首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing grazing intensities of sheep and goats can lead to an increasing degradation of grasslands. We investigated four plots of different grazing intensities (heavily grazed, winter‐grazed, ungrazed since 1999, and ungrazed since 1979) in Inner Mongolia, PR China, in order to study the effects of trampling‐induced mechanical stresses on soil hydraulic properties. Soil water transport and effective evapotranspiration under “heavily grazed” and “ungrazed since 1979” were modeled using the HYDRUS‐1D model. Model calibration was conducted using data collected from field studies. The field data indicate that grazing decreases soil C content and hydrophobicity. Pore volume is reduced, and water‐retention characteristics are modified, the saturated hydraulic conductivity decreases, and its anisotropy (vertical vs. horizontal conductivity) is influenced. Modeling results revealed higher evapotranspiration on the ungrazed site (ungrazed since 1979) compared to the grazed site (heavily grazed) due to wetter soil conditions, more dense vegetation, litter cover, and decreased runoff and drainage, respectively. Grazing modified the partitioning of evapotranspiration with lower transpiration and higher evaporation at the grazed site owing to reduced root water uptake due to reduced evaporation and a patchy soil cover.  相似文献   

2.
It is not clear from the literature how the spatial distribution of topsoil and vegetation properties is affected by grazing cessation. Thus, the objective of this study was to elucidate if long‐term grazing exclosure increases spatial heterogeneity of topsoil and vegetation properties in a steppe ecosystem in NE China. Variograms and crossvariograms were calculated for bulk density, organic carbon (OC), total N, and total S concentration, δ13C, pH, Ah horizon thickness, vegetation cover, and aboveground biomass. Five sites with different grazing intensities (ungrazed since 1979, ungrazed since 1999, winter grazing, continuously grazed, heavily grazed) were sampled with two different grid sizes, allowing the exploration of scale effects. Small grids (15 m spacing, 5 m nested sampling) exhibited a different spatial structure compared to large grids (50 m spacing, 10 m nested sampling). Spatial distribution in small grids changed with grazing intensity. Generally, heterogeneity of topsoil properties increased with decreasing grazing intensity from a homogeneous to a patchy distribution. We attribute this to vegetation recovery/succession and deposition of windblown material in ungrazed areas. The plot ungrazed since 1999 showed different spatial dependencies than continuously and heavily grazed plots, but has not yet reached the high variability of the plot which was ungrazed since 1979. Large grid sampling did not detect small‐scale variability or grazing impacts, but showed spatial dependencies that were attributed to topography or soil erosion/deposition. Low OC concentration and low Ah thickness were associated with hilltop and shoulder positions, resulting in lower OC stocks at these topographic units.  相似文献   

3.
Purpose

The effect of uncontrolled grazing and unpredictable rainfall pattern on future changes in soil properties and processes of savanna ecosystems is poorly understood. This study investigated how rainfall amount at a gradient of 50%, 100%, and 150% would influence soil bulk density (ρ), volumetric water content (θv), carbon (C), and nitrogen (N) contents in grazed (G) and ungrazed (U) areas.

Materials and methods

Rainfall was manipulated by 50% reduction (simulating drought—50%) and 50% increase (simulating abundance—150%) from the ambient (100%) in both G and U areas. Plots were named by combining the first letter of the area followed by rainfall amount, i.e., G150%. Samples for soil ρ, C, and N analysis were extracted using soil corer (8 cm diameter and 10 cm height). Real-time θv was measured using 5TE soil probes (20 cm depth). The EA2400CHNS/O and EA2410 analyzers were used to estimate soil C and N contents respectively.

Results and discussion

The interaction between grazing and rainfall manipulation increased θv and C but decreased N with no effect on ρ and C:N ratio. Rainfall reduction (50%) strongly affected most soil properties compared to an increase (150%). The highest (1.241?±?0.10 g cm?3) and lowest (1.099?±?0.05 g cm?3) ρ were in the G50% and U150% plots respectively. Soil θv decreased by 34.0% (grazed) and 25.8% (ungrazed) due to drought after rainfall cessation. Soil ρ increased with grazing due to trampling effect, therefore reducing infiltration of rainwater and soil moisture availability. Consequently, soil C content (11.45%) and C:N ratio (24.68%) decreased, whereas N increased (7.8%) in the grazed plots due to reduced C input and decomposition rate.

Conclusions

The combined effect of grazing and rainfall variability will likely increase soil θv, thereby enhancing C and N input. Grazing during drought will induce water stress that will destabilize soil C and N contents therefore affecting other soil properties. Such changes are important in predicting the response of soil properties to extreme rainfall pattern and uncontrolled livestock grazing that currently characterize most savanna ecosystems.

  相似文献   

4.
We examined the impact of long-term cattle grazing on soil processes and microbial activity in a temperate salt marsh. Soil conditions, microbial biomass and respiration, mineralization and denitrification rates were measured in upper salt marsh that had been ungrazed or cattle grazed for several decades. Increased microbial biomass and soil respiration were observed in grazed marsh, most likely stimulated by enhanced rates of root turnover and root exudation. We found a significant positive effect of grazing on potential N mineralization rates measured in the laboratory, but this difference did not translate to in situ net mineralization measured monthly from May to September. Rates of denitrification were lowest in the grazed marsh and appeared to be limited by nitrate availability, possibly due to more anoxic conditions and lower rates of nitrification. The major effect of grazing on N cycling therefore appeared to be in limiting losses of N through denitrification, which may lead to enhanced nutrient availability to saltmarsh plants, but a reduced ability of the marsh to act as a buffer for land-derived nutrients to adjacent coastal areas. Additionally, we investigated if grazing influences the rates of turnover of labile and refractory C in saltmarsh soils by adding 14C-labelled leaf litter or root exudates to soil samples and monitoring the evolution of 14CO2. Grazing had little effect on the rates of mineralization of 14C used as a respiratory substrate, but a larger proportion of 14C was partitioned into microbial biomass and immobilized in long- and medium-term storage pools in the grazed treatment. Grazing slowed down the turnover of the microbial biomass, which resulted in longer turnover times for both leaf litter and root exudates. Grazing may therefore affect the longevity of C in the soil and alter C storage and utilization pathways in the microbial community.  相似文献   

5.
Kobresia grasslands on the Tibetan Plateau comprise the world’s largest pastoral alpine ecosystem. Overgrazing-driven degradation strongly proceeded on this vulnerable grassland, but the mechanisms behind are still unclear. Plants must balance the costs of releasing C to soil against the benefits of accelerated microbial nutrient mineralization, which increases their availability for root uptake. To achieve the effect of grazing on this C-N exchange mechanism, a 15NH4+ field labeling experiment was implemented at grazed and ungrazed sites, with additional treatments of clipping and shading to reduce belowground C input by manipulating photosynthesis. Grazing reduced gross N mineralization rates by 18.7%, similar to shading and clipping. This indicates that shoot removal by grazing decreased belowground C input, thereby suppressing microbial N mining and overall soil N availability. Nevertheless, NH4+ uptake rate by plants at the grazed site was 1.4 times higher than at the ungrazed site, because plants increased N acquisition to meet the high N demands of shoot regrowth (compensatory growth: grazed > ungrazed). To enable efficient N uptake and regrowth, Kobresia plants have developed specific traits (i.e., efficient above-belowground interactions). These traits reflect important mechanisms of resilience and ecosystem stability under long-term moderate grazing in an N-limited environment. However, excessive (over)grazing might imbalance such C-N exchange and amplify plant N limitation, hampering productivity and pasture recovery over the long term. In this context, a reduction in grazing pressure provides a sustainable way to maintain soil fertility, C sequestration, efficient nutrient recycling, and overall ecosystem stability.  相似文献   

6.
The assessment of grassland degradation due to overgrazing is a global challenge in semiarid environments. In particular, investigations of beginning steppe degradation after a change or intensification of the land use are needed in order to detect and adjust detrimental land‐use management rapidly and thus prevent severe damages in these sensitive ecosystems. A controlled‐grazing experiment was established in Inner Mongolia (China) in 2005 that included ungrazed (UG) and heavily grazed plots with grazing intensities of 4.5 (HG4.5) and 7.5 (HG7.5) sheep per hectare. Several soil and vegetation parameters were investigated at all sites before the start of the experiment. Topsoil samples were analyzed for soil organic C (SOC), total N (Ntot), total S (Stot), and bulk density (BD). As vegetation parameters, aboveground net primary productivity (ANPP), tiller density (TD), and leaf‐area index (LAI) were determined. After 3 y of the grazing experiment, BD increased and SOC, Ntot, Stot, ANPP, and LAI significantly decreased with increasing grazing intensity. These sensitive parameters can be regarded as early‐warning indicators for degradation of semiarid grasslands. Vegetation parameters were, however, more sensitive not only to grazing but also to temporal variation of precipitation between 2006 and 2008. Contrary, soil parameters were primarily affected by grazing and resistant against climatic variations. The assessment of starting conditions in the study area and the application of defined grazing intensities is essential for the investigation of short‐term degradation in semiarid environments.  相似文献   

7.
Long-term overgrazing is known to influence soil microbiological properties and C sequestration in soil organic matter. However, much remains to be known concerning overgrazing impacts on soil microbial activity and litter turnover in heavily grazed rangelands of Central Iran. Aboveground litter decomposition of three dominant species (Agropyron intermedium, Hordeum bulbosum, and Juncus sp.) were studied using a litter bag experiment under field conditions in three range sites of Central Iran, a site with continuous grazing, a site ungrazed for 17 years with dominant woody species (80% cover), and a site ungrazed for 17 years with dominant pasture species (70% cover). Soil samples were taken from 0 to 30 cm depth and analyzed for their chemical and microbiological properties. Results demonstrate that soil organic C and total N contents and C/N ratios were similar for both ungrazed and grazed sites, while available P and K concentrations significantly decreased under grazed conditions. It was also evident that range grazing decreases soil respiration and microbial biomass C, suggesting a lower recent annual input of decomposable organic C. Nevertheless, grazing conditions had no significant effect on litter decomposition indicating soil microclimate is not affected by grazing animals in this ecosystem. It is concluded that overgrazing may presumably depress microbial activity through either reduced input of fresh plant residue into the surface soil or lack of living roots and exudates for stimulating microbial activity. This study also suggests that 17 years of livestock exclusion might be insufficient time for expected C accumulation in soil.  相似文献   

8.
Colonies of the fungus Mortierella isabellina (Oudem) were grazed by the collembolan Onychiurus armatus (Tullb.) for short periods interrupted by incubation without grazing in laboratory experiments. The grazed fungus had a lower respiration than ungrazed when Collembola were present on the mycelium. Fungal respiration was significantly increased with grazing when Collembola were periodically removed from the mycelium. Metal contamination of the substrate increased fungal respiration, regardless of grazing. Length of fungal mycelium was significantly greater in a natural soil in the presence of Collembola but reduced in a metal-polluted soil. Factors that may determine the impact of grazing on fungi are discussed.  相似文献   

9.
Abstract. The salt regimes in soil under grazed and ungrazed natural grassland were compared on a Natraquoll in the Flooding Pampa of Argentina. The salt concentration in the topsoil of the grazed land increased sharply and episodically after flooding, whereas in the ungrazed land it did not.
When the area was flooded groundwater rose and increased the salt content of the deep horizons. Thereafter the topsoil became salinized during drought when the atmospheric water demand was large. The evaporation from the soil surface in the grazed area was faster than in the enclosed field, being probably the cause of the accumulation of salts in the topsoil.  相似文献   

10.
In this study we examined the effect on soil fungal:bacterial biomass ratios of withholding fertiliser, lime, and sheep-grazing from reseeded upland grassland. The cessation of fertiliser applications on limed and grazed grassland resulted in a reduction in soil pH from 5.4 to 5.1. The cessation of fertiliser applications and liming on grazed grassland resulted in a fall in pH from 5.4 to 4.7, whereas withholding fertiliser and lime and the removal of grazing resulted in a further reduction to pH 4.5. Substrate-induced respiration was reduced in the unfertilised grazed (21%; P<0.01) and unfertilised ungrazed (36%; P<0.001) treatments. Bacterial substrate-induced respiration and bacterial fatty acids were unaffected by the treatments. The relative abundance of the fungal fatty acid 18:26 increased by 39 and 72% (P<0.05) in the limed grazed and unfertilised grazed treatments, respectively. Fungal substrate-induced respiration increased in the limed grazed (18%) and unfertilised grazed (65%; P<0.05) treatments. The ratio of 18:26: bacterial fatty acids was correlated with the ratio of fungal:bacterial substrate-induced respiration (r=0.69; P<0.001).  相似文献   

11.
The role of CaC03 in preventing clay dispersion and losses in hydraulic conductivity (HC) of sodic soils was determined directly by mixing two lime-free soils with 0.5 and 2.0 per cent CaCO3. Whereas the HC of the lime-free soils dropped sharply when 0.01 n solutions of SAR 20 were displaced with distilled water, mixing the soils with powdered lime prevented both HC losses and clay dispersion. The response of a sandy soil mixed with lime was similar to that of a calcareous sandy soil. The beneficial effect ofCaC03 was not so pronounced in soils equilibrated with solutions of SAR 30. The increase in electrolyte concentration, due to CaCO3 dissolution, was suggested as the mechanism responsible for the beneficial effect of lime.  相似文献   

12.
Replacement of native deep‐rooted grasses by shallow‐rooted ones has resulted in greater losses of water and nitrogen by drainage. To counter this effect we have tested the hypothesis that liming, and the conversion of annual grass pastures to perennial grass pastures, could improve the sustainability of grazing systems in the high rainfall zone (> 600 mm per annum) in southeastern Australia, through better use of water and nitrogen. A field experiment consisting of sixteen 0.135 ha (30 m × 45 m) grazed paddocks representing four pasture combinations (annual pasture (mainly Lolium rigidum) without lime (AP–); annual pasture with lime (AP+); perennial pasture (mainly Phalaris aquatica) without lime (PP–), and perennial pasture with lime (PP+)) was carried out from 1994 to 1997 on an acid Sodosol (Aquic Hapludalf) in southern New South Wales, Australia. Measurements were made of surface runoff, subsurface flow (on top of the B horizon) and soil water content. The results showed that perennial grass pastures, especially PP+, extracted approximately 40 mm more soil water each year than the annual grass pastures. As a result, surface runoff, subsurface flow and deep drainage were at least 40 mm less from the perennial pastures. These measurements were further supported by a simulation of soil water deficit and deep drainage for AP– and PP+ paddocks, using 10 years' past meteorological records. Overall, the results suggested that well‐grown, phalaris‐based pastures could reduce recharge to groundwater and make pastoral systems more sustainable in the high rainfall zone.  相似文献   

13.
The Knersvlakte in the Succulent Karoo Biome (South Africa) is known for its high plant diversity and endemism. In the course of establishing a conservation area there, we assessed baseline data for future management. We investigated the effects of grazing on the vegetation in terms of species diversity and composition as well as reproduction of selected species. Data were sampled on four adjacent farms, which were ungrazed, moderately or intensively grazed by sheep and goats. The data were collected in 27 quartz and 24 non-quartz plots, representing two major habitat types of the region. Within each of the 1000-m2 plots, 100 subplots of 400 cm2 size were sampled. ANOVAs revealed that species richness and abundance of endemic species on quartz fields decreased with grazing. Abundance of annuals did not increase significantly due to grazing. Fidelity analyses indicated that species composition differed between grazing intensities and that the ungrazed and moderately grazed plots both contained unique locally endemic habitat specialists. Reproduction of two endemic dwarf shrubs Drosanthemumschoenlandianum and Argyrodermafissum (both Aizoaceae) increased under moderate grazing, which in the case of D.schoenlandianum was interpreted as an effect of grazing. We attribute the low number of seedlings and annuals on the moderately grazed farm to lower seasonal rainfall on these plots. From a conservation perspective, no or moderate grazing appear to be necessary to preserve plant diversity and vegetation patterns, and their underlying processes.  相似文献   

14.
黄土丘陵半干旱区人工林迹地土壤水分恢复研究   总被引:12,自引:3,他引:9  
为了研究黄土丘陵半干旱区人工林迹地土壤水分恢复情况,该文以正在生长的人工林土壤水分含量为人工林迹地土壤水分恢复的起点,并分别以持续农地和持续放牧荒坡的土壤含水量为林后农地和草地土壤水分恢复的上限,对位于黄土丘陵半干旱区绥德县境内的人工林迹地土壤水分恢复情况进行了研究。结果表明,人工林死后的放牧荒坡在20a的时间里,其土壤水分没有补偿;人工林死后的保护草地土壤水分有微弱恢复迹象,但年恢复速度在0.5~3.7 mm之间,以这样的速度恢复到持续放牧荒坡的土壤含水量,至少需要150a以上;林后农地土壤含水量有恢复趋势,年平均恢复速度为15 mm左右,其土壤含水量要恢复到持续农地当前的水平,大约需要40a的时间。研究结果揭示了黄土丘陵半干旱区人工林对土壤水分影响的长期性,并为制定可持续的土地利用规划提供借鉴资料。  相似文献   

15.
Reindeer grazing has a great influence on the ground vegetation of nutrient-poor northern boreal forests dominated by Cladonia lichens in Fennoscandia. Grazing may influence the soil processes in these systems either by influencing the quality of plant litter, or by indirect effects through the soil microclimate. In order to investigate the mechanisms underlying the effects of reindeer on boreal forest soils, we analyzed litter decomposition, soil and microbial C and N, microbial community composition, and soil organic matter quality in three forest sites with old reindeer exclosures adjacent to grazed areas. There was no effect of grazing on soil C/N ratio, inorganic N concentrations, microbial biomass C, microbial community structure analyzed by phospholipid fatty acid (PLFA) analysis, and organic matter quality analyzed by sequential fractionation, in the soil organic layer. However, microbial N was enhanced by grazing at some of the sampling dates and was negatively correlated with soil moisture, which indicates that increased microbial N could be a stress response to drought. The effect of grazing on litter decomposition varied among the decomposition stages: during the first 1.5 months, the litter C loss was significantly higher in the grazed than the ungrazed areas, but the difference rapidly levelled out and, after one year, the accumulated litter C loss was higher in the ungrazed than the grazed areas. Litter N loss was, however, higher in the grazed areas. Our study demonstrates that herbivores may influence soil processes through several mechanisms at the same time, and to a varying extent in the different stages of decomposition.  相似文献   

16.
Influence of cattle trampling on preferential flow paths in alkaline soils   总被引:1,自引:0,他引:1  
Abstract. Preferential flow paths (PFP) are important in water and solute movement through soils, especially in regions where vertical water movements predominate, such as the flooding Pampa (Argentina). The impact of grazing on PFP and its interactions with other properties were studied in three soils with natric horizons in the flooding Pampa using an iodide colouring technique. In the soil with a mollic horizon (Typic Natraquoll), % PFP was decreased by trampling but was later restored by shrink-swell. In the Typic Natraqualf, the most alkaline of the studied soils, % PFP was very small under both grazed and ungrazed conditions. In a coarser textured soil (Mollic Natraqualf) trampling did not affect % PFP. The % PFP of the Ah horizons increased with increasing organic carbon and sand contents and decreased as clay content, pH and sodium adsorption ratio (SAR) increased. The Bt horizons had small % PFPs and were not affected by cattle trampling.  相似文献   

17.
This study focused on examining the impacts of cattle grazing on belowground communities and soil processes in humid grasslands. Multiple components in the soil communities were examined in heavily grazed and ungrazed areas of unimproved and improved bahiagrass (Paspalum notatum Flugge) pastures in south-central Florida. By using small (1-m×1-m) sampling plots, we were able to detect critical differences in nematode communities, microbial biomass, and mineralized C and N, resulting from the patchy grazing pattern of cattle. Soil samples were collected on three occasions between June 2002 and June 2003. Microbial C and N were greater (P?0.01) in grazed than in ungrazed plots on all sampling dates. Effects of grazing varied among nematode genera. Most genera of colonizer bacterivores were decreased (P?0.10) by grazing, but more persistent bacterivores such as Euteratocephalus and Prismatolaimus were increased, as were omnivores and predators. Higher numbers of persisters indicated that grazing resulted in a more structured nematode community. Some herbivores, particularly Criconematidae, were decreased by grazing. Abundance of omnivores, predators, and especially fungivores were strongly associated with C mineralization potential. Strong correlation of microbial C and N with nematode canonical variables composed of five trophic groups illustrates important links between nematode community structure and soil microbial resources. Including the analysis of nematode trophic groups with soil microbial responses reveals detection of grazing impact deeper into the hierarchy of the decomposition process in soil, and illustrates the complexity of responses to grazing in the soil foodweb. Although highly sensitive to grazing impacts, small-scale sampling could not be used to generalize the overall impact of cattle grazing in large-scale pastures, which might be determined by the intensity and grazing patterns of various stocking densities at the whole pasture level.  相似文献   

18.
Spatial inaccessibility of soil organic carbon (SOC) for microbial decay within soil aggregates is an important stabilization mechanism. However, little is known about the stability of aggregates in semiarid grasslands and their sensitivity to intensive grazing. In this study, a combined approach using soil chemical and physical analytical methods was applied to investigate the effect of grazing and grazing exclusion on the amount and stability of soil aggregates and the associated physical protection of SOC. Topsoils from continuously grazed (CG) and ungrazed sites where grazing was excluded from 1979 onwards (UG79) were sampled for two steppe types in Inner Mongolia, northern China. All samples were analysed for basic soil properties and separated into free and aggregate‐occluded light fractions (fLF, oLF) and mineral‐associated fractions. Tensile strength of soil aggregates was measured by crushing tests. Undisturbed as well as artificially compacted samples, where aggregates were destroyed mechanically by compression, were incubated and the mineralization of SOC was measured. For undisturbed samples, the cumulative release of CO2‐C was greater for CG compared with UG79 for both steppe types. A considerably greater amount of oLF was found in UG79 than in CG soils, but the stabilities of 10–20‐mm aggregates were less for ungrazed sites. Compacted samples showed only a slightly larger carbon release with CG but a considerably enhanced mineralization with UG79. We assume that the continuous trampling of grazing animals together with a smaller input of organic matter leads to the formation of mechanically compacted stable ‘clods’, which do not provide an effective physical protection for SOC in the grazed plots. In UG79 sites, a greater input of organic matter acting as binding agents in combination with an exclusion of animal trampling enhances the formation of soil aggregates. Thus, grazing exclusion promotes the physical protection of SOC by increasing soil aggregation and is hence a management option to enhance the C sequestration potential of degraded steppe soils.  相似文献   

19.
Changes to soil physical properties after grazing exclusion   总被引:3,自引:0,他引:3  
Abstract. The potential for degraded physical properties of soil to regenerate naturally after exclusion of grazing animals was examined at a long-term stocking rate trial near Armidale, New South Wales, Australia. Unsaturated hydraulic conductivity was measured before grazing was excluded, and after 7 months and 2.5 years' grazing exclusion. These data were compared with controls grazed at 10,15 and 20 sheep/ha. After 2.5 years, there were significant increases in unsaturated hydraulic conductivity at 5 and 15 mm tension in the ungrazed treatments compared with the grazed controls. The unsaturated hydraulic conductivities and bulk density of surface soils under pasture which had been ungrazed for 2.5 years were comparable to those where the pasture had been ungrazed for 27 years. We speculate that the natural amelioration of soil physical properties in these soils was due to biological activity and wetting and drying cycles, in the absence of the compactive effect of animal treading.  相似文献   

20.
Changes in the quantity of plant material in three salt marsh systems: (1) a pristine unaltered marsh, (2) a marsh grazed by ungulates, and (3) a marsh formerly grazed by ungulates, were measured periodically over two years. All three had a mixture of Spartina alterniflora and Salicornia virginica while the latter two also contained Distichlis spicata. The annual production, potential detritus contribution percent dry weight, mineral concentration, plant species composition, and fiddler crab populations were examined for comparative purposes. In addition, the effects of simulated grazing were evaluated at three times of year in a pure stand of S. alterniflora. Finally, an economic assessment and comparison of the three systems was also considered.Living S. alterniflora attained the greatest quantity of standing material in late summer and dead plant material in late winter. Live D. spicata was most plentiful in August and less abundant during February; S. virginica displayed no apparent annual variation in production. Average yearly standing crop increments indicated that the aerial plant production for the ungrazed system (583·4 g/m2/yr) exceeded the production of the formerly grazed marsh (322·3 g/m2/yr). The production of the formerly grazed system exceeded that of the grazed marsh which had an annual production of 221·9 g/m2/yr. Significantly more fiddler crabs were found in the ungrazed area than in the grazed marsh system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号