首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Silicon (Si) is a beneficial nutrient for sugarcane (Saccharum spp.) and yield responses to Si amendment have been determined on soils with low soluble Si. Because a soil test Si calibration has not been published for sugarcane grown on Florida mineral soils, the objectives were to determine sugarcane yield response to silicon soil amendment on two mineral soils (Entisol and Spodosol) and to relate sucrose yield to soil-extractable Si. Calcium silicate application rates were 0, 3.4, and 6.7?Mg ha?1 (Site 1) and 0, 2.2, 4.5, and 6.7?Mg ha?1 (Site 2) in small-plot (120 m2 plot?1) experiments, with Si application resulting in significant increases in biomass and sucrose ha?1. Calcium silicate requirements of 6.7 and 4.3?Mg ha?1 were determined with initial acetic acid-extractable Si of 21 and 46?g m?3, respectively. Nonlinear models indicated that Si amendments will be required with acetic acid-extractable Si <105?g m?3.  相似文献   

2.
Mineral element deficiencies and toxicities are common problems associated with sorghum [Sorghum bicolor (L.) Moench] production on acid soils. To better understand some of the mineral element problems and the analysis of plant tissue of sorghum plants grown on acid soils, four sorghum genotypes were grown on an acid Oxisol at Carimagua, Colombia limed with dolomite at 2 and 6 Mg ha‐1.

Samples for mineral element analyses were obtained from leaves at different positions on the four genotypes. Concentrations of P and Mg were highest in the flag leaf (Leaf No. 1) and decreased as the position on the plant declined from the top of the plant for plants grown at 2 Mg lime ha‐1. Similar decreases in P, Mg, K, and Zn concentrations occurred in plants grown with 6 Mg lime ha‐1. Concentrations of Ca, S, Si, Mn, Fe, Cu, and Al increased as leaf position declined from the flag leaf for plants grown at 2 and 6 Mg lime ha‐1. The higher lime supply enhanced Ca and reduced Mn and Fe concentrations in leaves. Differences in mineral element concentrations for the four genotypes used were fairly extensive. The elements to show the greatest range among genotypes were Al and Si and the elements to show the least range among genotypes were P, K, and S. Care should be used in collecting leaf samples for plant analysis and genotypic differences for accumulation of mineral elements should be considered in interpretation of results.  相似文献   

3.
A field experiment was conducted with the objectives to relate the changes in the physical properties, soil organic carbon (SOC), nutrient availability, and uptake and output input ratios for sustaining sugarcane ratoon growth and yield in an Udic ustochrept. Eight combinations of trash and farmyard manure (FYM) with and without Trichoderma viride and Gluconacetobacter diazotrophicus were applied in two sugarcane ratoon (first and second ratoon in succession) crops. Application of Trichoderma-enriched trash showed the lowest bulk density (1.36 Mg m?3) and the greatest infiltration rate (4.5 mm h?1). Greater rate of increase in SOC was observed under inoculation of Trichoderma with FYM compared to trash mulch. The output/input ratios were greater in plots having trash-based treatments compared to FYM and inorganic fertilizers. Bioagent-inoculated FYM produced greater mean sugar yield (8.89 t ha?1) compared to bioagent-inoculated trash (7.97 t ha?1).  相似文献   

4.
Silicon is considered a beneficial nutrient for sugarcane (Saccharum spp.) and yield responses to Si applications on Florida organic soils have been well documented. Growers need calibrated Si recommendations to be able to make cost-effective decisions regarding Si applications. The objective of this study was to develop a soil-test Si calibration based on yield responses to Ca silicate on Everglades Histosols. Twelve paired commercial field comparisons and three small-plot tests of Ca silicate application were conducted. Strong responses in t cane ha?1 and t sucrose ha?1 were determined with acetic acid-extractable soil Si <15 g m?3, with some response to approximately 25 g m?3. Recommendations were developed over this range with a maximum Ca silicate rate of 6.7 t ha?1. Optimum leaf Si concentration was determined to be ≥ 6.0 g kg?1, with 0.95 and 0.80 relative yield at 5.0 and 2.5 g kg?1, respectively.  相似文献   

5.
It was hypothesized that the application of eucalyptus biochar enhances nutrient use efficiencies of simultaneously supplied fertilizer, as well as provides additional nutrients (i.e., Ca, P, and K), to support crop performance and residual effects on subsequent crops in a degraded sandy soil. To test this hypothesis, we conducted an on‐farm field experiment in the Khon Kaen province of Northeastern Thailand to assess the effects of different application rates of eucalyptus biochar in combination with mineral fertilizers to upland rice and a succeeding crop of sugarcane on a sandy soil. The field experiment consisted of three treatments: (1) no biochar; (2) 3.1 Mg ha?1 biochar (10.4 kg N ha?1, 3.1 kg P ha?1, 11.0 kg K ha?1, and 17.7 kg Ca ha?1); (3) 6.2 Mg ha?1 biochar (20.8 kg N ha?1, 6.2 kg P ha?1, 22.0 kg K ha?1, and 35.4 kg Ca ha?1). All treatments received the same recommended fertilizer rate (32 kg N ha?1, 14 kg P ha?1, and 16 kg K ha?1 for upland rice; 119 kg N ha?1, 21 kg P ha?1, and 39 kg K ha?1 for sugarcane). At crop harvests, yield and nutrient contents and nitrogen (N) use efficiency were determined, and soil chemical properties and pH0 monitored. The eucalyptus biochar material increased soil Ca availability (117 ± 28 and 116 ± 7 mg kg?1 with 3.1 and 6.2 Mg ha?1 biochar application, respectively) compared to 71 ± 13 mg kg?1 without biochar application, thus promoting Ca uptake and total plant biomass in upland rice. Moreover, the higher rate of eucalyptus biochar improved CEC, organic matter, available P, and exchangeable K at succeeding sugarcane harvest. Additionally, 6.2 Mg ha?1 biochar significantly increased sugarcane yield (41%) and N uptake (70%), thus enhancing N use efficiency (118%) by higher P (96%) and K (128%) uptake, although the sugar content was not increased. Hence, the application rate of 6.2 Mg ha?1 eucalyptus biochar could become a potential practice to enhance not only the nutrient status of crops and soils, but also crop productivity within an upland rice–sugarcane rotation system established on tropical low fertility sandy soils.  相似文献   

6.
Agricultural by-products applied as soil amendments have the potential to improve crop production on low organic matter (OM) soils. This two-year study investigated the use of two readily available sugarcane (Saccharum spp.) milling by-products, mill mud, and mill ash, as soil amendments to improve first sugarcane crop (plant cane) and subsequent crop (first ratoon) grown on a sandy Spodosol. Sugarcane was grown in lysimeters receiving mill mud, mill ash, and a 50:50 (v:v) mill mud to mill ash mix. Amendments were applied at low, medium, and high application rates (5, 10, and 15 cm depths, respectively) and then incorporated 30 cm deep. Amendment effects on plant nutrition, soil characteristics, and crop yield were determined. High rate applied mill mud and mill ash had the highest soil OM content for both years and soil OM did not significantly change between crops for all treatments except for high rate mill mud, which increased the second year (ratoon crop). Leaf nutrient levels for nitrogen (N), iron (Fe), and copper (Cu) for all treatments both years were insufficient; nutrient levels for magnesium (Mg), manganese (Mn), and silicon (Si) were within marginal to sufficient range for all treatments both years. All amendments produced significantly higher biomass and sucrose yields for plant cane and first ratoon crops compared to the control. Mill ash treatments produced the greatest increase in sucrose and biomass yields from plant cane to ratoon crops, which corresponded with an increase in potassium (K) in leaf tissue. However, mid and high rates of mix produced the highest sugarcane biomass and sucrose yields for the both the plant cane and ratoon crops.  相似文献   

7.
Soil subsidence of Florida Histosols caused by microbial oxidation following drainage of these soils has resulted in decreased depth. Soil pH has increased from tillage operations and vertical movement of carbonates from underlying limestone bedrock through evapotranspiration and seepage irrigation. This study was conducted to determine sugarcane (Saccharum spp.) yield response to banded elemental sulfur (S) (granular 90% S and granular 80% S with 5% manganese (Mn)) in soils with unamended pH ranging from 6.5 to 7.2. Four field experiments were established as small-plots on Histosols in the Everglades Agricultural Area (EAA). Each experiment was a randomized complete block design with six replications and elemental S rates of 0, 90, 224, and 448 kg S ha?1. Less than optimum leaf Mn at two locations were associated with Mehlich 3-extractable Mn<5 g m?3. There were no sugarcane yield responses to elemental S with unamended pH<7.2, although S significantly reduced in-row pH.

Abbreviations: EAA, Everglades Agricultural Area; ICP, inductively coupled argon plasma; KSM, kg sucrose Mg?1 cane; MAP, monoammonium phosphate; M3-Mn, Mehlich 3-extractable Mn; RCB, randomized complete block; STM5, granular 80% S with 5% Mn; MCH, Mg cane ha?1; MSH, Mg sucrose ha?1  相似文献   

8.
ABSTRACT

Field experiments were carried out for three consecutive years (2003–2006) at Bangladesh Sugarcane Research Institute farm soil on plant (first crop after planting) and subsequent two ratoon crops of sugarcane. The main objectives of the study were to assess the direct and residual effects of organic and inorganic fertilizer on growth, yield, and juice quality of plant and ratoon crops. The plant crop consisted of four treatments. After harvesting of plant crop to evaluate the residual effects on ratoon crop the plots were subdivided except the control plot. Thus, there were seven treatments in the ratoon crop. Application of recommended fertilizer [nitrogen (N150), phosphorus (P52), potassium (K90), sulfur (S35), and zinc (Zn3) kg ha? 1] singly or 25% less of it either with press mud or farmyard manure (FYM) at 15 t ha? 1 produced statistically identical yield ranged from 67.5 to 69.0 t ha? 1 in plant crop. In the ratoon experiment when the recommended fertilizer was applied alone or 25% less of its either with press mud or FYM at 15 or even 7.5 t ha? 1 again produced better yield; it ranged from 64.8 to 69.2 in first ratoon and 68.2 to 76.5 t ha? 1 in second ratoon crops. Results showed that N, P, K, and S content in leaf progressively decreased in ratoon crops over plant crop. Juice quality parameters viz. brix, pol, and purity % remained unchanged both in plant and ratoon crops. Furthermore, organic carbon (C), available N, P, K, and S were higher in post harvest soils that received inorganic fertilizer in combination with organic manure than control and inorganic fertilizer treated soil. It may be concluded that the application of 25% less of recommended fertilizer (N112, P40, K68, S26, and Zn2.2.5 kg ha? 1) either with press mud or FYM at 15 t ha? 1 was adequate for optimum yield of plant crop. Results also suggest that additional N (50% extra dosage) keeping all other fertilizers at the same level like plant crop i.e. N168, P40, K68, S26, and Zn2.25 kg ha? 1 either with press mud or FYM at 7.5 t ha? 1 may be recommended for subsequent ratoon crops to obtain good yield without deterioration in soil fertility.  相似文献   

9.
After harvest, sugarcane residues left on the soil surface can alter nitrogen (N) dynamics in the plant-soil system. In Oxisols, the nitrogen fertilizer applied had its effects on the levels of ammonium and nitrate in the soil, N concentration in the plant leaves, and on the growth and productivity of second ratoon plants. The N rates tested were of 0, 60, 120, 180, and 240 kg ha?1. Each treatment was replicated four times. Four months after the experiment was started, ammonium and nitrate concentration in the soil, N levels in plant leaves, and plant growth were evaluated. Productivity was evaluated 11 months after the experiment was set. By increasing the content of mineral N in soil, plant growth variables reflected differences in the production of stems; however, it did not affect foliar N. The use of leaf analysis was not important to assess the nutritional status of nitrogen in the ratoon sugarcane. Nitrogen concentration in soil was affected by nitrogen fertilization, but not the N content in leaves. The rate of 138 kg N ha?1enabled greater production of sugarcane stalks (140 t ha?1).  相似文献   

10.
In tropical montane forests nutrients released from the organic layers of the soil can supply a large part of the vegetation's requirements. We have examined concentrations, storage, and turnover times of nutrients in the organic layer and the fluxes of nutrients by the fall of small litter (leaves, seeds, flowers, small twigs, and plant debris that passed an opening of 0.3 m × 0.3 m) in such a forest in Ecuador. The times taken for litter to turn over were estimated by relating nutrient storage in the organic layer to rate of litterfall and by incubating samples in the laboratory. The organic layer had a thickness of 2–43 cm, a mass of 30–713 t ha?1, and a nutrient storage of 0.87–21 t N, 0.03–0.70 t P, 0.12–2.5 t K, 0.09–3.2 t Ca, and 0.07–1.0 t Mg ha?1. The pH (in H2O) ranged between 3.1 and 7.4 and was correlated with the concentrations of Ca and Mg (r= 0.83 and 0.84, respectively). The quantity of small litter (8.5–9.7 t year?1) and mean concentrations of nutrients in litter (19–22 g N, 0.9–1.6 g P, 6.1–9.1 g K, 12–18 g Ca, and 3.5–5.8 g Mg kg?1) were larger than in many other tropical montane forests. The mean turnover times of elements in the organic layer increased in the order, Mg (7.0 years) < Ca (7.9) < K (8.5) < P (11) < N (14) < S (15) when calculated as the quotient of storage in the organic layer to flux by litterfall; they were < 12 years for N, P, and S in the incubation experiment. Under optimum conditions in the laboratory, the mineralization of S was just as large as the S deposition by litterfall. In weakly acid soils Mn and Zn and in strongly acid soils Ca added in a nutrient solution were immobilized during incubation. Thus, lack of S, Mn, Zn, and Ca might limit plant growth on some soils.  相似文献   

11.
The aim of the study was to evaluate changes in the yield and nutritional characteristics of aromatic rice as influenced by organic versus mineral fertilization. Aromatic rice was grown on four levels of cattle manure (CM; 5, 10, 15, and 20 Mg ha?1). Other treatments were equivalent amounts of nitrogen (N), phosphorus (P), and potassium (K) in different levels of manure fertilizer and mineral fertilizer. After 6 years of cropping, organically managed plots were superior to mineral-fertilized plots in terms of grain yields of rice at 5, 10, and 15 Mg ha?1. Cattle manure at 20 Mg ha?1 and its equivalent NPK through mineral-fertilizer treatment provided 41.1% and 37.9% increases in average grain yield (5.2 and 5.1 Mg ha?1) over the unamended control. Protein content was greater in mineral-fertilized rice grains at all levels of CM. Soil dehydrogenase, β-glucosidae, urease, and acid phosphatase activities were greater in soil treated with CM than soil treated with the corresponding mineral fertilizer at all levels. There was buildup of soil-available N, K, and iron (Fe) in soils treated with CM. Grain hardness increased with increasing rates of nutrient application for both mineral-fertilized and organically grown rice; in contrast, amylose content was lower in treatments receiving more nutrients, irrespective of nutrient sources. In terms of functional property, phenol content in rice grain increased with increasing nutrient supply. Potassium and Fe contents were more in CM-treated rice than in mineral-fertilized treatments at greater rates of application. Results suggest that after building up the soil nutrient status, comparable yield and better nutritional and functional qualities of rice can be achieved in organically managed soils than in mineral-fertilized soils.  相似文献   

12.
ABSTRACT

Experiments were carried out with the objectives to reduce the yield gap of plant and subsequent ratoon crops, evaluate juice quality, as well as soil properties. A 3-year field experiment was utilized to assess the use of organic materials and inorganic fertilizers on plant and subsequent ratoon crops. The organic materials included press mud, farmyard manure (FYM), and green manure (GM) of Sunhemp (Crotalaria juncea); the fertilizers were urea, triple superphosphate (TSP), muriate of potash (MOP), gypsum, and zinc sulphate. Farm yard manure was applied at a rate of 15 t ha?1 accompanied with a chemical fertilizer (N178P53K54S26Zn2.6kg ha?1), which produced yield of 108.4, 96.8, and 73.5 t ha?1 in plant cane, first, and second ratoon crops, respectively. Cane yields in the first were recorded in plant cane first and second ratoon crops, respectively. Cane yields in the first and second ratoon crops were 89.3 and 67.8% of plant crop, respectively. Juice quality parameters viz., Brix, pol and purity percent progressively increased in ratoons crops as compared to corresponding plant cane. The organic carbon, total N, and available P, K, &; S contents of soils increased slightly due to incorporation of organic materials. The result of the study revealed that 25% reduction of inorganic fertilizer with FYM or press mud at 15 t ha?1 in plant cane and addition of 50% more N with same amount of fertilizer suggested for plant cane showed better yield and improved juice quality in first and second ratoon crops of sugarcane.  相似文献   

13.
Abstract

Sustainable production in the Everglades Agricultural Area (EAA) is confounded by decreasing soil depth and high annual rainfall. Formerly a sawgrass marsh, Histosols predominate much of the EAA and these soils have frequently flooded following their drainage in the early 20th century. Subsidence has increased inundation frequency as soil depth has decreased to less than 25?cm in many locations. A 2-year lysimeter study was conducted to examine alternative management practices for improved agricultural sustainability given frequent flooding and reduced oxidation rates on Histosols. Specific management factors examined included water-table, soil depth, and nitrogen (N) fertilizer effects on sugarcane leaf nutrient concentrations and soil nutrient cycling. The trial utilized soil depths of 13 and 25?cm, water tables of constant and periodically flooded, and N fertilizer rates of 0 and 168?kg ha?1?year?1. Periodic flooding increased plant uptake of manganese (Mn), silicon (Si), and boron (B). Yield increases associated with additional N indicate a potential need to develop fertilizer rate recommendations for shallow Histosols. Soil depth impacted sugarcane nutrient uptake with 25?cm of soil depth significantly affecting examined leaf nutrient concentrations except iron (Fe). Sugarcane yield may benefit if additional N and potassium (K) are added at rates specific to soil depth. Proximity to bedrock led to excessive calcium (Ca) uptake and low K and Fe DRIS (Diagnosis and Recommendation Integrated System) values were below recommendations. Data from this study can assist development of precision agricultural practices in the EAA that utilize soil depth.  相似文献   

14.
An on-farm field experiment was conducted on an acidic soil to investigate the effects of combined use of lime and deficient nutrients on herbage yield of alfalfa (Medicago sativa L.). Omitting lime and limiting nutrients led to elevated concentrations of aluminium (Al), iron (Fe), and manganese (Mn) in alfalfa leaves and stems and caused severe reductions in herbage yield of alfalfa. Combined use of lime (2 t ha?1) and nutrients [phosphorus (P): 20 kg ha?1, sulfur (S): 20 kg ha?1, zinc (Zn): 4 kg ha?1, and boron (B): 2 kg ha?1] had the maximum increase in groundcover, root biomass, nodulation, leaf retention, leaf-to-stem ratio, herbage yield, crude protein, and nutrient composition of alfalfa. These beneficial effects were due to raised soil pH; improved calcium (Ca), P, S, Zn, and B nutrition; and reduced Al, Mn, and Fe toxicity. Aluminium and all the nutrients except copper (Cu) were more concentrated in alfalfa leaves than stems.

Aluminum concentration was about three times greater in the lower leaves than in upper leaves. Lower leaves also had much greater concentrations of Ca, Mg, K, S, Fe, Mn, Cu, and B compared with upper leaves. In contrast, P and Zn concentrations were greater in the upper leaves than in lower leaves. Results suggest that the combined use of lime and all the limiting nutrients may realize potential beneficial effects of alfalfa on acidic soils where more than one essential nutrient is deficient. This may increase growth potential, nitrogen contributions, and groundcover by alfalfa and reduce soil erosion and runoff.  相似文献   

15.
Litchi is one of the important subtropical fruit crops in the state of Jharkhand, occupying around 33,000 ha with production of about 165,000 metric tons. Considering the importance of soil analysis in litchi crops, the present investigation was carried out in an established orchard (begun in 1979) at the Horticulture and Agroforestry Research Program, Indian Council of Agriculture Research Complex for Eastern Region, Plandu (Ranchi), Jharkhand, India, to study the nutrient concentrations in soils of litchi and the interrelationships among available nutrient concentrations present in soil, and crop productivity in order to develop a sound fertilizer management program. Periodic collection of soil samples from the established orchard was carried out on the second week of every month during 2006–2007. Analysis of soil samples were carried out for macro- and micronutrients in soil. Mean soil nutrient contents for nitrogen (N), phosphorus (P), and potassium (K) were 232 kg ha?1, 53 kg ha?1, and 420 kg ha?1, respectively. The greatest contents of N and K were observed at full canopy distance, whereas for that for P was at one-third and two-thirds the canopy distance. Mean soil nutrient contents were 1.52 C mol (P+) kg?1, 1.11 C mol (P+) kg?1, and 23 ppm for calcium (Ca), magnesium (Mg), and sulfur (S), respectively. The greatest contents of Ca and Mg were observed at one-third the canopy distance whereas that for S was at two-thirds the canopy distance. However, mean soil nutrient contents were 1.03, 53, 65, and 1.42 ppm for copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn), respectively. The greatest content of Fe was observed at two-thirds the canopy distance whereas that for Cu was at one-third the canopy distance. The greatest Mn content was observed for both two-thirds and full canopy distance whereas Zn contents had no significant differences among the canopy distances. However, soil sampling at two-thirds canopy distance from the trunk was observed to be ideal for soil analysis.  相似文献   

16.
ABSTRACT

The potential for phosphorus (P) movement from poultry-litter amended soils into surface waters heightens the need to manage elevated P concentrations. Amending high P soils with aluminum (Al) rich drinking water treatment residue in a greenhouse study reduced water extractable P levels and induced P deficiency in container grown wheat. Objectives of the current investigation were to determine the effect of water treatment residue on grain yield, leaf and grain mineral nutrient concentrations in corn (Zea mays L.) grown under field conditions and to examine pH, water and Mehlich 3-extractable P, and 0.01 M calcium chloride extractable Al in the amended soils at two sites. Poultry litter was amended with 0, 5.6, and 11.2 Mg ha? 1 of water treatment residual and applied to two sites prior to planting with corn in 1998. Additional rates (16.8 and 33.6 Mg ha? 1) of water treatment residue were applied directly to half of each plot on site I in 1999. Results indicated that water treatment residue application did not adversely affect corn grain yields or alter concentrations of mineral nutrients in leaves and grain. Water and Mehlich 3-extractable P and calcium chloride extractable Al concentrations were unchanged with water treatment residue applications in both years on both sites. Further studies are needed concerning optimal annual dosages and long term loading rates for direct soil application of water treatment residue to reduce soluble phosphorus.  相似文献   

17.
The objective of this study was to evaluate effects of elemental sulfur (S) addition on soil pH and availability of macro- and micronutrients during the sugarcane growing season. Sulfur application did not significantly reduce soil pH when applied at 0 to 448 kg S ha?1 due to the high soil buffering capacity. Water extractable phosphorus (P) and potassium (K) for soils receiving the highest S rate were 188% and 71% higher than for unamended soils only at two months after application, indicating a short-term enhancement of macronutrient availability. Soil amended with 448 kg S ha?1 contained 134% more acetic acid-extractable zinc (Zn) than unamended soil, although stimulatory effects did not extend beyond two months. Sugar yield was not affected by S addition, averaging 17 Mg sugar ha?1. The failure of S to enhance nutrient availability throughout the growing season indicates the limited benefit of applying elemental S to reduce pH and increase nutrient availability to sugarcane.  相似文献   

18.
The study assessed the impact of continuous application of vermicompost and chemical fertilizers nitrogen, phosphorus and potassium (NPK) on arecanut in India. Key parameters examined were biomass production, nutrient uptake, yield, soil fertility and net benefit. Pooled analysis of 8-year data revealed that nutrient application registered significantly higher yield (2585–3331 kg ha?1) than no nutrition (1827 kg ha?1). Yields in organic nutrition were around 85% of the yields obtained in inorganic NPK. The concentrations of leaf N and K were significantly higher with NPK than with vermicompost. Vermicompost significantly increased soil organic carbon and the availability of calcium (Ca), magnesium (Mg), manganese (Mn) and copper (Cu), but reduced exchangeable K in soil. The total uptake of K and Ca together contributed positively to 75% variability in total biomass production. Nutrient removal of iron (Fe), P, K and Cu positively influenced the yield with about 81% variability. Biomass partitioning and nutrient uptake pattern are important for fertilization program of arecanut.  相似文献   

19.
Leaf and soil samples were taken and analyzed from two mature biological olive groves (Olea europaea L., cv. ‘Chondrolia Chalkidikis’), in Thessaloniki, Macedonia, Northern Greece, in order to determine the correlations between soil exchangeable cations and foliar calcium (Ca), magnesium (Mg) and potassium (K) concentrations, and the interrelations among leaf nutrients. Τhe nutritional requirements of trees for both biological groves were exclusively based on patent kali supply and nutrient recycling (via pruning material and weed cut recycling). Foliar K, Ca and Mg were positively correlated with soil exchangeable K, Ca and Mg, in the 40–60 cm layer, then in the 20–40 cm layer. Synergistic uptake mechanisms among Ca2+, Mg2+ and K+ probably exist. Leaf N was negatively correlated with foliar K, and positively with leaf Ca, Mg and manganese (Mn). Foliar P was negatively correlated with leaf Ca, Mg and Mn, while foliar Ca was positively correlated with leaf Mg and Mn. Foliar Mg was positively related with leaf Mn. High phosphorus (P) may decrease leaf Ca, Mg and Mn. Enhanced Ca may increase leaf Mg and Mn, while high Mg may also enhance foliar Mn. Finally, based on the determination of foliar nutrient concentrations, the nutritional requirements of olive trees in Ca, Mg, K, P, Fe, Zn were sufficiently (or over-sufficiently) satisfied. However, additional organic fertilization is needed, in order to achieve optimum levels of N, B and Mn (since their foliar concentrations were slightly insufficient). The correlations between leaf and soil exchangeable Ca, Mg and K, as well as among foliar nutrients should be taken into consideration, in order to achieve successful organic fertilization for mature biological olive groves, and to avoid nutritional imbalances and disorders.  相似文献   

20.
Concentrations and contents of iron (Fe), boron (B), zinc (Zn), manganese (Mn), and copper (Cu) were determined for two MG IV and one MG V irrigated soybean (Glycine max L. Merr.) cultivars grown on clay and sandy loam soils in 2011 and 2012. Plants were sampled at V3, R2, R4, R6, and R8, tissues separated, dried, weighed, and nutrient concentrations determined. Nutrient contents were calculated. No cultivar, site, or year differences in nutrient concentrations or contents were observed. Iron had the greatest concentration and content of all followed by B, Zn, Mn, and Cu. Maximum concentrations and contents in leaves occurred at R4 and later declined. Concentrations and contents in stems remained constant or increased while pods rapidly increased until (R8). A 3328 kg ha?1 seed yield will remove 325.0 g Fe ha?1, 153.9 g B ha?1, 175.6 g Zn ha?1, 100.0 g Mn ha?1, and 52.5 g Cu ha?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号