications on soil microbial communities and mycorrhizal colonization rates in a creeping bentgrass putting green. Two cultivars (Crenshaw and Penncross), a growth regulator (trinexapac-ethyl), and subsurface aeration were evaluated in cool and warm seasons. Total bacterial counts were higher in whole (unsieved) soils than in sieved soils, indicating a richer rhizosphere soil environment. Mycorrhizal infection rates were higher in trinexapac-ethyl (TE) treated plants. High levels of hyphal colonization and relatively low arbuscule and vesicle occurrence were observed. Principal components analysis of whole-soil fatty acid methyl ester (FAME) profiles indicated that warm-season microbial populations in whole and sieved soils had similar constituents, but the populations differed in the cool season. FAME profiles did not indicate that subsurface aeration and TE application affected soil microbial community structure. This is the first reported study investigating the influences of subsurface aeration and TE application on soil microorganisms in a turfgrass putting green soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号