首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To promote the use of animal waste in agriculture and prevent environmental pollution, an alternative product from the waste should be appraised. This necessitated the study to characterize animal manure ashes and determine its effect on soil pH and electrical conductivity (EC) dynamics. Dried manures of cattle, goat, and poultry, their ashes, and nitrogen (N)–phosphorus?–potassium were applied to soil at 120 kg N ha?1.? Soils collected fortnightly were analyzed for pH and EC. Results indicated that nutrients in manure ashes were comparable to that of dried manures. Changes in pH and EC were not predictable, application of manure ash increased pH by 12% and 13%, 23% and 14%, 20% and 3% while EC increased by 616% and 109%, 1274% and 156%, 2992% and 458%, relative to dried manures and control during incubation, screenhouse, and field experiments, respectively. It was concluded that incorporation of manure ashes increased soil pH and EC although dynamics were unpredictable.  相似文献   

2.
The application of partially decomposed animal manure can acidify the soil by nitrification and may cause problems with phosphorus (P) availability. This study investigated the influence of applying wood ash to two soils amended with partially decomposed cattle or chicken manure on pH and P. The treatments consisted of two soils, a clay loam and sandy loam, each amended with partially decomposed chicken or cattle manure applied at 0, 5, or 15 t ha?1, and wood ash was applied to each manure treatment at rates of 0 or 2 t ha?1. The addition of wood ash significantly increased pH, thereby making more P available in soil and maize (Zea mays L.) tissues for both soils after being amended by manure. Both chicken and cattle manure significantly increased all the measured variables compared to the unamended soils. These results suggest that wood ash is an important amendment that could be used to amend partially decomposed manure, thereby not jeopardizing P availability to crops.  相似文献   

3.
A laboratory incubation experiment was conducted to determine the dynamics of soil pH and electrical conductivity (EC) in a soil to which three animal manures [poultry (PM), cattle (CM), and goat (GM) manures] had been applied. The result of this study showed that the manures differed in qualities. Poultry manure had significantly greater EC and dissolved salts compared with the other manures, whereas the pH of cattle and goat manures are significantly greater than that of PM treatment. The liming effect of the manures was only for about 30 days after manure incorporation, and it varied with manure type and incubation period. There was an increase in EC as days of incubation increased. The potential of manure-induced soil salinization is very high in PM and GM. It was concluded that manure quality and use should be synchronized with consideration of their liming potential and reduced salinization effect.  相似文献   

4.
Growth characteristics of the earthworm Eudrilus eugeniae and the impac of its activity on soil properties were studied in soil culture. The highest growth rate, fecundity and total weight increase were recorded in cassava mulch, compared with cocoyam mulch, grass and plantain pseudo trunk mulch treatments. With animal manure treatments, growth rate was highest in poultry manure compared with cow and goat manures although total weight increases were highest in poultry and goat manures and lowest in cow manure. The worm activity expressed as percentage reduction of soil bulk density was greatest in cassava mulch followed by grass mulch, cocoyam mulch and plantain pseudo trunk mulch in that order. Various animal manures did not differ in this aspect. Total soil N and soil organic matter increased significantly in cassava and grass mulch treatmens while in plantain pseudo trunk mulch these factors decreased. Soil pH increased in cocoyam and plantain mulch treatments and decreased in cassava and grass mulch treatments.  相似文献   

5.
Effectively utilizing composts requires that their nitrogen (N) and phosphorus (P) contents be used as fertilizer, but how this is best accomplished is not fully understood. The authors' objective was to quantify N and P availability of a calcareous clay loam soil receiving composts derived from four contrasting beef cattle feedlot feedstocks applied at 50, 150, and 450 mg total P kg?1 and supplemented twice with fertilizer N for a 42-week greenhouse plant bioassay. Three composted manures from beef cattle fed distinct diets and a composted mix of slaughterhouse and construction waste were applied. Inorganically fertilized and non-amended soils were included as controls. Canola (Brassica napus L.) and pea (Pisum sativum L.) were grown in pots containing 1.5 kg air-dried soil for six alternating 7-week cycles. Soils amended with composted manure from beef cattle fed typical finishing diets had the lowest apparent N recovery (31%) and the greatest soil nitrate after 42 weeks (25 mg N kg?1). Phosphorus availability was greater with composted manure from beef cattle fed distillers' dried grains than composted manure from beef cattle fed typical finishing diets and a composted mixture of slaughterhouse and construction waste. Apparent P recovery (66%) was greatest from composted manure of beef cattle fed corn (Zea mays L.) distillers' dried grains applied at 50 mg total P kg?1. Composted manure from beef cattle fed distillers' dried grains had greater P availability than conventional composted beef cattle feedlot manure. Overall, performance of the composted mixture of slaughterhouse and construction waste was similar to the composted beef cattle manures.  相似文献   

6.
Application of animal manures with inorganic phosphate (PO4) fertilizer is proposed as one of the management options to improve availability and solubility of applied phosphate in weathered soil. We studied the effects of poultry, cattle, and goat manures at different incubation periods (0 to 120 days) on phosphorus (P) sorption indices of a weathered sandy clay loam soil. The soil P adsorption isotherms conformed to the H curve. Generally, the soil P-sorption efficiency decreased as the number of days of incubation increased irrespective of manure amendments. Manure application reduced the P-sorption efficiency of the soil; the lowest P-sorption efficiency was observed after 30 days of incubation. The data conformed to adsorption models in the order Temkin > Freundlich > Langmuir. Cattle, goat, and poultry manures reduced the adsorption constants in all models. Standard phosphate requirement and P-buffering capacity were also reduced with the application of the manures.  相似文献   

7.
ABSTRACT

Due to a decrease in phosphorus (P) and potassium (K) mining, manure is incinerated to concentrate P and K in ash. To understand the alternative use of manure-derived ash as P and K sources, laboratory and greenhouse experiments were conducted to determine the relationship between extractability and P and K uptake in cattle manure ash (CMA) and that between CMA application and a grass tetany hazard. The results showed that more P was extracted with 2% citric acid (90% of the total P) than with 2% formic acid (72–84% of the total P). Ninety-one percent of the total K was soluble in water. A greenhouse pot experiment was conducted to test P and K availability to Guinea grass (Megathyrsus maximus). Cattle manure ash or calcium dihydrogen phosphate (CF) was incorporated into sandy soil at 10, 20, and 50 g P2O5 m?2. Two combinations of CMA and CF were tested at 20 g P2O5 m?2. Potassium rates followed K content in CMA applied at different rates of P equivalent to 19, 38, or 96 g K2O m?2. In four harvests, there was no significant difference in the total yields between CMA and CF treatments. The total P uptake was significantly lower in the CMA treatment than in the CF treatment, while it was not in the combined CMA and CF treatments. The P uptake in response to different extraction methods indicated that the extraction of P by 2% formic acid without sonication is recommended to predict P availability in CMA. The potassium uptake from CMA application was comparable to that from the KCl application, and excessive K occurred at 38 and 96 g K2O m?2. The grass tetany hazard ratio higher than 2.2 was observed at the beginning period at the lowest application rates of CMA and CF. In conclusion, the combination use of CMA and CF was better than the single use of CMA. Moreover, CMA would be an available K source, but the grass tetany hazard still needs to be considered in application rates and pretreatments.  相似文献   

8.
Phosphorus (P) from manure can become an environmental pollutant if applied to soil at rates in excess of plant uptake. This research examined the effects of composted beef cattle manures from two feeding regimens on soil P storage and forms. Composted manures were applied in the spring before planting (preplant) with incorporation, in spring after planting (postplant) without incorporation, or in winter without incorporation. Soils were sampled following 1 and 2 years of treatment at depths to 15.0 cm. All P fractions from both composted manures increased over pre-amended levels. High-P composted manure increased total P (TP) and inorganic P (IP) more than low-P composted manure. Total P and IP were greater in soils receiving low-P composted manure postplant than in those receiving manure preplant. Accumulation of TP and IP in uppermost depths was greater in the second year of composted manure application than in the first year. Appropriately managing composted manure requires integrating P concentration, time of application, and incorporation.  相似文献   

9.
 Nitrogen and carbon mineralization of cattle manure (N=6 g kg–1; C:N=35), pressmud (N=17.4 g kg–1; C:N=22), green manure (N=26.8 g kg–1; C:N=14) and poultry manure (N=19.5 g kg–1; C:N=12) and their influence on gaseous N losses via denitrification (using the acetylene inhibition technique) in a semiarid subtropical soil (Typic Ustochrepts) were investigated in a growth chamber simulating upland, nearly saturated, and flooded conditions. Mineralization of N started quickly in all manures, except pressmud where immobilization of soil mineral N was observed for an initial 4 days. Accumulation of mineral N in upland soil plus denitrified N revealed that mineralization of cattle manure-, pressmud-, poultry manure- and green manure-N over 16 days was 12, 20, 29 and 44%, respectively, and was inversely related to C:N ratio (R 2=0.703, P=0.05) and directly to N content of organic manure (R 2=0.964, P=0.01). Manure-C mineralized over 16 days ranged from 6% to 50% in different manures added to soil under different moisture regimes and was, in general, inversely related to initial C:N ratio of manure (R 2=0.690, P=0.05). Cumulative denitrification losses over 16 days in control soils (without manure) under upland, nearly saturated, and flooded conditions were 5, 23, and 24 mg N kg–1, respectively. Incorporation of manures enhanced denitrification losses by 60-82% in upland, 52–163% in nearly saturated, and 26–107% in flooded soil conditions over a 16-day period, demonstrating that mineralized N and C from added manures could result in 2- to 3-fold higher rate of denitrification. Cumulative denitrification losses were maximal with green manure, followed by poultry manure, pressmud and cattle manure showing an increase in denitrification with increasing N content and decreasing C:N ratio of manure. Manure-amended nearly saturated soils supported 14–35% greater denitrification than flooded soils due to greater mineralization and supply of C.  相似文献   

10.
施加粪肥对潮土有机磷形态转化的影响   总被引:1,自引:0,他引:1  
邢璐  王火焰  陈玉东  周健民 《土壤》2013,45(5):845-849
施加粪肥是提高土壤肥力的重要措施,为了解粪肥磷在潮土中的化学行为,通过室内培养试验,采用NaOH-EDTA 浸提和 31P 核磁共振技术分析比较了鸡粪、牛粪及施肥后土壤中的磷形态及含量,并研究了施肥对潮土有效磷的影响。结果表明,粪肥磷主要以无机态形式存在,2 种粪肥的有机磷形态及含量有明显不同,肌醇六磷酸在鸡粪中的含量明显高于牛粪。粪肥施加到潮土后丰富了土壤有机磷的形态。随时间延长,潮土中各形态磷发生相互转化,以肌醇六磷酸为主的正磷酸单酯含量明显降低,核酸等正磷酸双酯显著升高。鸡粪处理的土壤有效磷含量逐渐升高,牛粪处理则表现出相反的趋势。施加粪肥后,土壤有效磷呈现不同的变化规律可能是无机磷在土壤中固定或沉淀,有机磷矿化和无机磷被微生物固持这三方面综合作用的结果。  相似文献   

11.
ABSTRACT

Excessive application of animal manure to farmland leads to phosphorus (P) loss into the surrounding water. Manure is incinerated to convert it to P-rich ash as a slow-release P fertilizer. However, the potential P loss and P availability for plants from cattle manure ash (CMA) have not been fully understood. The aims of this study were to determine the P release mechanism from CMA and to propose appropriate application rates that mitigate P loss and increase available P to soil in Fukushima, where the soil is deficient in nutrients after the replacement of cesium-137-contaminated soil with sandy mountain soil. Different P fractions in CMA were sequentially extracted with H2O, 0.5 M NaHCO3, 0.1 M NaOH, and 1 M HCl. Phosphorus contents in different fractions of CMA were in the order of HCl–P > NaHCO3–P > H2O–P > NaOH–P. Water-soluble P release of CMA was also determined by kinetic experiments for 120 h. Results showed that total water-soluble P accounted for a maximum of 2.9% of total P in CMA over 120 h due to recalcitrant P compounds formed through incineration. The Fukushima sandy soil amended with CMA at three application rates, 94, 157, and 314 mg P kg?1 (corresponding to 300, 500, 1000 kg P2O5 ha?1) was incubated for 56 days. Cattle manure compost and KH2PO4 were applied at 157 mg P kg?1 for comparison. Phosphorus release in water and CaCl2 solution from ash-amended soil was significantly lower than those from compost and KH2PO4-amended soil at the same P application rate of 157 mg P kg?1 (p < 0.05). Available P in ash-amended soil, determined by Fe-oxide impregnated strips, was not significantly different from those in compost-amended soil after day 7 and KH2PO4-amended soil on day 56 at the same P application rate. Thus, CMA reduces P losses from soil to the surrounding water while it increases P availability for plants. In comparison of different rates of CMA, P release in water or CaCl2 was significantly greater at 314 mg P kg?1 than at 94 or 157 mg P kg?1, while the percentage of available P to total P was the lowest at the highest application rate (p < 0.05), suggesting that the best application rates were 94 and 157 mg P kg?1 in this experiment.  相似文献   

12.
A field experiment was conducted on an Alfisol (kandic paleustalf) in Abeokuta, Southwestern Nigeria, for two seasons to assess the influence of inorganic and organic fertilizers on nitrogen (N), phosphorus (P), potassium (K), nutrient uptake and maize yield. The treatments consisted of three rates of organic fertilizer 0, 5 and 10 t ha?1 in the form of poultry manure and NPK fertilizer (20:10:10) applied at 0 and 120 kg ha?1. Maize (Zea mays) was used as the test crop. The results showed that the combined application of 10 t ha?1 poultry manure and 120 kg ha?1 NPK fertilizer enhanced the uptake of N, P and K better than other treatment combinations. Application of 10 t ha?1 poultry manure alone gave the highest grain yield, which was 67.02% higher than the control in the first season. Complementary application of 5 t ha?1 poultry manure with 120 kg ha?1 NPK 20–10-10 was recommended for grain yield.  相似文献   

13.
The use of organic materials as a source of nutrients on agricultural lands ameliorates soil physical properties as well as being an environmentally friendly way of disposing of their wastes. This study was conducted to determine effects of three organic materials (poultry litter, cattle manure, leonardite) on yield and nutrient uptake of silage maize. Poultry litter and cattle manure were applied based on phosphorus (P) or nitrogen (N) requirements of the crop whereas leonardite was applied only one dose (500 kg ha?1) and also combined with three inorganic fertilizer doses (100%, 75%, 50% of recommended inorganic fertilizer dose). According to the results, the highest green herbage yield and nutrient uptake values were observed in LEO-100 whereas N-based treatments significantly decreased yield and nutrient uptake of silage maize. The use of organic materials as a combination with inorganic fertilizer in silage maize cultivation is highly beneficial for sustainable forage production.  相似文献   

14.
Biomass ashes from energy production are a source of phosphorus (P), and their reutilization in agriculture could help to close nutrient cycles and save natural P resources. To analyze the P fertilizing effect of biomass ashes, a pot experiment with a loamy sand, originated from a long-term field experiment without any P supply, was carried out. As P source, poultry litter ash was compared with high soluble mineral P (potassium phosphate; KH2PO4). Four catch crops, in particular phacelia, buckwheat, ryegrass, and oil radish, were cultivated. The soil P-fractionation method was used to follow the transformation process of ash P in the soil. Oxalate-soluble P, iron (Fe), and aluminium (Al) were determined to assess the effect of ash on P sorption parameters. In general, a high P-fertilizing effect of biomass ashes was found. Ash application resulted in an increase of plant P uptake and the most bioavailable resin P fraction and was even comparable to a high soluble mineral P source. No enrichment of ash P in hardly plant-available P fractions could be detected. Crops mainly influenced the readily available P fractions. Buckwheat and oil radish exhausted the resin P and sodium bicarbonate (NaHCO3) P fractions most. Phacelia cultivation led to an increase of the highly available resin P content, which is probably due to mobilization processes from the hardly available residual P fraction. The obtained results indicate that ashes may have a high P availability to plants and may provide an adequate substitute for commercial P fertilizers.  相似文献   

15.
Abstract

Laboratory drying may alter manure phosphorus (P) distribution. The effects of freeze, air (22°C), and oven (65°C) drying on sequentially fractioned poultry manure P were examined. Higher drying temperatures resulted in lower percentage of dry matter. Increased H2O‐ and decreased sodium bicarbonate (NaHCO3)‐extractable P with drying provided evidence that drying increases poultry manure P solubility. Labile fractions were predominantly inorganic P (Pi), whereas sodium hydroxide (NaOH) and hydrochloric acid (HCl) fractions had significant amounts of organic P (Po). Drying altered H2O‐ and NaHCO3‐extractable Pi but had no consistent effect on Po in these fractions. This work suggests that variations due to drying should be taken into consideration when evaluating manures for P availability or when comparing data in which different drying methods have been utilized.  相似文献   

16.
Characterization of the forms of phosphorus (P) in organic soil amendments was conducted by sequential P fractionation. More than 60% of total P was inorganic P (Pi). The major Pi forms in the cattle‐manure composts were NaHCO3‐ and HCl‐extractable P fractions. HCl‐extractable Pi was the predominant P form and a considerable proportion of the total P was present in the HCl‐extractable organic P fraction in the poultry manure composts and combined organic fertilizers.  相似文献   

17.
Although many studies have examined the effect of different application rates of cattle manure, swine manure, and urea fertilizer on the distribution of phosphorus (P) fractions in soil, few studies have correlated P fractions in soil with inorganic P (Pi) and organic P (Po) in leachates. As part of a long-term field study, cattle and swine manures were applied to a loamy soil based on a nitrogen (N) content equivalent of 100 (low) and 400 (high) kg total N ha?1 yr?1 and were compared to urea fertilizer at 100 kg N ha?1 yr?1 and an unamended control soil. Readily available Pi [resin and sodium bicarbonate (NaHCO3)] was significantly greater in cattle manure– and swine manure–amended soil at a high application rate than in the control. With some exceptions, urea did not significantly affect P fractions in sequentially extracted P pools. Leaching of Pi and Po was at levels of environmental concern when cattle and swine manures were applied at the high application rate but not at the low application rate. Cattle manure had significantly greater concentrations of Pi and Po removed by leaching compared to swine manure, most likely because of its narrow N/P ratio and greater amount of P added. Positive correlations were observed between resin Pi and total leachate Pi and between NaHCO3-Pi and total leachate Pi, indicating the value of these measurements in predicting P mobility. The results suggest that a threshold (40 μg P g?1 of soil) must be exceeded before a positive correlation occurs.  相似文献   

18.
The effects of cattle manure and inorganic N‐fertilizer application on soil organic carbon (SOC), bulk density, macro‐aggregate stability and aggregate protected carbon were determined on clay and sandy soils of the Murewa smallholder farming area, Zimbabwe. Maize was grown in four fields termed homefields (HFs) and outfields (OFs) because of spatial variability induced by management practices and with the following fertility treatments: control (no fertility amelioration), 5, 15 and 25 t/ha cattle manure + 100 kg/ha N applied annually for seven consecutive years. The addition of cattle manure resulted in significant (P < 0.01) increases in SOC, macro‐aggregate stability and aggregate protected carbon in clay soils from at least the 5 t/ha cattle manure rate and was comparable between HFs and OFs on clay soils. Aggregate protected carbon in clay soils was significantly higher from the 15 and 25 t/ha cattle manure rates compared to the 5 t/ha cattle manure treatment. In contrast, only SOC was significantly (P < 0.05) increased with the addition of cattle manure on the sandy soils, while bulk density, macro‐aggregate stability and aggregate protected carbon were not significantly changed. Bulk density was also not significantly (P > 0.05) different on the clay soils. A significant and positive linear relationship (r2 = 0.85) was found between SOC and macro‐aggregate stability, while an r2 value of 0.82 was obtained between SOC and aggregate protected carbon on the clay soils. However, no regressions were performed on data from the sandy soils because of the lack of significant changes in soil physical properties. Application of cattle manure and inorganic N‐fertilizer significantly increased (P < 0.05) maize grain yield on both soil types. Results show that inorganic N‐fertilizer combined with cattle manure at 5–15 t/ha per yr is necessary to increase maize yields and SOC on sandy soils in Murewa, while at least 15 t/ha per yr cattle manure is required on the clay soils to improve physical properties in addition to maize yields and SOC.  相似文献   

19.
以吉林省农业科学院黑土有机培肥定位试验基地为平台,研究了不同种类有机肥(堆腐肥、鸡粪、牛粪和猪粪)施用对土壤及不同粒级团聚体中有机碳和腐殖质组成的影响。结果表明:与不施肥(CK)和单施化肥(NPK)相比,有机肥配施化肥显著(P0.05)增加了土壤有机碳、胡敏酸碳(HAC)和胡敏素碳(HUC)含量;同时,有机肥配施化肥也增加了不同粒级团聚体中有机碳和腐殖质碳含量,其中施用堆腐肥显著增加了各粒级团聚体中有机碳、HAC和HUC含量。不同种类有机肥相比,施用堆腐肥处理的土壤有机碳、HAC和HUC含量均高于其他有机肥处理,并与牛粪处理之间差异显著;施用堆腐肥和牛粪后,0.25mm粒级团聚体有机碳含量高于其他有机肥处理,且2~0.25mm粒级团聚体有机碳含量显著高于鸡粪处理;从不同粒级团聚体中腐殖质组分的分布来看,施用堆腐肥后,2~0.25mm粒级团聚体中HAC和HUC含量显著高于猪粪处理,而0.25~0.053,0.053mm粒级团聚体中HAC含量显著低于鸡粪处理。上述结果说明,有机肥配施化肥提高了土壤团聚体中有机碳和腐殖质碳含量,但不同有机肥的效应不同。  相似文献   

20.
Abstract

Most measurements of dairy manure nitrogen (N) availability depend on net changes in soil inorganic N concentration over time, which overlooks the cycling of manure N in the soil. Gross transformations of manure N, including mineralization (m), immobilization (i), and nitrification (n), can be quantified using 15N pool dilution methods. This research measures gross m, n, and i resulting from application of four freeze‐dried dairy manures that had distinctly different patterns of N availability. A sandy loam soil (coarse‐loamy, mixed, frigid Typic Haplorthod) was amended with four different freeze‐dried dairy manures and incubated at 25°C with optimal soil water content. The dilution of 15ammonium (NH4+) during a 48‐h interval (7–9 d and 56–58 d after manure application) was used to estimate m, whereas the dilution of 15nitrate (NO3 ?) was used to estimate n. Gross immobilization was calculated as gross minus net mineralization. Gross mineralization in the unamended soil was similar at 7‐ to 9‐d and 56‐ to 58‐d intervals and was significantly increased by the application of manures. For both amended and unamended soil, m was much greater (i.e., three‐ to nine‐fold) than estimated net mineralization, illustrating the degree to which manure N can be cycled in soil. At the early interval, both m and i were directly related to the manure C input, demonstrating the linkage between substrate C availability and N utilization by soil microbes. This research clearly shows that the application of dairy manures stimulates gross N transformation rates in the soil, improving our understanding of the impact of manure application on soil N cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号