首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was conducted to assess the suitability of sewage sludge amendment in soil for Beta vulgaris var. saccharifera (sugar beet) and Triticum aestivum (wheat) by evaluating the arsenic and selenium accumulation and physiological responses of plants grown at 10%, 25%, and 50% sewage sludge amendment rate. Sewage sludge amendment was modified by the physicochemical properties of soil, thus increasing the availability of heavy metals in the soil and consequently with higher accumulation in plant parts. The chlorophyll contents increased after the sewage sludge treatments except for 50%. The sewage sludge amendment led to a significant increase in arsenic and selenium concentrations of the soil. The heavy metal accumulation in the soil after the treatments did not exceed the limits for the land application of sewage sludge recommended by the US Environmental Protection Agency. The increased concentration of heavy metals in the soil due to the sewage sludge amendment led to increases in heavy metal uptake in the leaves and root concentrations of arsenic and selenium in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots and leaves for most of the heavy metals. Concentrations of arsenic and selenium were more than the permissible limits of national standards in the edible portion of sugar beet and wheat grown on different sewage sludge amendments ratios. The study concludes that the sewage sludge amendment in the soil for growing sugar beet and wheat may not be a good option due to risk of contamination of arsenic and selenium.  相似文献   

2.
污泥农用对土壤和作物重金属累积及作物产量的影响   总被引:20,自引:2,他引:20  
以3 a定位试验为基础,比较3种不同处理的污泥肥料(消化污泥、污泥堆肥及污泥复混肥)农田施用下土壤养分、土壤和作物籽粒中Mn、Cu、Zn、Pb、Cd 5种重金属的积累以及作物产量的变化情况,以阐明污泥农用对土壤及作物的影响。研究表明,3种污泥肥料提高了土壤中氮素和有机质的含量;与空白和普通化肥处理相比,3种污泥肥料增加了土壤中Mn和Cu的含量,而对土壤交换态重金属含量没有显著影响;3种污泥处理均增加了小麦籽粒中Zn的含量;相对普通化肥处理,3种污泥肥料处理对小麦和玉米产量均无显著影响。合理施用污泥肥料可以有效地提高作物产量;污泥肥料施用对土壤重金属有一定累积效应,但短期施用对土壤比较安全。  相似文献   

3.
污泥与施污土壤重金属生物活性及生态风险评价   总被引:3,自引:0,他引:3  
将城市污泥以不同质量比施于土壤中构成污泥混合土壤,研究各污泥配比土壤中重金属的生物活性,并采用三种重金属评价方法(地累积指数法、潜在生态风险指数法、综合毒性指数模型)和黑麦草对重金属的吸收富集效果来对施污土壤中重金属具有的生态风险性进行评价。结果表明:污泥的添加使土壤中生物活性态Cd、Cu和Zn含量显著增加,对三种重金属具有活化作用,但对Pb却起到钝化作用。生态风险评价结果表明:污泥的添加使土壤中Pb呈现无污染和低生态风险;Cu和Zn呈现中度污染和低生态风险;Cd达到强度污染和重度生态风险,重金属潜在生态风险(RI)总体处于强度生态风险水平。当污泥添加比例大于6:10(污泥S3处理)时,施污土壤中重金属的综合毒性指数高于土壤对照。黑麦草对Cd、Pb、Cu和Zn的富集浓度与施污土壤中对应重金属的生物活性态含量存在显著正幂指数关系,同时黑麦草对施污土壤中Cd、Cu和Pb的富集能力大小与地累积指数法和潜在生态风险指数法对三种重金属具有的生态风险性的评价结果具有一致性。  相似文献   

4.
Sewage sludge is increasingly used as an organic amendment to soil, especially to soil containing little organic matter. However, little is known about the utility of this organic amendment in the reclamation of soil polluted with heavy metals. We studied the effects of adding sewage sludge on enzymatic activities of a semi-arid soil contaminated with Cd or Ni in the laboratory. The activities of urease, phosphatase, β-glucosidase and protease-BAA were measured in soil containing concentrations of Cd or Ni in the range 0–8000 mg kg−1 soil, and their inhibition was compared with those of the enzymatic activities in the same soil amended with sewage sludge and containing similar concentrations of the heavy metals. The inhibition was tested for three different incubation times to determine changes in the effect of the heavy metals on hydrolase activity with the time elapsed after contamination. Ecological dose (ED) values of Cd and Ni were calculated from three mathematical models which described the inhibition of the enzymatic activities with increasing concentrations of heavy metal in the soil. For urease and phosphatase activities, the ED values for Cd and Ni increased after application of sewage sludge to soil, indicating a decrease in Cd and Ni toxicity. The other two enzymes (β-glucosidase and protease-BAA) were less sensitive to Cd or Ni contamination, and it was more difficult to determine whether addition of sewage sludge had affected the inhibition of these enzymes by the heavy metals.  相似文献   

5.
Soil application of sewage sludge as an amendment in crop plants has became a popular method of municipal sewage-sludge disposal in many countries. However, the presence of heavy metals in untreated sewage sludge has raised concerns of adverse effects on crop growth, quality of product, and environmental health. Gamma irradiation is one of the treatments for hygienization of sewage sludge before use as fertilizer. To evaluate the potential of gamma-irradiated sewage sludge as fertilizer in vegetable crops, the field investigation was conducted in a root crop, radish (Raphanus sativus L.), during the 2005–06 and 2006–07 growing seasons in a sandy loam soil. Treatments consisted of three source of fertilizers [farmyard manure (FYM), gamma-irradiated sewage sludge (GISS), and nonirradiated sewage sludge (NISS)]; each were compared at six application levels (1, 3, 6, 7, 9, and 11 t ha?1). The physicochemical properties of all the three fertilizers used in this study were compared. Growth parameters and yields of radish were not significantly influenced by source of fertilizers or their application levels, except plant stand, which was influenced by type of fertilizers used. There was no significant difference observed between source of fertilizer treatments with respect to any of the measured soil properties, including major nutrients [nitrogen (N), phosphorus (P), and potassium (K)], metallic micronutrients [copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn)], and heavy metals [nickel (Ni), lead (Pb), cadmium (Cd), and cobalt (Co)]. Soil P and Zn were influenced by the various level of fertilizers. However, the interaction effect of source and level of fertilizer was absent for all the measured parameters. The maximum pollutant limits in sewage sludge and soil for agricultural use in different countries were compared. The concentration of metallic micronutrients and heavy metals in soil were less than the prescribed limit of the United States Environmental Protection Agency (USEPA), and no significant accumulation was noted after 2 years of application of GISS and NISS even at higher application rates.  相似文献   

6.
 Sludge amendments increase the input of carbon and nutrients to the soil. However, the soil concentrations of heavy metals and xenobiotica can also increase due to sludge amendments, with possible effects on soil microorganisms and soil fertility. Therefore, we studied the effects on soil microorganisms and soil chemistry in two arable soils after 12 and 16 years of sewage sludge amendment (0, 1 and 3 dry matter ha–1 year–1). The sludge amendments were combined with nitrogen addition at three rates according to crop requirements, and all combinations were replicated 4 times, giving a total number of 36 parcels at each experimental site in a non-randomised block design. Univariate data evaluation as well as principal component analysis and discriminant function analysis (DFA) were used to identify differences between treatments in microbial and chemical parameters. The DFA showed that acid and alkaline phosphatase, potential ammonium oxidation and total nitrogen were the most important parameters to discriminate between a priori defined groups of sludge treatments. Among the heavy metals, copper showed the highest increase in soil concentration with sludge amendments, but this increase was still not high enough to have a significant influence on the measured parameters. None of the xenobiotica investigated was found in high soil concentrations. In conclusion, the present study showed that the sewage sludge affected several of the biological and chemical parameters investigated. However, no severe negative effects on soil microorganisms were detected at these moderate levels of sludge amendment. Received: 3 December 1998  相似文献   

7.
Abstract

The development of a method using a chelating resin to assess heavy metal mobility in soil and the first results obtained from a pot experiment with sewage sludge additions were studied. The resin was Chelex 100 with the calcium (Ca)‐form of the resin proving to be best suited for the extraction. The efficiency of recovery of the heavy metals from an aqueous solution ranged from 81.2% for cadmium (Cd) to 102% for copper (Cu) within 24 hours. For heavy metal extractions from a soil sample, a 96 hour extraction period was found to be optimum. The extracted heavy metal portion was comparable with the results obtained with an ammonium acetate (NH4AOc) extraction. Total heavy metal contents in the substrate of the pot experiment did not show a significant influence due to the sewage sludge treatments, although considerable amounts of heavy metals were added by the sewage sludge. This effect can be both due to the incomplete recovery of heavy metals by an aqua regia extraction and leaching losses of these elements from the pots. Rape (Raphanus sativus L.) plants did not have any heavy metal contents which might indicate a high availability in soil, with the Cd and Cr contents in the rape biomass being partly lower in the sewage sludge‐treated pots than in the control plants; however, zinc (Zn) uptake slightly increased with increasing sewage sludge treatments. The Chelex 100 extraction procedure was correlated with Cd plant uptake, while the NH4AOc extraction procedure was better related to the Zn uptake by rape plants.  相似文献   

8.
The composting of wood fiber waste from the manufacture of newsprint is described, with a mixture of wood fiber waste:sewage sludge at a ratio of 1:1 giving best results in a trial of shoot growth of Pinus radiata. An alternative chemical nutrient amendment (initial C:N ratio of 60:1) gave a plant response which was not significantly different to that of sewage sludge. Over a five month period volume reductions of up to 39 percent were observed in the composts, providing potential savings in subsequent transport operations. Use of uncomposted materials or addition of fly- or screen-ash compost amendment (12.5 percent or 25 percent v /v) was inhibitory to plant growth. Concentrations of some heavy metals in Hobart city sewage (particularly of chromium) were high, precluding its long-term use as a soil nutrient supplement. In view of the high heavy metal content of sewage sludge and its high volume to nutrient ratio, it was concluded that composting with chemical amendment was the preferred option for future investigation. Such composts would require ash amendment (or lime equivalent) at concentrations lower than those used in this study to counter acidity produced during composting.  相似文献   

9.
The assessment of heavy metals in spinach (Spinacia oleracea) grown in sewage sludge–amended soil was investigated. The results revealed that sewage sludge significantly (P < 0.01) increased the nutrients and heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), and zinc (Zn) in the soil. The contents of metals were found to be below the maximum levels permitted for soils in India. The most agronomic performance and biochemical components of S. oleracea were found at 50% concentrations of sewage sludge in both seasons. The contents of Cd, Cr, Cu, Mn, and Zn in S. oleracea were increased from 5% to 100% concentrations of sewage sludge in both seasons. The order of contamination factor (Cf) of different heavy metals was Mn > Cd > Cr > Zn > Cu for soil and Cr > Cd > Mn > Zn > Cu for S. oleracea plants after application of sewage sludge. Therefore, use of sewage sludge increased concentrations of heavy metals in soil and S. oleracea.  相似文献   

10.
To elucidate the mechanism of transfer of heavy metals into the food chain, an experiment was carried out with a calcareous soil, to which two different doses of a sewage sludge compost contaminated with either Cd or Zn, Cd, Cu, and Ni were applied. A crop of lettuce was then grown in the amended soils. The application of sewage sludge composts to a calcareous soil lowered the soil's pH, although the value was always around 8 at the end of the experiment. Electric conductivity rose with organic amendment. As anticipated, such an amendment improved the nutritional level of the soils, particularly Nand P, both total and available. Plant yields were negatively affected by organic amendments contaminated with heavy metals, the most dangerous in our experiment being Cd and Zn since this metals easily taken up by plants. As Ni and Cu form insoluble complexes with the organic matter of the sewage sludge composts they are not readily absorbed. Of the metals studied, Cd and Zn showed the highest bioavailability index.  相似文献   

11.

Purpose

This study aims to study the effect of sewage sludge amendment on crop yield and on microbial biomass and community structure in Swedish agricultural soils.

Materials and methods

Topsoil samples (0–0.20 m depth) from four sites where sewage sludge had been repeatedly applied during 14–53 years were analysed for total C, total N, pH and phospholipid fatty acids (PLFAs). Heavy metals were analysed in both soil and plant samples, and crop yields were recorded.

Results and discussion

At all four sites, sewage sludge application increased crop yield and soil organic carbon. Sludge addition also resulted in elevated concentrations of some heavy metals (mainly Cu and Zn) in soils, but high concentrations of metals (Ni and Zn) in plant materials were almost exclusively found in the oldest experiment, started in 1956. PLFA analysis showed that the microbial community structure was strongly affected by changes in soil pH. At those sites where sewage sludge had caused low pH, Gram-positive bacteria were more abundant. However, differences in community structure were larger between sites than between the treatments.

Conclusions

At all four sites, long-term sewage sludge application increased the soil organic carbon and nitrogen content, microbial biomass and crop yield. Long-term sewage sludge application led to a decrease in soil pH. Concentrations of some metals had increased significantly with sewage sludge application at all sites, but the amounts of metals added to soil with sewage sludge were found not to be toxic for microbes at any site.  相似文献   

12.
The influence of different rates of sludge applications to calcareous loamy soils of Saudi Arabia, on nodulation and symbiotic N2?fixation in alfalfa plants (Medicago sativa L.) was studied in a pot experiment. The effect of heavy metals accumulation in soil due to continuous irrigation of the test soil with sewage water was also investigated. Application of up to 80 g sludge per pot enhanced nodulation, nitrogenase activity, dry matter yield and N-contents of alfalfa plants growing in loamy soils either previously irrigated with sewage water or well water. However, sludge applied at the rate of 160–200 g pot?1 inhibited the nodulation, N accumulation and dry matter yield of alfalfa. The response of alfalfa to sludge was dependent on the rhizobial strain used. Our results also showed that accumulation of heavy metals due to continuous irrigation of a calcareous sandy loam soil with sewage water, for more than 10 years, didn't inhibit N2?fixation in alfalfa plants, but enhanced it. Microelements in alfalfa plants increased with increase in the rate of sludge application. Although high rates of sludge application affected nodulation and N2?fixation of alfalfa, dry matter and the nitrogen contents of the plants were not highly affected. Therefore, the inhibitory effect of high rates of sludge was most probably due to the toxic effect of heavy metals on the microsymbiont rather than on the plants.  相似文献   

13.
兰州市城市污泥施用对小麦生长和重金属富集的影响   总被引:4,自引:0,他引:4  
戴亮  任珺  陶玲  未碧贵 《土壤通报》2012,(5):1257-1263
以兰州市安宁区污水处理厂污泥为研究对象,采用盆栽的方法研究污泥土地利用后对土壤中重金属含量以及对3种小麦生长和重金属富集的影响。结果表明,污泥施用后使污泥混合土壤中重金属Pb、Cu、Zn含量显著增加,但3种重金属含量均未超过我国土壤环境质量二级标准(GB15618-1995)中的限制性标准值。污泥土地施用后,小麦获得了良好的生长响应。污泥低施入量(污泥在混配土壤中的干重比为5%、10%、15%)时不同程度的促进了小麦的生长发育,使3种小麦出苗率提高,植株更高,生物量增加。污泥高施入量(污泥在混配土壤中的干重比为25%、35%)时,小麦的出苗率和根长受抑制明显。污泥的施用使小麦籽实中的Pb、Cu、Zn的含量显著升高,呈现递增趋势,污泥在混配土壤中的干重比超过25%时,籽实中Cu和Pb含量相对国家无公害食品标准有超标现象。综合考虑污泥对小麦生长和重金属富集的影响及土壤中重金属含量的变化,对小麦的耕种土壤中一次性施用污泥时,污泥在混配土壤中的干重比应限量在25%以下。  相似文献   

14.
The application of sewage sludge on farmland is practised in many countries since sludge is rich in macro- and micro- nutrients. However, increasing use of sewage sludge on farmland has raised concerns about the potential transport of heavy metals into food chains and groundwater. This study determined for a calcareous soil the effects of sludge application on soil physical properties and transport of zinc (Zn), copper (Cu), and lead (Pb). Secondary anaerobic digested sewage sludge was applied at rates of 0, 25, 50, and 100 t/ha (on a dried weight basis) for four consecutive years and mixed in the top 20-cm of soil. Corn (Zea mays L.) was planted as a spring crop, followed by wheat (Triticum aestivum) as a winter crop. Sludge application increased the dissolved organic matter content and modified the soil structure, increased the soil infiltration rate, saturated hydraulic conductivity, and aggregate stability, and decreased the bulk density. Sludge application greatly increased DTPA (diethylenetriamine pentaacetic acid)-extractable soil metal concentrations to 50 cm depth and significantly to 1 m. In the plots that received four application of 100 t/ha sewage sludge, the mean concentrations of Zn, Cu, and Pb in subsoil increased by 1600, 7, and 4.5 times, respectively, compared with the control. The results indicate that a combination of enhanced soil physical properties, heavy and inefficient irrigation and high organic matter content with heavy metals cause significant metal mobility. High sludge applications pose risks of groundwater and food chain contamination and rates are best restricted to those reflecting the nutrient demand of crops (20 t/ha every 4 to 5 yr or an average of 4 to 5 t/ha/yr).  相似文献   

15.
A pot experiment with spinach (Spinacia oleraceae L. Fam.: Chenopodiaceae) was conducted aiming to investigate the effect of the addition of sewage sludge (SS) on soil substrate, the growth of spinach, and the plant interactions of CaxCd and ZnxCd. There were six substrates obtained by mixing soil and sludge in different proportions by volume (20:1, 10:1, 6.7:1, 5.0:1, 4.0:1, 3.3:1) and a control (only soil). The highest biomass was achieved in treatments 20:1 and 10:1. There was not a linear increase due to toxicity when SS was added in higher proportions. Sludge improved soil fertility by increasing organic matter and total N. Furthermore, in all plant parts of spinach, the Ca and Zn contents were synergistically interrelated with the Cd content, facilitating Cd uptake. The use of sewage sludge as soil amendment is not applicable on agricultural land due to the accumulation of Cd in plant.  相似文献   

16.
采用田间小区试验,探讨了城市污泥与湖泊底泥土地利用对土壤-植物系统中养分及重金属Cd、Pb的影响。结果表明,城市污泥与湖泊底泥能有效增加土壤养分含量;重金属Cd、Pb仅累积在土壤耕层,难以向下迁移;随施用量的增加,小麦籽粒产量及其对养分的吸收量均随之增加,但仍有大量养分存留在土壤中;植株对重金属的富集顺序表现为根系〉茎叶〉籽粒,Cd〉Pb,其中,籽粒中重金属Cd、Pb含量均未超出我国食品中重金属限量的卫生标准;如果该污泥、底泥分别以100,200t/hm^2的施用量施入土壤,可以连续施月5a和6a  相似文献   

17.
通过盆栽试验研究以粉煤灰和污泥混合物为主料,改良石灰岩质土壤后对玉米生长发育的影响,根据重金属富集系数,探讨重金属在土壤和玉米中的累积状况。试验结果表明:石灰岩质土壤中添加粉煤灰污泥混合物后能显著促进玉米的生长和提高玉米的干物重,其中以1:1重量比处理玉米的平均株高、株径及根部、地上部、总干物重分别是对照样的1.56、1.71、1.36、3.81和2.37倍。以不同配比添加混合物后的土壤相对于国家土壤背景值和国家土壤环境质量标准,Hg和Cd表现强烈富集,整体符合国家二级土壤质量标准,且玉米根部几乎所有有害元素的含量均高于对照组,而地上部分除Cu、Zn外均显著低于对照组,但均未达到玉米毒害浓度。另外,在土壤中添加混合物后玉米中几乎所有的有害元素主要累积在根部,有利于其地上部分的生长,减少了通过食物链危害人类的机率。  相似文献   

18.
The need for solutions to minimize the negative environmental impacts of anthropogenic activities Fhas increased. Sewage sludge is composed of predominantly organic matter and can be used to improve soil characteristics, such as fertility. Therefore, its application in agriculture is an adequate alternative for its final disposal. However, there is a lack of information on its long-term effects on soil changes in tropical areas. Thus, the objectives of this study were to determine (i) the effect of sewage sludge application on heavy metal build-up in soil and maize grains and leaves, and (ii) the effects of soil amendment with sewage sludge on the chemical properties of a Brazilian oxisol. Besides the increasing levels of Zn, Cu, Ni, and Cr, amending soil with sewage sludge also alters the distribution of these metals by increasing the mobile Phases, which correlated significantly with the increase in metal extraction with two single extractants, Mehlich 1 and DTPA (Diethylene triamine pentaacetic acid). The levels of Fe, Mn, Zn, and Cu in maize grains and leaves increased with the type and rate of sewage sludge application. Nevertheless, metal build-up in soil and plants was within the allowed limits. Significant differences were also found in soil characteristics like humic fractionation with the applied sewage doses. The data obtained does not indicate any expressive drawbacks in the use of sewage sludge as a soil amendment, as the heavy metal concentrations observed are unlikely to cause any environmental or health problems, even overestimated loadings, and are in accordance with the Brazilian regulations on farming land biosolid disposal.  相似文献   

19.
Abstract

The fast pace of cropland loss in China is causing alarm over food security and China’s ability to remain self-reliant in crop production. Mudflats after organic amendment can be an important alternative cropland in China. Land application of sewage sludge has become a popular organic amendment to croplands in many countries. Nevertheless, the land application of sludge to mudflats has received little attention. Therefore, the objective of the present work was to investigate the impact of sewage sludge amendment (SSA) at 0, 30, 75, 150 and 300 t ha?1 rates on soil physicochemical properties, perennial ryegrass (Lolium perenne L.) growth and heavy metal accumulation in mudflat soil. The results showed that the application of sewage sludge increased organic matter (OM) content by 3.5-fold while reducing salinity by 76.3% at the 300 t ha?1 rate as compared to unamended soil. The SSA reduced pH, electric conductivity (EC) and bulk density in mudflat soil, increased porosity, cation exchange capacity (CEC) and contents of nitrogen (N), phosphorus (P), exchangeable potassium ions (K+), sodium ions (Na+), calcium ions (Ca2+) and magnesium ions (Mg2+) in comparison to unamended soil. There were 98.0, 146.6, 291.4 and 429.2% increases in fresh weight and 92.5, 132.4, 258.6 and 418.9% increases in dry weight of perennial ryegrass at 30, 75, 150, and 300 t ha?1, respectively, relative to unamended soil. The SSA increased metal concentrations of aboveground and root parts of perennial ryegrass (p < 0.05). The metal concentrations in perennial ryegrass were Zn > Cr > Mn > Cu > Cd > Ni, and the metal concentrations in roots were significantly higher than aboveground parts. The metal accumulation in perennial ryegrass correlated positively with sludge application rates and available metal concentrations in mudflat soil. Land application of sewage sludge was proved to be an effective soil amendment that improved soil fertility and promoted perennial ryegrass growth in mudflat soil. However, heavy metal accumulation in plants may cause food safety concern.  相似文献   

20.
Lai  K. M.  Ye  D. Y.  Wong  J. W. C. 《Water, air, and soil pollution》1999,113(1-4):261-272
Previous studies showed that coal fly ash could stabilize sewage sludge by reducing metal availability, but fly ash may cause an adverse effect on soil microbial activities. Therefore, an experiment was performed to evaluate the effects of amendment of soil with anaerobically digested dewatered sewage sludge, stabilised with alkaline coal fly ash, on soil enzyme activity and the implications for soil nutrient cycling. Sewage sludge was amended with 0, 5, 10, 35 and 50% w/w of fly ash, and then the ash-sludge mixtures were incubated with a sandy soil at 1:1 (v/v). Dehydrogenase activity decreased with an increase in fly ash amendment level and the time of incubation. Soil receiving 5% ash-sludge amendment had a higher dehydrogenase activity than other treatments. Soil receiving 10% ash-sludge mixture had the highest urease activity and in general, urease activity decreased with increasing incubation time. Phosphatase activity was the highest at 5% ash-sludge mixture amended soil and no general trend was observed with time. Water-soluble Zn, Mn and Cu contents were suppressed by the addition of fly ash. The present experiment indicated that addition of 10% ash-sludge mixture should have a positive benefit on the activity of soil microorganisms, N and P nutrient cycling, and reduce the availability of heavy metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号