首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In view of the agronomic and economic significance of NH4 fixation in soils, an attempt has been made to relate this to the most reactive mineral constituents of soils ‐ the clay minerals, under the temperature‐moisture regimes normal to tropical upland rice soils. Laboratory fixation study was done with NH4, concentrations similar to those common in soils upon N fertilization, and under alternate wetting and drying at ambient temperatures rather than at 100°C as in many published studies.

Results of the investigation show that soil clays with dominant vermiculite and montmorillonite fix the greatest proportion of applied NH4 (94 and 91%), followed by beidellite (72%) and x‐ray amorphous (45–64%) clays. Fixation is negligible (10%) in the clay with mineral suite consisting of hydrous mica, halloysite, and chlorite. Crystallinity of minerals seems to influence NH4 fixation appreciably.  相似文献   

2.
Abstract

Because of widespread Zn deficiency in rice, an experiment was designed to evaluate the Zn fixing capacity of several clay minerals separated from tropical rice soils. The study involved the addition of 25 μg Zn per g of clay as zinc sulphate, incubation at an ambient temperature of 30 C±2 followed by alternate wetting and drying and extraction by 0.005 M DTPA to assess the magnitude of Zn fixation.

On average, 57% of the applied Zn was unextractable by 0.005 M DTPA and considered fixed. The dominantly biedellite clay systems possessed the highest capacity to fix Zn (70%), followed by vermiculite (59%) and montmori‐llonite (55%). Clay systems containing hydrous mica impregnated with important proportions of kaolinitic and vermiculitic type minerals fixed 40% of the added Zn. Most of the clays, consisting of mixed mineralogy, fixed more than 50% of the applied Zn.  相似文献   

3.
Explosive compounds, including known toxicants 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), are loaded to soils during military training. Their fate in soils is ultimately controlled by soil mineralogical and biogeochemical processes. We detonated pure mineral phases with Composition B, a mixture of TNT and RDX, and investigated the fate of detonation residues in aqueous slurries constructed from the detonated minerals. The pure minerals included Ottawa sand (quartz and calcite), microcline feldspar, phlogopite mica, muscovite mica, vermiculite clay, beidellite (a representative of the smectite clay group), and nontronite clay. Energy-dispersive X-ray spectrometry, X-ray diffraction, and gas adsorption surface area measurements were made of the pristine and detonated minerals. Batch slurries of detonated minerals and deionized water were sampled for 141?days and TNT, RDX, and TNT transformation products were measured from the aqueous samples and from the mineral substrates at day?141. Detonated samples generally exhibited lower gas adsorption surface areas than pristine ones, likely from residue coating, shock-induced compaction, sintering, and/or partial fusion. TNT and RDX exhibited analyte loss in almost all batch solutions over time but loss was greater in vermiculite, beidellite, and phlogopite than in muscovite and quartz. This suggests common phyllosilicate mineral substrates could be used on military training ranges to minimize off-site migration of explosive residues. We present a conceptual model to represent the physical and chemical processes that occurred in our aqueous batches over time.  相似文献   

4.
Abstract

Six mica dominant soils representing a landform sequence were used for the present investigation. The effect of extraction of nonexchangeable potassium (K) by boiling 1 M HNO3 treatment and its associated structural changes of micaceous clay minerals was studied by employing x‐ray diffraction technique. Potassium release was rapid in the first three extractions and slowed down to a constant rate thereafter in all the clay samples. The first extraction contributed about 45.57–62.69% towards the total K release. The calculated values of rate constant (first order) decreased sharply from 0.065–0.025 min‐1 after third extraction and reached a constant value thereafter. The calculated integral width of first order reflection of mica peak (10Å) decreased considerably with nitric acid treatment, but no such effect was observed in 5Å peak. The differential x‐ray diffraction (DXRD) traces showed that the HNO3 treatment dissolved finer particles of mica particularly trioctahedral component and mixed layer minerals, smectite, chlorite and vermiculite.  相似文献   

5.
Erratum     
Abstract

Phosphorus fixation in soil occurs mainly in the clay fraction, the mineralogical nature of which varies widely. Phosphorus sorption characteristics of 14 soil clays having divergent mineral compositions have been studied with P concentrations approximating those in fertilized soils, because insufficient data were found in the literature on the role of various soil clay mineral species in P fixation. The results show that clays with dominant Kaolinite or halloysite fix more than 75 percent of the applied P; followed by those with major Kaolinite or halloysite or dominant x‐ray amorphous materials (60–70% fixation). Beidellitic clays fix more P (50%) than montmorillonitic clays (45%), which in turn sorb more P than vermiculitic clays (29%).  相似文献   

6.
The mineralogical composition of a soil catena from Karroo argillite (shale) from Bengamisa, in oriental Zaire is reported in relation to the particle size distribution and to the extent of quartz enrichment as a measure of weathering. Chemical properties such as exchangeable Al3+ and base saturation were strongly influenced by the relief. Of the free citrate-bicarbonate-dithionite (CBD) iron oxides, less than 5 to 10% were mobile in pH 3 ammonium oxalate. The proportion of aluminum mobilized in the latter was 17 to 44%, whereas only 0.1 to 1% of the SiO2 was. Feldspars were almost entirely altered by the weathering process and the weathering of mica resulted in increased mica contents in the clay and fine silt fractions and in labile expanded mixed-layer complexes containing mica, vermiculite and montmorillonite. The kaolinite content increased with depth of solum, presumed to reflect degree of soil development.  相似文献   

7.
The mineralogies of ‘Tirs’ (Typic Pelloxererts), and ‘Debs’ (Typic Haploxerolls and Typic Xerochrepts) soils of the Gharb plain in north-western Morocco are investigated, with special attention given to the determination of the nature of the smectitic phase using the lithium test (Li test) and the alkylammonium method. The sand and silt mineralogy of Tirs soils is dominated by quartz with small amounts of feldspars and kaolinite. The sand and silt fractions of Dehs soils also contain significant amounts of mica, chlorite, and interstratified phyllosilicates. The clay minerals of Tirs soils are predominantly a high-charge smectite. The estimated interlayer charge for this phase is 0.61 mol(c)/O10(OH)2 and the fraction of tetrahedral charge varies from 38 to 44%. Although the percentage tetrahedral charge is less than 50%, the smectitic phase behaves as beidellite with the Li test. Dehs clays are more heterogeneous, consisting of smectite, vermiculite, illite, kaolinite, chlorite, and interstratified illite/smectite and illite/vermiculite. The Li test and the alkylammonium method demonstrate that a high-charge smectite or vermiculite is interstratified with illite. A low-charge montmorillonite is also present both in Tirs and in Dehs soils. The high-charge beidellitic phase is believed to be a transformation product of mica, whilst the low charge montmorillonite is thought to be inherited from the parent material.  相似文献   

8.
9.
Abstract

Fixation of the ammonium ion (NH4 +) by clay minerals is an alternate way of building the nitrogen (N) pool in soil to optimize N crop recovery and minimize losses. Clay minerals (illite, montmorillonite, and vermiculite) and an illitic Portnoeuf soil were used to compare NH4 + fixation abilities. Total N determination and X‐ray diffraction analysis were performed on each of the minerals and the Portnoeuf soil controls, and NH4 + saturated batches were subsequently desorbed by potassium chloride (KCl) after 4096 hours. Total N was determined for each employing either Kjeldahl digestion only, or pretreating with hydrofluoric‐hydrochloric acid (HF‐HCl) before the Kjeldahl digestion. The total N for the soil was 38% more after pretreatment with HF‐HCl. The total N determined after pretreatment with HF‐HCl for the NH4 + saturated and subsequently KCl desorbed minerals was found to be highest in vermiculite. The cation exchange acapacity (CEC) of each of the minerals was determined, and highest CEC was found in montmorillonite [83.07 cmol(+)/kg]. X‐ray diffraction analysis revealed collapse of the vermiculitic clay lattice from an initial d‐spacing of 13.1 angstrom to 10.4 angstrom after desorprion by KCl. This suggested the existence of sequestered NH4 + between the 2: 1 vermiculitic clay interlayer lattice.  相似文献   

10.
In the present study, soil samples collected from 20-year (1993?2013) long-term tobacco plantation and perennial fallow were analyzed to study the influence of soil acidification on soil physicochemical and mineralogical properties. Results showed a significant decrease of soil pH, Ca2+, Mg2+, Na+ and total exchangeable cations, except K+, under tobacco plantation than under fallow land. Further X-ray diffraction (XRD) analysis for 1 mm soil size demonstrated an increase of vermiculite and kaolinite, but an obvious decrease of original potassium-bearing mica and potassium feldspar, under tobacco plantation than under fallow. For the <2 μm soil clay fraction, the XRD patterns showed an obvious desilication and accumulation of Al and Fe under tobacco plantation than under fallow. Other potassium-bearing minerals, such as illite and chlorite, had also visibly weathered and slaked under tobacco plantation than under fallow, resulting in an increase of vermiculite and hydroxy-Al-vermiculite, and an accelerated decomposition of 2:1 minerals and formation of 1:1 minerals. These results demonstrated that long-term continuous tobacco plantation has exerted negative effects on soil acidification and maintenance of soil potassium-bearing minerals.  相似文献   

11.

Purpose

Inadequate soil use and management practices promote commonly negative impacts on the soil constituents and their properties, with consequences to ecosystems. As the soil mineralogy can be permanently altered due to soil use, this approach can be used as a tool to monitor the anthropogenic pressure. The objective of the present study was to assess the mineralogical alterations of a Brazilian regosol used for grape production for 40?years in comparison with a soil under natural vegetation (forest), aiming to discuss anthropogenic pressure on soils.

Material and methods

Soil samples were collected at depths of 0?C0.20 and 0.20?C0.40?m from vineyard production and natural vegetation sites. Physical and chemical parameters were analysed by classic approaches. Mineralogical analyses were carried out on <2?mm, silt and clay fractions. Clay minerals were estimated by the relative percentage of peak surface area of the X-ray patterns.

Results and discussion

Grape production reduced the organic matter content by 28?% and the clay content by 23?% resulting in a decreasing cation exchange capacity. A similar clay fraction was observed in both soils, containing kaolinite, illite/mica and vermiculite with hydroxy-Al polymers interlayered. Neither gibbsite nor chlorite was found. However, in the soil under native vegetation, the proportion of illite (79?%) was higher than vermiculite (21?%). Whereas, in the soil used for grape production during 40?years, the formation of vermiculite was promoted.

Conclusions

Grape production alters the proportions of soil constituents of the regosol, reducing clay fraction and organic matter contents, as well as promoting changes in the soil clay minerals with the formation of vermiculite to the detriment of illite, which suggests weathering acceleration and susceptibility to anthropogenic pressure.

Recommendations and perspectives

Ecosystems in tropical and subtropical climates can be more easily and permanently altered due to anthropogenic pressure, mainly as a consequence of a great magnitude of phenomena such as temperature amplitude and rainfall that occurs in these regions. This is more worrying when soils are located on steep grades with a high anthropogenic pressure, like regosols in Southern Brazil. Thus, this study suggests that changes in soil mineralogy can be used as an important tool to assess anthropogenic pressure in ecosystems and that soil quality maintenance should be a priority in sensible landscapes to maintain the ecosystem quality.  相似文献   

12.
Purpose

Clay minerals significantly affect the physical, chemical, and biological processes of soils. They undergo spontaneous modification and transformation depending to the climatic conditions. Information concerning the compositions and transformation of clay minerals in nanoparticle colloids (NPs) (25–100 nm) is severely lacking. Studying clay mineral transformation is important approach to understand soil formation. This study was conducted to determine the transformation sequence of clay minerals in several zonal soil NPs.

Materials and methods

Four soils (Haplustalf, Alf-1; Hapludalf, Alf-2; Hapludults, Ult-1 and Ult-2) were collected from B horizons developed under three different climatic zones of China. Alf-1 (36° 05′ N and 117° 24′ E) was located under a warm temperate zone and Alf-2 (30° 38′ N and 115° 26′ E), Ult-1 (29° 13′ N and 113° 46′ E), and Ult-2 (19° 27′ N and 109° 17′ E) under a subtropical zone. The clay particles (<?2000 nm) (CPs) and nanoparticles (25–100 nm) (NPs) of tested soils were separated. The element composition of CPs and NPs was identified by microwave digestion method. The mineralogy and chemical bonding of clay minerals were studied by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR).

Results and discussion

With decreasing latitude, NPs and CPs showed that the molar ratio of SiO2 to Al2O3 trends to diminish, indicating the phenomenon of desilication and allitization in the tested soils. XRD analysis revealed that the main clay mineral of Alf-1 NPs was illite, followed by vermiculite, kaolinite, and kaolinite interstratified minerals (KIMs). The clay minerals of Alf-2, Ult-1, and Ult-2 NPs were dominated by kaolinite (and KIMs), followed by illite, with a little content of hydroxyl-interlayered vermiculite (HIV) in Ult-1 NPs and trace content of gibbsite in Ult-2 NPs. With decreasing latitude, vermiculite and HIV decreased in NPs. When compared to CPs, smectite as well as illite-vermiculite mix-layer mineral (I-V) and illite-HIV mix-layer mineral (I-HIV) were not detected in NPs. The analysis of d060 region by XRD showed that with decreasing latitude, the main clay minerals in NPs were dioctahedral minerals (e.g., illite or kaolinite). These clay minerals resulted from the transformation of trioctahedral minerals in CPs. The disappearance of 2:1 swelling minerals and trioctahedral minerals showed that the NPs were more susceptible to weathering than CPs.

Conclusions

With decreasing latitude, the transformation of clay minerals followed the sequence of illite?→?HIV?→?kaolinite?→?gibbsite in tested NPs.

  相似文献   

13.
Exchange reactions between 0.0in AlCl3 solutions of different pH and Ca-saturated montmorillonite, vermiculite, illite, and soils from the Park Grass Experiment at Rothamsted and the Deerpark Experiment, Wexford, Ireland, showed that Al3+ and Al(OH)2+ were adsorbed from solutions of pH > 4.0 and Al3+ and H+ from solutions of pH < 3.0. When Al was adsorbed, the cation exchange capacity of Ca-saturated soils and clays increased. Conventional Ca: Al exchange isotherms showed that Al3+ was strongly preferred to Ca2+ on all soils and clays. The equilibrium constant for Ca: Al exchange, K, was identical for soils before and after oxidizing their organic matter and did not vary, for any exchanger, with Al-saturation or the initial pH of the AlCl3 solution. This proved the validity of the procedure used for calculating exchangeable Al3+. K values for Ca:Al exchange favoured Al3+ in the order: vermiculite > Park Grass soil > Deerpark soil > illite > montmorillonite. The influence of surface-charge densities of the clay minerals on this order is discussed and a method proposed and tested for calculating the K value of a soil from its mineralogical composition.  相似文献   

14.
Yu  Zhan  Zhang  Yangzhu  Sheng  Hao  Zhang  Liang  Zhou  Qing  Yan  Xiong 《Journal of Soils and Sediments》2020,20(3):1558-1570
Purpose

The aims of this study were to investigate the composition of clay minerals in soils derived from different parent materials and to elucidate how parent materials and pedogenic environment affect the distribution of clay minerals and reveal the implications for pedogenetics and taxonomy in Stagnic Anthrosols.

Materials and methods

Clay mineralogy and physicochemical properties of the Hydragric horizon of Stagnic Anthrosols derived from granite (GR), plate shale (PS), quaternary red clays (QRC), limestone (LS), purple sandy shale (PSS) and fluvial-lacustrine deposit (FLD) located in Hunan Province of China were analysed to explore the relationships between the conditions influencing the formation of the soil and the composition of clay minerals.

Results and discussion

Results indicated that the composition of clay minerals is closely related to both parent material and type of Stagnic Anthrosols: the soils derived from GR, PS and QRC, which are mostly classified as Fe-accumulic-Stagnic Anthrosols, are dominantly 1:1 type kaolinite and vermiculite and illite/vermiculite mixed layer minerals of widespread distribution. However, soils derived from LS, PSS and FLD were mainly classified as Hapli-Stagnic Anthrosols and are mainly composed of 2:1 type illite/smectite mixed layer minerals, where chlorite is commonly found. Illite is widely distributed and its content varies the least among different parent materials. An extremely significant relationship between pH and kaolinite, chlorite and mixed layer minerals was noted, and the two kinds of mixed layer minerals showed highly significant negative correlation.

Conclusions

This study revealed that the types and quantities of clay minerals in the soil are closely related to the types of parent material. This reflected better direction and degree of development in Stagnic Anthrosols, which is related to the physicochemical properties of parent material and can be used as one of the bases for the classification of soil groups and subgroups within the soil family for Stagnic Anthrosols in Chinese Soil Taxonomy.

  相似文献   

15.
F. L. WANG  P. M. HUANG 《土壤圈》1997,7(4):289-296
Limited information is available concerning the mineralogy of paddy soils in the southeastern China. Using chemical methods in conjunction with X-ray diffractometry, we studied the mineral composition of three paddy soils: Jinghua (paddy soil on Quaternary red clay), Fuyang (Hapl-percogenic loamy paddy soil), and Shaoxing (gleyic clayey paddy soil). All the soils contained quartz, mica, vermiculite, chlorite and kaolinite, and the distribution of these minerals varied with soil particle size fractions. The clay fraction of the Fuyang and Shaoxing soils also contained smectite. Although X-ray data did not show the presence of smectite in the Jinghua soil, this mineral was identified by the chemical method, suggesting a transitional property of the mineral in the soil. Hydroxy-Al interlayered minerals were also present in the clay fraction. The amount of smectite in the soils was 31.6 (Shaoxing), 16.5 (Fuyang), and 21.4 (Jinghua) g kg-1; for vermiculite it was 33.3 (Shaoxing), 16.5 (Fuyang), and 8.5 (Jinghua) g kg-1. Smectite was only found in the clay fraction. In contrast, amounts of vermiculite in soil particle size fractions were 3.0~11.4 (sand), 2.1~6.0 (coarse silt), 4.6~18.9 (medium silt), 0.9~40.0 (fine silt), and 17.0~108 (clay) g kg-1. The amount of noncrystalline aluminosilicates in the soils in g kg-1 decreased in the order: Shaoxing (2.4) > Jinghua (1.9) > Fuyang (1.7). This study has provided useful mineralogical information that is fundamental in future development of management strategies of the soils.  相似文献   

16.
To prove the hypothesis that paddy rice utilizes soil nonexchangeable potassium (neK) and causes associated structural changes in clay minerals, K status and clay mineralogy of 22 surface soils from three paddy fields under long-term fertilizer management for 51–93 years were investigated. Soil neK content was determined as the difference between 1 mol L−1 hot HNO3 extractable K and 1 mol L−1 ammonium acetate exchangeable K. Clay mineralogy was identified by X-ray diffraction (XRD). The radiocesium interception potential (RIP), an index of frayed edge sites in the interlayer sites of 2:1 type clay minerals, was also determined. The neK contents under the -K and NPK treatments were considerably lower than those under the unfertilized treatment in all the fields, indicating the exploitation of soil neK by rice. XRD analysis of the clay samples revealed 7% shift from the 1.0 peak to 1.4 nm one under the -K treatment compared with the unfertilized one, and the amounts of neK were negatively correlated with those of RIP (p < .01), suggesting the expansion of interlayer spaces of the 2:1 type phyllosilicates such as mica due to the release of neK. In addition, the neK content positively correlated with K balance of the long-term experiments (p < .05). The differences of neK between unfertilized K and -K treatments corresponded to 22–157 kg K ha−1, or 0.42–1.68 kg K ha−1 year−1. In conclusion, utilization of considerable amount of soil neK under K depleted conditions should be considered to establish sustainable K management for paddy rice.  相似文献   

17.
The potassium (K) content of soils developed from Pleistocene calcareous till, glacial sand and loess in NW Germany was investigated in order to characterize stores of K in feldspars (Kfeldspar) and mica/illite (Kmica/illite) as well as changes as a function of soil depth. From each horizon, up to seven sand, six silt and three clay fractions were separated. Kfeldspar and Kmica/illite were quantified by means of chemical composition and estimation by IR‐spectroscopy. On account of distinct differences in mineralogical composition between different particle size fractions, K‐content of the bulk soil < 2000 μm and the proportion of Kmica/illite and Kfeldspar are clearly related to grain size distribution of the sample. Generally, the K‐content of particle size fractions of a soil derived from calcareous till is significantly higher than that of a soil from glacial sands. Kmica/illite of clay and silt fractions increases with depth, reflecting greater mica/illite weathering at the soil surface, whereas Kfeldspar shows no noticeable change. Illite accumulates by lessivage in Bt horizons. On a whole‐soil basis, the Bt horizons of Luvisols derived from loess and calcareous till contain more Kmica/illite than either the A or the C horizons. By comparing the K‐content in the different particle size fractions with soil depth, the highest rate of change is found for soils derived from glacial sand. Gains in K in the silt fractions of soils from calcareous till and glacial sand result from weathering of feldspar sand grains. Additionally, decomposition of feldspar‐containing rock fragments of gravel size, and aeolian sedimentation, may also have contributed to these gains.  相似文献   

18.
Potassium fixation capacity and mineralogical analysis of 24 representative soils, collected from southern Iran, were studied. Potassium fixation analysis was performed by adding six rates of K from 0 to 1000 mg kg?1 soil in a plastic beaker and shaking for 24 h. Mineralogical analysis showed that the clay fractions were dominated by smectite, chlorite, mica, palygorskite, vermiculite and quartz. In general, the studied soils fixed 8.5–55% of the added K. The potassium fixation capacity of the studied soils was significantly correlated with smectite content (r 2 = 0.87), clay content (r 2 = 0.60), cation-exchange capacity (r 2 = 0.79) and NH4OAc-K. Wetting and drying treatment and incubation time had significant effects on K fixation. The average percentage increase in K fixation following the wetting and drying treatment was 24 and 30% for surface and subsurface soils, respectively. The average percentage increase in K fixation with increasing residence time was 79 and 56% for surface and subsurface soils, respectively. Because K fixation is a diffusion process, time and increased concentration of soluble K (because of soil drying) are factors affecting the rate of K diffusion from a soil solution to the interlayer positions of the expansible 2:1 clay minerals.  相似文献   

19.
Cadmium, Ni and Zn ions in aqueous solution were allowed to react with clay fractions (< 2 μm) separated from soils with a wide range of mineralogical composition and properties. Sorbed metals were separated into two components, termed specifically and non-specifically bound, by a controlled washing procedure using 10?2M Ca(NO3)2.Sorption reactions were characterized by Δ pH50 values, by shapes of adsorption curves, and by measuring separation factors and distribution coefficients under prescribed conditions. Three reaction types were identified, viz., (i) those associated with soil adsorbing surfaces dominated by iron oxides; these appear to be controlled by mechanisms which involve metal-ion hydrolysis and result accordingly in relative sorption affinities of Zn > Ni > Cd; (ii) those associated with organic surfaces for which metal-ion hydrolysis was of little significance and little difference in metal-ion affinity was evident; at lower pH-values, Cd and Ni were somewhat preferred over Zn, with the converse at higher pH-values; (iii) those associated with 2:1 layer lattice silicates which exhibit greater preference for Zn, i.e., Zn >> Ni, Cd and higher affinities for each metal at lower pH-values (< 5) than is shown by clays dominated by iron oxides. There was also evidence of greater relative affinity for Ni shown by clay fractions dominated by fine kaolinites when compared with other clays.This investigation has shown that a range of sorption processes are involved in reactions of heavy metals with soils. We caution against undue emphasis on any particular sorption process in developing theoretical sorption models as a basis of understanding and solving problems connected with pollution and plant nutrition; we also stress the need for studies with colloids separated from soils in conjunction with those using synthetic adsorbents as models for soil constituents.  相似文献   

20.
Chemical and mineralogical properties of five soil profiles of a catena in Iperu, Western State of Nigeria, are reported. The pH values of the subsoils are extremely acid. Acidity decreases with improved drainage in the subsoils (pH 4.0–5.8). The cation exchange capacity (C.E.C.) of the soils range from 3.0 to 16.2 me/100g of soil. The silt: silt+clay ratio, calcium: magnesium ratio and Fe2O3:Al2O3 ratio are used as weathering indices. The low values of the silt: silt + clay index indicate that the soils must have undergone advanced weathering. The magnitude of the Ca: Mg ratio indicates that more calcium than magnesium is available in the soils. The values for sodium and potassium are extremely low. More iron than aluminium was extracted from the soils by the dithionite-citrate method. Kaolinite is the most abundant clay mineral. Halloysite, interstratified clay materials, vermiculite, quartz, and mica are present in considerable amounts. The silt fraction in which quartz is the most abundant mineral, also contain some kaolinite and mica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号