首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Information is scant on the effect of humic acid (HA) on physiological, antioxidant and photosynthesis attributes of gerbera plants undergoing nutrient deficiency in culture solution. Gerbera plants cv. Malibu were grown in a factorial experiment based on a completely randomized design with 3 replications, using 3 different nutrient solutions [complete nutrient solution (NSc), 25% NSc (NS1), and 50% NSc (NS2)] treated with 2 levels of humic acid [0 (HA0) and 500 mg/l (HA1)].The interaction effect of HA and NS showed that HA improved the flower number in NSc, the transpiration in NS1+HA1, photosynthesis rate in NSc+HA1, stomatal conductance (gs) in NS2, mesophyll conductance of leaves in all NS levels and photosynthetic water use efficiency in NSc+HA1. The interaction effect of nutrient solution and HA on antioxidant activity was inconclusive, malondialdehyde content was the highest in NS2 and the lowest in NS1+HA1. The peroxidase activity increased in complete nutrient solution with and without HA and there were no differences among other treatments. Superoxide dismutase activity increased in NS1 and complete nutrient solution with HA and reached the highest in NSc. Humic acid was more effective in nutrient uptake, i.e., nitrogen, phosphorus, potassium, calcium, zinc, and iron (N, P, K, Ca, Zn, and Fe) in complete nutrient solution compared to NS1 and NS2. Conclusively, humic acid can compensate the nutrient deficiency stress of the culture solution in regards to protein synthesis, photosynthesis attributes regardless of the nutrient uptake of gerbera.  相似文献   

2.
Humic acid (HA) might benefit plant growth by improving nutrient uptake and hormonal effects. The effect of HA on growth, macro—and micronutrient contents, and postharvest life of gerbera (Gerbera jamesonii L.) cv. ‘Malibu’ were examined. Different levels of humic acid (0, 100, 500, and 1000 mg/L) were applied to nutrient solution.

Root growth increased at 1000 mg/L HA incorporated into the solution. Macro- and micronutrient contents of leaves and scapes including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were significantly enhanced by HA. However, high levels of HA decreased some nutrient contents.

Five-hundred mg/L HA increased the number of harvested flowers per plant (52%). Higher HA levels extended the vase life of harvested flowers by 2—3.66 days and could prevent and delay bent neck incidence. These postharvest responses were most probably due to Ca accumulation in scapes and hormone-like activity of HA.  相似文献   

3.
Two experiments were conducted to determine if improved nutrient uptake increases salinity tolerance of cotton (Gossypium hirsutum L.). A transgenic cotton line (CMO3) with increased salt tolerance and its wild line (SM3) were grown in pots containing substrate (peat:vermiculite = 1:1, v/v) in the first experiment, while cotton (‘SCRC 28’) was cultured in hydroponics with a split-root system in the second experiment. Contents of essential nutrient elements and Na+ in plant tissues, leaf photosynthesis (Pn) and chlorophyll (Chl) concentration and plant biomass were determined after salinity [sodium chloride (NaCl)] treatment in both experiments. In the first experiment, salinity stress with 150 mM NaCl reduced plant biomass and photosynthesis (Pn) of both SM3 and CMO3 compared with their non-stressed controls, but the CMO3 suffered significantly lower reductions than SM3, suggesting an increased salinity tolerance of CMO3 relative to SM3. Total uptake and contents of main nutrient elements [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), copper (Cu), and zinc (Zn)] in CMO3 were higher than those in SM3. Also, less sodium (Na+) accumulation and lower extreme ratios of Na/N, Na/P, Na/K, Na/Ca, Na/Mg, Na/Fe, Na/Mn, Na/Cu, and Na/Zn were observed in CMO3 than in SM3. Increased salt tolerance in transgenic AhCMO cotton was probably attributed to its superior nutrient uptake compared with SM3. In the second experiment, the non-stressed root half fed with moderate level of nutrient solution and salt-stressed half fed with low level of nutrient solution (CMN/SLN) exhibited higher salinity tolerance than salt-stressed root half fed with moderate level of nutrient solution and non-stressed root half fed with low nutrient solution (CLN/SMN). Plants absorbed more nutrients but less Na+ under CMN/SLN than CLN/SMN. The overall results suggest that improved nutrient uptake played an important role in the enhanced salt tolerance of cotton.  相似文献   

4.
Flower quality loss, especially short postharvest life, is a major problem in gerbera production. An experiment was conducted to determine how different combinations of humic substances (HS) affect gerbera. Humic acid (HA) and fulvic acid (FA) applied to nutrient solutions in six combinations including control (nutrient solution only), 80 mg L?1 HA + 20 mg L?1 FA, 60 mg L?1 HA + 40 mg L?1 FA, 40 mg L?1 HA + 60 mg L?1 FA, 100 mg L?1 FA, and 50 mg L?1 FA. The HS application enhanced root architecture, nutrient content, number of harvested flowers, and vase life. Fifty (50) mg L?1 FA extended vase life by 8 days and increased flower number (72.9%). Results suggest that HA and FA (especially 50 mg L?1 FA) can improve quality and quantity of gerbera through improving root architecture, leading to enhanced nutrient uptake and possibly affecting hormone-like activities. It seems that using low concentrations of FA may be part of a solution in improving gerbera flower quality.  相似文献   

5.
A field experiment was conducted for five kharif seasons (2006–2011) in an Alfisol to study the effect of integrated use of lime, mycorrhiza, and inorganic and organics on soil fertility, yield, and proximate composition of sweet potato. Application of graded doses of nitrogen, phosphorus, and potassium (NPK) significantly increased the mean tuber yield of sweet potato by 44, 106, and 130 percent over control. Green manuring along with ½ NPK showed greater yield response over that of ½ NPK. The greatest mean tuber yield was recorded due to integrated application of lime, farmyard manure (FYM), NPK, and MgSO4 (13.69 t ha?1) over the other treatments. Inoculation of mycorrhiza combined with lime, FYM, and NPK showed a significant yield response of 10 percent over FYM + NPK. Conjunctive use of lime, inorganics, and organics not only produces sustainable crop yields but also improve soil fertility, nutrient-use efficiency, and apparent nutrient recovery in comparison to NPK and organic manures.  相似文献   

6.
Abstract

The ability of poultry litter to support plant growth by supplying essential plant nutrients in the absence of other sources of the nutrients has not been studied thoroughly. The objectives of this research were to (1) determine the ability of poultry litter, as the sole nutrient source, to provide macronutrients and support growth of cotton (Gossypium hirsutum L.) (2) evaluate the distribution of these nutrients within the different plant parts, and (3) estimate the efficiency with which these nutrients are extracted by cotton. The research was conducted in plastic containers filled with a 2:1 (v/v) sand:vermiculite growing mix under greenhouse conditions. The treatments included broiler litter rates of 0, 30, 60, 90, or 120 g pot?1 with or without supplemental Hoagland's nutrient solution. Broiler litter supplied adequate amounts of the macronutrients nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) and supported normal growth of cotton. Tissue nutrient analysis showed that the concentration of N, P, K, and Mg in the upper mainstem leaves was within published sufficiency ranges for cotton growth. Evaluation of the N distribution indicated that the cotton plant partitions N to reproductive parts when faced with deficiency of this nutrient and favors allocating N to new leaf growth once the requirement for reproductive growth is met. The partitioning of P was similar to that of N but less distinct. Cotton extracted Mg and K with greater efficiency (up to 58%) than the other nutrients and stored these nutrients in older leaves. The extraction efficiency of N ranged between 21% at 120 g pot?1 litter and 27% at 30 g pot?1 litter. Phosphorus was the most poorly extracted nutrient, with only 16% of the total applied P extracted when 30 g pot?1 litter was applied and only 6% extracted at the higher litter rates. This suggests that the same problem of P buildup that has been reported in soils under pasture may also occur when poultry litter is repeatedly applied to the same soil planted to cotton. These results show that broiler litter not only supplied enough N but also supplied the four other macronutrients (P, K, Ca, and Mg) in amounts sufficient to support normal cotton growth. This research implies that poultry litter can effectively substitute for several fertilizers to meet crop macronutrient (N, P, K, Ca, and Mg) needs in soils deficient in any or all of these nutrients.  相似文献   

7.
The effects of different temperature treatments during the seedling stage on growth and nutrient absorbance of Gerbera jamesonii cv ‘Sunshine Coast’ growing in the organic substrate were investigated. The temperature treatments were conducted in growth chamber where the day/night temperature were set to 15/10, 20/15, 25/20, and 30/25°C individually. The results showed that the fresh and dry weight of aboveground part and that of roots, average number of leaves and lateral roots were greater at 30/25°C than other treatments. The highest level of macro elements nitrogen (N), phosphorus (P), and potassium (K) in the leaf samples were also detected at 25/20°C and 30/25°C. However, there was no significant influence of different temperatures on zinc (Zn) levels in leaves. In general, the day temperature 25~30°C and night temperature 20~25°C are thought to be the better temperature condition for gerbera growth as well as the nutrient uptake and accumulation in the plants during the seedling stage.  相似文献   

8.
ABSTRACT

We studied the effect of integrated nutrient management (INM) combinations on supplement of plant nutrient for quantitative and qualitative fruit production in sapota. Thus, 17 combinations of INM practices were evaluated on fruit yield of sapota and nutrient availability in a Vertisol of Chambal region, India. The results demonstrated that almost all treatment combinations comprised of recommended dose of fertilizer (RDF), i.e. 1,000:500:500 g NPK plant?1 with application of organic and inorganic sources of nutrients had a significant effect on the fruit yield of sapota, soil microbial biomass, NPK content of leaf, fruit and soil over control (T1). Among different treatments, application of 2/3rd part of RDF + 50 kg FYM + 250 g Azospirillum + 250 g Azotobacter plant?1 (T11) significantly enhanced the number of fruits plant?1 (327.88), yield plant?1 (29.03 kg) and yield ha?1 (4.52 t). However, the soil microbial count of fungi (8.89 cfu g?1 soil), bacteria (11.19 cfu g?1 soil) and actinomycetes (5.60 cfu g?1 soil) at fruit harvest was higher under the 2/3 of RDF +10 kg vermicompost + 250 g Azospirillum + 250 g Azotobacter plant?1 (T15). The leaf nitrogen content (N, 2.03%) was higher in T15, while phosphorus (P, 0.28%) and potassium (K, 1.80%) content were higher in T11. It is evident that treatment T11 increased fruit yield by 32% in Sapota cv. Kalipatti compared to control. Therefore, combined application of nutrient sources proved not only beneficial for enhancing fruit yield of sapota but also sustaining soil health in Chambal region of south-eastern Rajasthan.  相似文献   

9.
Abstract

The present study was conducted in the existing germplasm block of gerbera under protected condition at ICAR-IIHR, Bengaluru, India during 2017–2019 to obtain comprehensive information on biomass partitioning, nutrient uptake pattern and flower yields in different genotypes for precision use of critical inputs. The number of leaves (187.6–353.2 m?2?yr?1) and flower stalks (166.9–274.5 m?2?yr?1) varied significantly among genotypes. Specific leaf area (SLA) was similar among Balance, Stanza, Arka Aswha and Terra Kalina cultivars (0.150–0.156?cm2 mg?1). Strong positive influence of SLA on number of flower stalks was evident from the significant correlation (r = –0.774). Significant positive correlations among number of flower stalks and leaves, leaf area and SLA substantiate the flower yield pattern in gerbera. Optimum leaf number per plant was estimated at 18.6, while optimum range was quantified at 14.1 to 22.4. In gerbera genotypes, the partitioning of total aboveground dry biomass to leaves and flower stalks was 46–61% and 39–54%, respectively. The average nutrient removal was quantified at 32.8?g N, 7.3?g P, 78.7?g K, 24.7?g Ca and 4.1?g Mg m?2?yr?1 and the uptake of macronutrients was in the order of K?>?N > Ca > P?>?Mg. The order of micronutrient removal (g m?2?yr?1) was Fe (0.2), Zn (0.08), Mn (0.06) and Cu (0.03). The soil fertility status at uniform management was above optimum. It is clear that leaf number, biomass partitioning and nutrient removal pattern had direct impact on flower stalk yields of gerbera.  相似文献   

10.
轮作体系下冬油菜养分利用效率的区域研究   总被引:1,自引:0,他引:1  
Fertilization is essential for oilseed rape because it is sensitivity to nutrient deficiency, especially for winter oilseed rape(Brassica napus L.). To investigate regional nutrient efficiency and nutrient uptake-yield relationship of winter oilseed rape in an intensive cropping system, this study used data from 619 site-year on-farm experiments carried out in the winter oilseed rape planting area of the Yangtze River Basin, China from 2005 to 2010, with large yield in the range of 179–4 470 kg ha~(-1). Currently recommended application rates of N, P and K fertilizers increased rapeseed yield at different levels of soil indigenous nutrient supply(INS) in this region. Boundary values of plant nutrient uptake were established to analyze the nutrient uptake-yield relationship of winter oilseed rape(internal nutrient efficiency), i.e., 128 kg N ha~(-1), 24 kg P ha~(-1), and 122 kg K ha~(-1). The internal nutrient efficiency declined by 48.2%–64.1% when nutrient uptake exceeded the boundary value, resulting in excessive nutrient uptake(i.e., low yield response with high nutrient uptake), especially for K. In the intensive cropping system, agronomic efficiencies of N, P, and K were 5.9, 3.4, and3.6 kg kg~(-1), and recovery efficiencies of N, P, and K were 35.6%, 24.1%, and 36.8%, respectively. These findings showed that the fertilization rate should be optimized by considering INS, nutrient status, and nutrient efficiency of winter oilseed rape. In this study,considering the lower yield improvement to high K uptake levels and low K fertilizer efficiency, application rate of K fertilizer should be reduced since soil K deficiency has already been mitigated.  相似文献   

11.
Abstract

This paper presents a simple model for the changes in ion concentration and electrical conductivity (EC) of the recirculating nutrient solution in a closed-loop soilless culture of tomato (Lycopersicon esculentum Mill.). The model was designed on the basis of a balanced equation for plant nutrient uptake: for macrocations (K+, Mg2+ and Ca2+), a linear dependence of concentration on crop water uptake was assumed, while for non-essential ions, such as sodium (Na+), a non-linear function was used. The model was developed for closed-loop hydroponic systems in which crop water uptake (namely, transpiration) is compensated by refilling the mixing tank with complete nutrient solution. In these systems, EC gradually increases as a result of the accumulation of macro-elements and, principally, of non-essential ions, like Na+, for which the apparent uptake concentration (i.e., the ratio between nutrient and water uptake) is lower than their concentration in the irrigation water. For model calibration, data from both the literature and a previous work were used, while validation was performed with data from original experiments conducted with tomato plants in different seasons and using water with different sodium chloride (NaCl) concentrations (10 and 20 meq/L). The results of validation indicate that the model may be a useful tool for the management of closed-loop hydroponics, because it simulates rather well the salt accumulation that occurs in the recirculating nutrient solution when it is prepared with irrigation water of poor quality. Furthermore, the model is able to estimate the amount of crop evapotranspiration that leads to a value of EC at which flushing is necessary, thus enabling one to predict the water and nitrogen runoff of the semi-closed soilless culture.  相似文献   

12.
This study was conducted to determine whether using wood vinegar instead of nitric acid to adjust the pH of nutrient solution in hydroponics had any effects on the lettuce. Photosynthesis, mineral elements, water absorption, and the growth of the lettuce were all comparable to those of lettuce in the control group, in which nitric acid was used to adjust the pH. Nitric acid was added to half a unit of Enshi formula to adjust the pH of the control group. The rates of growth, water and mineral element absorption, and photosynthesis were low in lettuce plants grown in nutrient solution with 1 ml L?1 wood vinegar. However, the lettuce grown in solutions with 0.25 ml L?1 wood vinegar showed no significant differences from the control group. Therefore, wood vinegar concentration of 0.25 ml L?1 was found to be sufficient to keep the pH of the nutrient solution within the optimum range for growth.  相似文献   

13.
Salt-induced responses of Medicago ciliaris was studied under controlled conditions. Twenty-two-day old seedlings were cultivated for one month in a nutrient medium added or not with 75 mM sodium chloride (NaCl). Our results showed that this species is relatively salt-tolerant since the whole biomass production of salt-treated plants was affected a little (?30%) as compared to the control. The slight salt effect was mainly nutritional and concerned both macro potassium, calcium and magnesium (K, Ca, and Mg) and micro-nutrients iron (Fe). K and Fe uptake efficiencies were more affected than those of Ca and Mg. Nevertheless, M. ciliaris was able to counterbalance this impact by increasing both K and Fe use efficiencies. The enhancement of K use efficiency could be due in part to the plant aptitude to accumulate sodium (Na+) ions within its shoot tissues and to use them for osmotic adjustment. This “includer” behavior allowed M. ciliaris to maintain an adequate water status under saline conditions.  相似文献   

14.
ABSTRACT

Seed yield and nutrient use efficiency are related to biomass accumulation and nutrient uptake in the growing season. Biomass accumulation and nutrient uptake of canola (Brassica napus L. and Brassica rapa L.), mustard (Brassica juncea L.) and flax (Linum usitatissimum L.) and the relationship to days after emergence (DAE) or growing degree days (GDD) were determined during the 1998 and 1999 growing seasons in field experiments at Melfort, Saskatchewan, Canada. In general, biomass accumulation and nutrient uptake increased with time at early growth stages and reached a maximum at late growth stages. Significant R2 values for both biomass accumulation and nutrient uptake indicated that a cubic polynomial type equation was suitable to represent these parameters as a function of DAE. All oilseed crops maximized biomass at mid way to the end of pod forming stages (74–84 DAE or 750–973 GDD). Maximum biomass accumulation rate occurred at the early to late bud forming stage (42–49 DAE or 390–498 GDD), and it was 146–190 kg ha?1d?1 for canola, 158–182 kg ha?1d?1 for mustard, and 174–189 kg ha?1d?1 for flax. Maximum nutrient uptake occurred during flowering to early ripening (59–82 DAE or 597–945 GDD). Maximum nutrient uptake rate normally occurred at branching to early bud formation (21–42 DAE or 142–399 GDD). There was a close correlation between biomass accumulation and nutrient uptake, and among nutrients, suggesting interrelated absorption. For nitrogen (N), phosphorus (P), potassium (K), sulfur (S), and boron (B), respectively, maximum nutrient uptake rate was 2.3–4.5, 0.3–0.5, 2.5–5.7, 0.7–1.1, and 0.005–0.008 kg ha?1d?1 for canola; 2.3–3.9, 0.4–0.5, 2.6–4.9, 1.2–1.4, and 0.006–0.008 kg ha?1d?1 for mustard; and 3.2–4.0, 0.3–0.4, 2.9–4.1, 0.3–0.5, and 0.004–0.009 kg ha?1d?1 for flax. In general, maximum nutrient uptake rate and amount occurred earlier than maximum biomass accumulation rate and amount, and maximum rates of both nutrient uptake and biomass accumulation occurred earlier than their maximum amounts. The findings suggest that for high seed yields, there should be adequate supply of nutrients for plants, particularly to sustain high nutrient uptake rate at branching to bud forming stage and high biomass accumulation rate at early to late bud forming stage.  相似文献   

15.
The result of intensive agriculture in cities is the decline in crop yields and depletion of the resource base. The aims of this study were to assess effects of nitrogen (N) or phosphorus (P) fertilization on bioavailable aluminum (Al) and their contribution on Al and nutrient uptake in Hibiscus sabdariffa. A pot experiment was led to supply a tropical soil with N and P fertilizers. P amendment decreased Al in soil solution, not N amendment. Fertilizers had effects on Al and nutrient uptake in roots and leaves of Hibiscus sabdariffa. The results also showed that the uptake of Al and nutrients depends on Al in soil solution or N supply or P supply. Only P uptake in roots and leaves was explained by combined effects of a nutrient supply × exchangeable Al. Furthermore, P supply does not limit the translocation of Al in shoots of plants in acid soils.  相似文献   

16.
Although agaves are commercially important worldwide and ecologically interesting, their nutrient responses have not been extensively studied under controlled conditions. Here, nutrient responses of seedlings and adult plants of Agave deserti were examined, with particular emphasis on nitrogen. Growth of seedlings in hydroponics was enhanced by increasing potassium, phosphate, and especially nitrate. Seedling growth in sand culture was also enhanced by adding nitrate, leading to just over 2% N by dry weight in the leaves. Seedlings had optimal growth in soil having about 0.1% N by dry weight and a pH between 6 and 8. In going from irrigation with no added nutrients to full‐strength Hoagland solution for mature plants in soil, leaf unfolding (a non‐destructive measure of productivity) approximately doubled. The rate of leaf unfolding in the field was also doubled by adding 100 kg N hectare‐1, higher levels proving inhibitory.  相似文献   

17.
通过小麦玉米轮作盆栽试验,探讨海藻酸与控释尿素配施的增产增效机制及其对土壤养分状况的影响。以氮空白(CK0)为对照,设置常量尿素(N2A0)、常量尿素加海藻酸(N2A1)、常量控释尿素(CN2A0)、常量控释尿素加海藻酸(CN2A1)、减氮30%的尿素(N1A0)、减氮30%的尿素加海藻酸(N1A1)、减氮30%的控释尿素(CN1A0)、减氮30%的控释尿素加海藻酸(CN1A1)9个处理。结果表明:海藻酸与常量控释尿素配施处理(CN2A1)的小麦玉米产量最高分别为98.22,134.84 g/pot,增产增收效果最好,与常量控释尿素处理相比,玉米显著增产16.38%(P0.05),氮肥利用率显著提高17.79%(P0.05)。海藻酸与减氮30%控释尿素配施处理(CN1A1)较减氮30%控释尿素处理小麦玉米分别显著增产15.92%,26.05%(P0.05),氮肥利用率也显著提高(P0.05)。此外配施海藻酸处理较未加海藻酸处理叶片蒸腾速率、SPAD值和叶面积指数均有所提高。海藻酸与常量控释尿素配施与未加海藻酸的处理相比,显著增加小麦拔节期和玉米大喇叭口期的土壤NO_3~--N和NH_4~+-N含量(P0.05),显著提高玉米大喇叭口期土壤速效钾含量(P0.05)。海藻酸与控释尿素配施显著提高了土壤速效氮和钾的供应强度和容量,促进了小麦、玉米的生长和产量的提高。  相似文献   

18.
The role of mounds of the fungus-growing termite Macrotermes bellicosus (Smeathman) in nutrient recycling in a highly weathered and nutrient-depleted tropical red earth (Ultisol) of the Nigerian savanna was examined by measuring stored amounts of selected nutrients and estimating their rates of turnover via the mounds. A study plot (4?ha) with a representative termite population density (1.5?mounds?ha?1) and size (3.7?±?0.4?m in height, 2.4?±?0.2?m in basal diameter) of M. bellicosus mounds was selected. The mounds were found to contain soil mass of 9249?±?2371?kg?ha?1, composed of 7502?±?1934?kg?ha?1 of mound wall and 1747?±?440?kg?ha?1 of nest body. Significant nutrient enrichment, compared to the neighboring topmost soil (Ap1 horizon: 0–16?cm), was observed in the nest body for total nitrogen (N) and exchangeable calcium (Ca), magnesium (Mg) and potassium (K), and in the mound wall for exchangeable K only. In contrast, available (Bray-1) phosphorus (P) content was found to be lower in both the mound wall and the nest body than in the adjacent topmost soil horizon. Consequently, the mounds formed by M. bellicosus contained 1.71?±?0.62?kg?ha?1 of total N, 0.004?±?0.003?kg?ha?1 of available P, 3.23?±?0.81?kg?ha?1 of exchangeable Ca, 1.11?±?0.22?kg?ha?1 of exchangeable Mg and 0.79?±?0.21?kg?ha?1 of exchangeable K. However, with the exception of exchangeable K (1.2%), these nutrients amounted to less than 0.5% of those found in the topmost soil horizon. The soil nutrient turnover rate via M. bellicosus mounds was indeed limited, being estimated at 1.72?kg?ha?1 for organic carbon (C), 0.15?kg?ha?1 for total N, 0.0004?kg?ha?1 for available P, 0.15?kg?ha?1 for exchangeable Ca, 0.05?kg?ha?1 for exchangeable Mg, and 0.06?kg?ha?1 for exchangeable K per annum. These findings suggest that the mounds of M. bellicosus, while being enriched with some nutrients to create hot spots of soil nutrients in the vicinity of the mounds, are not a significant reservoir of soil nutrients and are therefore of minor importance for nutrient cycling at the ecosystem scale in the tropical savanna.  相似文献   

19.
On-farm trials in India investigated the role of nutrient imbalance on yellow leaf disease (YLD) in arecanut on a laterite soil using compositional nutrient diagnosis (CND) approach. Soil fertility status was imbalanced with high organic carbon status and low phosphorus (P) and potassium (K). The CND norms indicated that the order of nutrient demand was changed with nutrient application. Interventions increased yield by 50% during 2007–2010. The correlations indicated positive effect of nitrogen (N) and K and negative effect of manganese (Mn) on yield. The CND indices for NPK were important discriminators between yellowed and apparently healthy populations both in 2007 and 2010. Linear regressions between leaf nutrient concentrations and CND indices were significant for P, K, iron (Fe), Mn, and copper (Cu) (R2 = 0.44–0.53). Results suggest that the predisposing factor for YLD might be nutrient imbalance in the soil leading to deficit of major nutrients in plant.  相似文献   

20.
ABSTRACT

Long-term fertilization tests evaluated rice (Oryza sativa) productivity in relation to application of nitrogen (N)-phosphorus (P)-potassium (K) (120-34.9-66.7 kg ha? 1, respectively) during 1967–1972 and N-P-K (150-43.7-83.3 kg ha? 1, respectively) during 1973–2000. The comparison treatments (NP, PK, and NK) and the control (not fertilized) were selected for calculating nutrient efficiency. Rice grain yield increased at a 17.78 kg ha? 1 yr? 1 in the control, mainly due to development of improved cultivars. Phosphorus management was found to be important for indigenous fertility and rice productivity in this paddy soil. Yield increased significantly with P fertilization. Without N fertilization (PK), rice productivity increased 56.85 kg ha? 1 yr? 1 from 62% of NPK at the initial stage to 74% after passing 34 years, which might be affected by increasing biological N fixation with P accumulation in soil. In NK treatment, rice yield increased at a relatively low rate (37.82 kg hr? 1 yr? 1) from the same rice productivity with that of NPK in 1967 to 91% after 34 years. In comparison, yield increased at a high rate (62.82 kg hr? 1 yr? 1) without K fertilization (NP) from ca. 90% of NPK and might exceed the yield of NPK after 64 years of long-term fertilization. Therefore, K fertilization level might be readjusted after long-term fertilizing in paddy soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号