首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sour orange (Citrus aurantium L.) seedlings were grown for 3 months in diethylenetriamine pentaacetate (DTPA)‐buffered nutrient solutions to study the effect of Zn stress on the plants’ sensitivity to high boron concentration in the root environment. There were three zinc treatments: 21 μM Zn (LOW Zn‐DTPA), 69 μM Zn (NORMAL Zn‐DTPA) in the nutrient solution, or 12 weekly foliar sprays with ZnSO4 (FOLIAR‐Zn). In the FOLIAR‐Zn treatment, the nutrient solution contained 21 μM Zn. Zn activities calculated with a chemical equilibrium model, Geochem PC, and expressed as pZn=‐log(Zn+2), were 10.2 and 9.7 in the LOW Zn‐DTPA and NORMAL Zn‐DTPA nutrient solutions, respectively. One half of the plants in each Zn treatment were grown in 51 μM B (NORMAL‐B) and the other half in 200 μM B (HIGH‐B) nutrient solution. Seedlings grown in LOW Zn‐DTPA/NORMAL‐B nutrient solution developed Zn deficiency symptoms such as: reduced shoot growth, small and chlorotic leaves, and white roots with visibly shorter and thicker laterals than in Zn sufficient plants. The HIGH‐B treatment decreased shoot growth, leaf and stem dry weight, leaf area, and induced severe leaf B toxicity on seedlings grown in the LOW Zn‐DTPA nutrient solution but the effect was either absent or less pronounced in the NORMAL Zn‐DTPA or FOLIAR‐Zn treatments. Seedlings in the LOW Zn‐DTPA FOLIAR‐Zn treatments but they had lower B concentration on a whole plant basis indicating less B uptake per unit of dry weight. The FOLIAR‐Zn and NORMAL Zn‐DTPA treatments were equally effective in alleviating leaf B toxicity symptoms. The FOLIAR‐Zn treatment, however, was less effective than the NORMAL Zn‐DTPA treatment in alleviating the deleterious effect of high B on leaf dry weight even though the B concentrations in leaves, stems, and roots of the foliar‐sprayed seedlings were similar to the NORMAL Zn‐DTPA seedlings. Leaf concentrations of phosphorus, potassium, magnesium, iron, mangenese, and copper were within the optimal range for citrus with the exception of Ca which was low. Although B and particularly Zn treatments modified the concentration of some of these elements in leaves and roots, these changes were too small to explain the observed growth responses. The observation that B toxicity symptoms in Zn‐deficient citrus could be mitigated with Zn applications is of potential practical importance as B toxicity and Zn deficiency are simultaneously encountered in some soils of semiarid zones.  相似文献   

2.
Abstract

Plants were grown in solution culture with different levels of Ca to further evaluate Ca relationships to trace metal uptake and to toxicity of trace metals. When tomato plants (Lycopersicon esculentum L., Tropic) were grown at a low level of Ca, the Zn, Cu, Fe, Mn, Al, and Ti concentrations of leaves, stems, and roots were considerably increased. The use of an excess of CaCO3 which increased pH did not influence the trace metal concentrations of plants any more than did Ca++. In a factorial experiment with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) with Ca (10‐4,10‐2, 10‐2 N) and Ni (0, 2 × 10‐6 M, 2 X10‐5 M), Ni phytotoxicity and Ni uptake were decreased somewhat at the highest Ca level. High Ni tended to decrease the Ca concentration in leaves. High Ca and Ni both tended to decrease Fe, Cu, Zn, and Mn concentrations in leaves. The Ni had some interactions on the P concentrations of shoots.  相似文献   

3.
Treatment of Acid Mine Drainage Using Fly Ash Zeolite   总被引:1,自引:0,他引:1  
In this paper, two Indian fly ashes (from Talcher and Ramagundam) were converted into zeolites and both the raw fly ash and zeolite were used to treat two British acidic mine waters. The results demonstrate that fly ash zeolites are more effective than raw fly ash for treatment of acid mine drainage. Fly ash has been found effective for removal of Pb, but with increased dosing, caused release of Ba, Cr, Sr (both fly ashes) plus Zn, Ni (Talcher), or Fe (Ramagundam) into mine water. In contrast, increased dosing with fly ash zeolite removed 100% Pb, 98.9% Cd, 98.8% Zn, 85.6% Cu, 82.8% Fe, 48.3% Ni, and 44.8% Ba from mine water. Fly ash is amorphous in nature and many metals attached on the surface of the ash particles are easily leached off when ash comes in contact with acidic mine water. However, fly ash zeolite is crystalline in nature and due to its high cation exchange properties, most of the metals present in acid mine water are retained in surface sites.  相似文献   

4.
This study was undertaken to examine the combined effect of soil‐applied phosphorus (P) and arsenic (As) on P, As, potassium (K), calcium (Ca), magnesium (Mg), silicon (Si), iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), titanium (Ti), rubidium (Rb), strontium (Sr), barium (Ba), lantanium (La), and cerium (Ce) concentrations of sunflower plants under glasshouse conditions determined by polarized‐energy‐dispersive x‐ray fluorescence (PEDXRF). Three levels of As (0, 30, and 60 mg kg?1) and four levels of P (50, 100, 200, and 400 mg kg?1) were applied to soil‐grown plants. Increasing levels of both As and P significantly increased As concentrations in the plants. Plant growth was significantly reduced with increased As supply regardless of applied P levels. Arsenic toxicity caused significant increases in the concentrations of Mn, La and Ce, but it decreased K, Ca, Mg, Si, Fe, Zn, Cu, Rb, and Sr concentrations. Applied P increased the concentrations of Ti, Sr, and Ba and decreased Zn and Cu. In conclusion, the use of P fertilizers in As‐contaminated soils should be carefully considered in respect to increased As, Ti, Sr, and Ba availability and reduced Zn and Cu availability.  相似文献   

5.
Seedlings of alfalfa, rape, spinach, and wheat, potted on sandy soil, were irrigated with an aqueous extract of pea shoot (PE, 9.84 g dry weight l–1) or a solution of Ca, K, Mg, P, and NO3‐N salts (SS) in a concentration similar to that in PE, for 31–48 days. In comparison to water‐irrigated controls, both SS and PE treated plants showed nearly equal increases in shoot dry weight (29–40 %), whereas PE‐treated plants had higher fresh weights (38–84 %) due to increased succulence. Treatment with SS did not enhance, but sometimes even reduce, the concentrations of Ca, K, Mg, and several trace elements in shoot tissues. In contrast, PE‐treated plants had higher Ca, K, Mg, and organic N, but lower As and Ni contents and were thus of higher nutritive value. Reduced contents of metals in plant tissue correlated with their reduced solubility in the soil solution, which was not due to changes in pH. Fertilizer components such as K and Mg (metals of lower exchange intensity) were incorporated into the soil to release Ca, Sr, and Ba (metals of higher exchange intensity) and reduce the solubility of most trace elements and metal‐complexing humic substances. In addition, application of Ca precipitated heavy metals and humic complexes directly from the soil solution. This effect was partially overcome by PE. Its carboxylic acids could act as phytochelators of metal ions and as mobilizers of the highly diffusible humic substances which carry metals to roots. It is concluded that continuous PE application replaces the quantities of Ca, K, Mg, P, and organic N, but not of NO3‐N consumed during plant growth. Using PE does not add any relevant quantities of toxic metals to the plant‐soil system.  相似文献   

6.
Abstract

The tolerance of rice (Oryza sativa L. C.V. Earlirose) to various trace metal excesses was tested to determine if high levels of the trace metals found in some field‐grown plants were at toxicity levels. In one experiment, levels of 2200 μg Zn/g dry weight, 44 μg Cu/g dry weight, 4400 μg Mn/g dry weight, and 32 μg Pb/g dry weight in shoots of young plants had no adverse effects on vegetative yields. A level of 3160μgZn/ g dry weight decreased yields about 40% (P = . 05). In another test 51 μg Cu/g dry weight or 94 μg Pb/g dry weight did not decrease vegetative yields. Boron supplied at 10‐3 MH3BO3 not only caused no toxicity but resulted in only 144 μg B/g dry weight in shoots. Root levels of Zn were about equal to those in shoots; Mn levels were lower in roots than in shoots (1/4 to 1/10); B levels were generally low in both shoots and roots with roots 1/10 that of shoots; Cu levels were higher in roots than in shoots. Rice was tolerant of a high level of Cr. The tolerance of rice to high levels of some trace metals in these experiments may be related to high P levels in plants.  相似文献   

7.
Arbuscular mycorrhizal fungi (AMF) benefit plants by allowing them to grow and produce in relatively harsh mineral stress environments. This has been attributed extensively to ability of AMF to expand the volume of soil for which mineral nutrients are made available to plants compared to what roots themselves would contact. This article reviews the effects of AMF on enhancing/reducing acquisition of phosphorus (P), nitrogen (N), sulfur (S), boron (B), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), zinc (Zn), copper (Cu), manganese (Mn), iron (Fe), aluminum (Al), silicon (Si), and some trace elements in plants. The nutrients enhanced most in host plants grown in many soils (e.g., high and low soil pH) are P, N, Zn, and Cu, but K, Ca, and Mg are enhanced when plants are grown in acidic soils. Many AMF have also the ability to ameliorate Al and Mn toxicities for plants are grown in acidic soil.  相似文献   

8.
Twenty-four Spanish thyme honey samples were analyzed using inductively coupled plasma optical emission spectrometry (ICP-OES). Twenty-four minerals were quantified for each honey. The elements Al, As, Ba, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, P, Pb, S, Se, Si, Sr, and Zn were detected in all samples; seven elements are very abundant (Ca, K, Mg, Na, P, S, and Si), and six are not abundant (Al, Cu, Fe, Li, Mn, and Zn). Eleven of them are trace elements (As, Ba, Cd, Co, Cr, Ni, Mo, Pb, Se, Sr, and V) at <1 mg kg(-)(1). Classification of thyme honeys according to their origin (coast, mountains) was achieved by pattern recognition techniques on the mineral data. By means of principal component analysis, a good separation by geographical origin is obtained when scores for the two first principal components are plotted. Classification functions of 11 metals (Al, As, Cr, Cu, K, Li, Mg, Na, P, S, and V) were obtained using stepwise discriminant analysis and applied to classify correctly approximately 100% of the honey samples.  相似文献   

9.
Abstract

A 9‐kg quantity of Yolo loam soil was contaminated in sequence with (In μg/g soil) 100 Cd, 100 Zn, 100 Co, 12.5 Li, and 100 Ni. Corn (Zea mays L. C. V. Golden Cross N. C. ) was grown together in the soil for 22 days from seed. Seventy‐two harvested plants were assayed separately. Several different trace metals were tested for normal and loge frequency distribution patterns. Some followed loge normal distribution more closely than a normal distribution as indicated by kurtosis values. Two followed normal distribution more closely than loge normal distribution. Some negative skewness was observed with the loge normal distribution, but only that for Co was significant. The yields of the plants were significantly and negatively correlated with the concentrations of Ni, Co, Cu, and Cd in shoots. Stepwise regression analysis indicated that it was reasonably Possible to determine which of the trace metals of the mixture caused phytotoxicity. Some pairs of trace metals were highly and positively correlated: Zn‐Cu, Zn‐Cd, Cu‐Cd, Mn‐Li, Co‐Ni, Co‐Cd are examples. The mixed trace metals decreased shoot concentrations of P and Mo and increased Al and Ti relative to control plants not receiving added metals. The Si was also decreased by trace metals and was positively related to yields.  相似文献   

10.
Bean plants were grown in pots contaning 6 kg of loamy sandy soil. A basal dose of NPK (150–120–100 kg/ha) fertilizers was mixed with the soil before potting and was repeated when the bean plants were 30 days old. Five different fertilizers and three rates of each fertilizer were investigated in this study. Fertilizers were applied seven days after germination and all treatments were triplicated. Bean plants were harvested 20, 30, and 45 days after sowing, dried, weighed, and digested in nitric‐perchloric acids. Concentrations of 18 elements were determined in the digests using an inductively coupled argon plasma spectrometer. At the end of the experiment, soil samples were also collected and extracted with DTPA. Bean dry matter yield was not significantly (p<0.05) affected by fertilizer application. Concentrations of aluminum (Al), barium (Ba), calcium (Ca), cadmium (Cd), cobalt (Co), iron (Fe), manganese (Mn), molybdenum (Mo), strontium (Sr), nickel (Ni), titanium (Ti), vanadium (V), and zinc (Zn) were significantly (p<0.05) lower in plant samples collected from the control treatments. Fertilizer application had no significant effect on concentrations of copper (Cu), potassium (K), sodium (Na), magnesium (Mg), phosphorus (P), and lead (Pb) in bean plants. Metal concentrations decreased with an increase in plant age, probably due to dilution effect. DTPA‐extractable concentrations of Co, Fe, Mn, Zn, Pb, Mo, and V were not significantly (p<0.05) correlated to their respective concentrations in bean plants.  相似文献   

11.
Lotus japonicus was used to study the distribution and interconnections of 15 elements in plant tissues, including essential and non-essential elements: boron (B), sodium (Na), magnesium (Mg), potassium (K), calcium (Ca), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), arsenic (As), strontium (Sr), molybdenum (Mo), cadmium (Cd) and cesium (Cs). Large amounts of B and Ca accumulated in plant leaves, while Fe, Na, Ni, As and Cd tended to mainly occur in the roots, and Mo was the only element to accumulate in the stems. The elemental compositions within plants were severely disturbed by treatment with toxic elements. Competition between element pairs in the same group (e.g. K and Cs; Ca and Sr) was not found. Iron, Cu and Zn accumulation were induced by Cd and Ni addition. When natural variants grew in a nutrition solution with subtoxic levels of As, Cd, Cs, Ni, Mo and Sr, intriguing relationships between the elements (such as Fe, As and K; Mg and Ni; Mn and Ca) were revealed using principal-component analysis. This study on the plant ionome offers detailed information of element interactions and indicates that chemically different elements might be closely linked in uptake or translocation systems.  相似文献   

12.
Abstract

Cadmium in solution culture at 10‐4 M decreased Mn concentrations in bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) at both low and high concentrations of Mn (noncompetitive inhibition). When Mn was decreased, the concentrations of Fe and several other ions were simultaneously increased, particularly in leaves and roots. Toxicity due to the 10‐6 M Cd and the 10‐4 M Mn was additive in the experiment. When barley (Hordeum vulgare L. Atlas57)was grown in amended soil, 15μg Fe as DTPA (diethylene triamine pentaacetic acid) per g soil resulted in increased uptake of Cd and in somewhat greater yield depression for soil pH of 3.9, 6. 0, and 7.6. Acidification of soil without DTPA also increased Cd uptake to high levels with associated yield decrease. The Cd decreased the uptake of Mn and Cu most when CaCO3 had also been added to the soil. When salts were added to soil with Cd before bush beans were grown, KCl (200 μg K/g soil), and equivalent KH2PO4 increased Cd concentrations of leaves while CaSO4 and KCl did so for roots. In bush beans with different levels of Cd and Zn, there were no yield interactions, but some interactions of Cd on Zn concentrations in leaves, stems, and roots at the high Zn level.  相似文献   

13.
Abstract

The major purpose of these experiments was to determine if Pb uptake by plants was significantly increased by chelating agents used in plant nutrition. The interaction of Pb with some other elements in barley plants (Hordeum vulgare L. C.V. Atlas 57) and bush bean (Phaseolus vulgaris L. C.V. Improved Tendergreen) was studied in a glasshouse with different rates of Pb in solution culture and in amended (control, S, CaCO3, MgCO3) Yolo loam soil with and without the chelating agent DTPA (diethylene triamine pentaacetic acid). In a solution culture experiment, 10‐3 M Pb significantly decreased bush bean yields in both control and DTPA treatments. The CaCO3 added to nutrient solution decreased the concentration of Pb in leaves, stems, and roots and prevented the toxicity of 10‐3 M Pb++. At high Pb levels, interactions between Pb and Mn and Pb and Fe were observed, except with CaCO3. In the soil experiment, the yields of barley and bush bean were influenced only slightly by Pb. The Pb concentration in barley shoots and bush bean leaves and stems was increased considerably in the presence of DTPA, however. In the absence of DTPA, the effect of added Pb was very small in the control and S amended soil treatments and almost negligible in the CaCO3 and MgCO3 amended soil treatments. Application of DTPA facilitated the translocation of Pb, Fe, Mn, Cu, and Zn to shoots. The effect was dependent upon soil pH. Particularly, the Fe was increased by DTPA at low pH while the effect was negligible at high pH. This was opposite the effect on Pb. The DTPA resulted in considerable Pb transport to leaves and stems at high soil pH. The uptake pattern of Zn and Cu was similar to that of Pb. It can be expected that chelating agents can increase the migration of Pb to plants andincrease its uptake by plants, and hence, entry into food chains.  相似文献   

14.
【目的】 养殖废水中含有丰富的养分,但也含有一定的重金属。本文研究了生物质炭和果胶对养殖废水灌溉下的土壤–植物系统养分和重金属迁移规律的影响,以利用养殖废水中的养分,并对其重金属进行调控。 【方法】 选取新乡市郊区农田土壤为供试土壤,采用根箱试验方法种植玉米。设置根箱土壤中添加1%的生物质炭和果胶,分别灌溉蒸馏水和养殖废水发酵产生的沼液。测定了土壤中养分和重金属的含量,探讨了其在土壤–植物系统的迁移规律。 【结果】 沼液灌溉的植株地上部生长与蒸馏水灌溉无显著差异。果胶相比于生物质炭可以促进植株生长。沼液灌溉时,果胶处理的根系和地上部生物量分别比对照增加了25.38%和31.21%。沼液灌溉普遍降低了根际和非根际土壤的pH,生物质炭处理和果胶处理与对照根际和非根际土壤的pH均无显著差异。沼液灌溉增加了非根际土壤的电导,生物质炭相比于果胶增加了土壤的电导。沼液灌溉增加了土壤全氮、有效磷、速效钾和有机质含量。果胶根际土壤的全磷、碱解氮、有效磷、有效Fe、有效Mn均高于生物质炭处理,生物质炭处理根际和非根际土壤的全钾和速效钾含量均高于果胶处理。沼液灌溉相比于蒸馏水灌溉,增加了植株根、茎中N含量和Ca含量。生物质炭处理植株根茎叶N含量、根茎P含量、茎K含量、根茎叶Ca含量、根茎Mg含量高于果胶处理,但果胶处理养分的转运系数较高。养殖废水灌溉增加了根际和非根际土壤中有效Cu和Zn尤其是Zn的含量。与对照相比,生物质炭降低了根际土壤Cu、Pb、Ni的含量,而果胶增加了它们的含量。沼液灌溉增加了植株根茎叶中Cu、Zn、Pb含量,果胶处理植株根系Cu、Zn、Pb、Cd、Ni含量最高,但向地上部转运较少。 【结论】 在北方碱性土壤灌溉养殖废水发酵产生的沼液时,施用生物质炭和果胶可以提高土壤肥力和植株养分含量,生物质炭通过减少土壤中有效态重金属含量以减少重金属在植物体内累积,果胶虽然增加土壤有效态重金属含量,但可以降低其向地上部的转运,避免了重金属在植物体内的累积。   相似文献   

15.
Toxic trace metals may percolate to the ground water from sewage sludge disposed onto land. Analyses are presented of the soil solution from a slightly acid loamy soil treated 7 years earlier with single applications of digested sewage sludge in amounts equivalent to 0, 150 & 330 t dry matter ha−1
These very heavy dressings correspond to 2 & 4.5 times the recommended 30–year limit. Samples of soil and soil solution from four depths to 80 cm were analysed for Al, B, Ba, Ca, Cl, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, S, Sr, V, Zn, together with the OM of the soil, and the pH, alkalinity, dissolved organic carbon, and absorbance at 350 nm of the solutions.
These very heavy sludge applications were apparently still releasing substantial quantities of NO3, and some SO4 even after 7 years. Nitrate, SO4, Mg, Ca, Sr, B, and possibly Ba are still moving through the profile, possibly to the ground water. Solution concentrations of Cu and Zn are considerably higher at all depths than those in the untreated plot, but they fall off sharply with depth. It is unlikely that any Cu or Zn is now reaching the ground water.
The paper also presents a set of published solution analyses for soils, sludge–treated soils and digested sludge, as a basis for further studies.  相似文献   

16.
Bush bean plants (Phaseolus vulgaris L. cv Contender) were grown for twenty days in nutrient solution (pH=5), containing 0.13, 0.3, 0.5 or 0.75 mg 1‐1 Zn as ZnSO4‐7H2O. The plant yield decreased linearly with the increase of the Zn concentration supplied. The phytotoxic threshold content (for 10% growth reduction) was about 486, 242, 95 and 134 μg Zn g‐1 for roots, steins, mature primary and trifoliate leaves, and developing leaves, respectively. High inverse correlation coefficients with the Zh concentration supplied were found for the Mn content of all organs, for the P content of roots, and for the Cu and Ca contents of developing leaves. Significant positive relations were found for the Fe, Zn and Cu contents in roots and for the Zn con‐ tents in stems and fully expanded leaves. The ratios of the mineral contents between organs suggest inhibition of uptake of Mn and P, and inhibition of translocation of Fe, Cu and Ca. The relation between dry weight decrease and Zn‐induced nutrient content disorders were discussed.  相似文献   

17.
不同水分状况下施锌对玉米生长和锌吸收的影响   总被引:3,自引:3,他引:3  
选择潮土(砂壤)和土(粘壤)两种质地不同的土壤,进行盆栽试验,研究不同土壤水分条件下施锌对玉米生长和锌吸收的影响。结果表明,施锌显著增加了玉米植株根、茎、叶以及整株干物质重;缺锌条件下玉米植株根冠比、根叶比和根茎比趋向增大。施锌显著提高了玉米植株各器官中锌的浓度和吸收量,并明显促进锌向地上部运移。干旱胁迫抑制了玉米植株生长,根冠比、根茎比、根叶比增大;随着土壤水分供应增加,植株生长加快,各器官生物量以茎和叶增加大于根。水分胁迫下,在潮土上玉米叶片中锌浓度上升;在土上叶片中锌浓度下降。但增施锌后,根和茎锌浓度增加幅度较大,叶片增加幅度较小;施锌和水分胁迫对根和茎锌浓度的交互作用极显著。水分胁迫下,玉米植株对锌的吸收总量减少。水分胁迫和锌肥施用对玉米叶片、茎锌吸收量的交互作用十分显著,但对根锌吸收量的交互影响不显著。  相似文献   

18.
Abstract

To assess the mineral composition of plants growing in pure fly ash, grasses growing on lysimeters filled with alkaline, neutral, or acid fly ash were sampled several times in a 6‐year period. The samples were analyzed for elements essential for plants and animals as well as non‐essential, but environmentally significant, trace elements. Grasses were also sampled from ash dumps that were 20 and 30 years old. Fly ash is not a proper source of plant macronutrients N, P, and K. Plant growth on the alkaline fly ash can be influenced for some time by the high salinity of that ash. Grasses growing on unweathered fly ash were found to be high in Al, B, Co, Fe, Mo, Ni, Pb, and Se. Concentrations of several elements declined in time but levels of B, Fe, Mo, and Ni were still elevated in grasses on both fly ash dumps. All concentrations, except Al, were lower than toxicity levels for plants as found in literature. In plants growing on fresh fly ash concentrations of Mo, Pb, and Se can exceed the maximum tolerable levels for domestic animals. On weathered fly ashes (ash dumps) the Mo, Pb, and Se concentrations in grasses were below the maximum tolerable levels. Effects on animals by Mo in weathered ash may not be excluded because Mo concentrations can be high enough to induce Cu deficiency. Animals that feed on plants grown on fly ash could suffer from Ca, Mg, Na, and P deficiency.  相似文献   

19.
Abstract

Relative suitability of different extraction procedures for estimating available zinc (Zn) and copper (Cu) in soils was assessed using DTPA, 0.1 N HCl, ammonium acetate+EDTA, and double acid (HCl+ H2SO4) as extractants and rice as a test crop in Neubauer experiment. The relationships between Zn concentration and uptake of Zn by rice plants and Zn extracted by the different methods showed that DTPA‐TEA, pH 7.3, could very suitably be used to assess Zn availability in soils. However, 0.1 N HCl was better for assessing the Cu availability in soils to the rice plants. Water‐soluble and exchangeable fractions of Zn and Cu had significant positive correlations with Zn and Cu concentrations, respectively obtained by all the four extractants tested. The results also showed that DTPA and ammonium acetate+EDTA extracted organically bound Zn, whereas DTPA, 0.1 N HCl and ammonium acetate+EDTA extracted organically bound Cu. Water‐soluble, exchangeable and organic matter bound fractions exhibited significant relationships with Zn and Cu concentrations, their uptake and rice dry matter yield.  相似文献   

20.
Growth stage effects on distribution of mineral nutrients or beneficial elements phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sulfur (S), chloride (Cl), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), molybdenum (Mo), sodium (Na), silicon (Si) and nickel (Ni), and the elements bromine (Br), rubidium (Rb), strontium (Sr), barium (Ba), lanthanum (La), cerium (Ce), and uranium (U) in two barley (Hordeum vulgare L.) cultivars and how the distribution of these elements changed were determined during the 2006–2007 growing season in a field experiment. Barley plants were sampled from the field at shooting, heading, soft dough, hard dough and harvest stages, and mineral nutrients and other elements concentrations of spike, flag leaf, old leaf, and stem samples were determined by polarized energy dispersive X-ray fluorescence (PEDXRF). Distribution patterns varied considerably from element to element. At the end of the season much of the Ca, Mg, S, Si, Fe, Mn, Cu, Ni, Sr, Ba, La, Ce, and U were located in the spikes. However, much of the P, K, Zn, Cl, Na, Br, and Rb remained in the old leaves or stem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号