首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Periodic nitrate tissue tests are used to determine nitrogen (N) fertility status of a variety of crops. Data on the importance of plant part selection, sample handling techniques, grinding criteria and extraction conditions in N03‐N analysis of wheat tissue are essential if the procedure is to achieve widespread adoption and use. Detailed partitioning of field grown durum spring wheat (Triticum durum) plants at the Feekes 2 (3–4 leaf), 6 (joint) and 10 (boot) growth stages was conducted to document which plant part exhibits the greatest accumulation of NO3‐N. Sample handling, fineness of tissue grinding, different tissue: extractant ratios and extraction times were examined to determine their effects on NO3‐N recovery. Partitioning data confirmed previous findings which identified the basal stem between ground level and the seed prior to jointing and the 5 cm of stem just above ground level thereafter as the plant parts showing the greatest accumulation of NO3‐N. Therefore, these plant parts have the greatest potential as indicators of the ? nutritional status of durum spring wheat. Optimal recovery of tissue NO3‐N was obtained when stem tissue was separated immediately in the field and dried within 8 hours of sampling, ground to pass a 0.55 mm mesh screen, and extracted for at least 30 minutes when using a sample size of 0.1000 g in conjunction with 25 ml of extractant (i.e. 1: 250 plant tissue to extractant ratio)  相似文献   

2.
Potassium phosphate (KH2PO4) is applied commonly in dilute foliar sprays to wheat (Triticum aestivum L.) in China. Yield responses to foliar P sources have also been reported for several crop species in other countries. Experiments were conducted to determine efficacy of four P sources and four rates of KH2PO4 as foliar treatments on wheat under field conditions and KH2PO4 under two controlled temperature regimes. Grain yields were increased most by KH2PO4 followed by β‐glycerophosphate and tripolyphosphate; only phytic acid was ineffective. All rates of 1 to 4 kg ha‐1 KH2PO4 increased grain yields. Foliar KH2PO4 applications increased grain weight early under low controlled temperatures, but did not affect final grain weight under either temperature regime. Beneficial effects of foliar P treatments were associated with increased plant P content, which may have increased cell sugar content and protected membranes. Although preliminary results are favorable, additional research is needed to determine optimum methods and conditions for treating wheat with foliar P sources.  相似文献   

3.
Effects of varied irrigation and zinc (Zn) fertilization (0, 7, 14, 21 kg Zn ha‐1 as ZnSO47.H2O) on grain yield and concentration and content of Zn were studied in two bread wheat (Triticum aestivum), two durum wheat (Triticum durum), two barley (Hordeum vulgare), two triticale (xTriticosecale Wittmark), one rye (Secale cereale), and one oat (Avena sativa) cultivars grown in a Zn‐deficient soil (DTPA‐extractable Zn: 0.09 mg kg‐1) under rainfed and irrigated field conditions. Only minor or no yield reduction occurred in rye as a result of Zn deficiency. The highest reduction in plant growth and grain yield due to Zn deficiency was observed in durum wheats, followed by oat, barley, bread wheat and triticale. These decreases in yield due to Zn deficiency became more pronounced under rainfed conditions. Although highly significant differences in grain yield were found between treatments with and without Zn, no significant difference was obtained between the Zn doses applied (7–21 kg ha‐1), indicating that 7 kg Zn ha‐1 would be sufficient to overcome Zn deficiency. Increasing doses of Zn application resulted in significant increases in concentration and content of Zn in shoot and grain. The sensitivity of various cereals to Zn deficiency was different and closely related to Zn content in the shoot but not to Zn amount per unit dry weight. Irrigation was effective in increasing both shoot Zn content and Zn efficiency of cultivars. The results demonstrate the existence of a large genotypic variation in Zn efficiency among and within cereals and suggest that plants become more sensitive to Zn deficiency under rainfed than irrigated conditions.  相似文献   

4.
Abstract

The ammonium acetate (NH4OAc)‐EDTA soil phosphorus (P) extraction method was compared to either the Bray‐1 soil P extraction method for non‐calcareous soils or the Olsen soil P extraction method for calcareous soils to predict com and wheat plant tissue P concentration and grain yield responses. The NH4OAc‐EDTA method predicted yield and tissue P concentration responses to P fertilizer applications more accurately than the Olsen method at three of five sites. Both the Bray‐1 and NH4OAc‐EDTA methods were successful in predicting corn and wheat yield responses to P fertilizer applications in non‐ calcareous soils in many locations. However, a direct comparison of extracted soil P levels showed that the NH4OAc‐EDTA method extracted soil P at levels which were more closely related to the Bray‐1 method than the Olsen method.  相似文献   

5.
Abstract

Fertilizer N recommendations for small grains are frequently based on soil test N but data is limited for irrigated spring wheat. The relative grain yield response of irrigated spring wheat to N as affected by inorganic soil N (NO3‐N and NH4‐N), yield potential and market class was evaluated in thirteen Southern Idaho field experiments involving N rates. Experiments were conducted on silt loam soils from 1978 to 1986. Preplant soil NO3‐N and NH4‐N to a depth of 60 cm and ranging from 27 to 142 kg/ha accounted for approximately 73% of the relative yield variability. NO3‐N and NH4‐N were significantly correlated (r=.72). NH4‐N with NO3‐N did not account for more of the relative yield variability than using NO3‐N alone.

Inorganic N in the first 30 cm and the second 30 cm were significantly correlated (r=.69) but N in the first depth increment accounted for more of the relative yield variability. The linear regression coefficient relating inorganic N in the first 30 cm to relative yield of unfertilized spring wheat was almost twice as high as the coefficient for the second 30 cm increment (.50 vs .27). Results indicate that inorganic N below 30 cm should be weighted differently than N in the first 30 cm when determining the N requirements of irrigated spring wheat.

Yield potential significantly affected the relative yield response to N. The response to N was not significantly affected by spring wheat market class (hard red vs soft white).

For estimating fertilizer N requirements, the results provide little justification for the current widespread practices of (1) using the combined NH4‐N and NO3‐N inorganic soil test N values when NO3‐N alone has as much predictive value and (2) assigning equal weight to inorganic soil N at all sampling depths.  相似文献   

6.
Abstract

Phosphite (PO‐3‐P) was compared to phosphate (PO4 ‐3‐P) at 2.5, 5, 10, 20, and 40 mg ? kg‐1) in a P‐deficient soil in a greenhouse pot study with alfalfa (Medicago sativa L.). Alfalfa growth (g dry matter pot‐1) and ? accumulation (g ? pot‐1) were measured by clipping each pot 3 times on 30‐day intervals. Although there was a significant (P<.05) growth response to ? during the first 30‐day growth period, it was significantly less from PO3 ‐3 than from PO4 ‐3‐P at the 10, 20, and 40 mg kg‐1 rate. The growth response to ? continued through the next 60 days with only the 40 mg kg‐1 PO3 ‐3‐P being significantly lower than PO4 ‐3‐P. During the first and second growth periods, there were no significant effects of PO3 ‐3‐P on total ? uptake, as compared to PO4 ‐3‐P, except at 40 mg kg‐1. Tissue concentrations of PO3 ‐3‐P at 40 mg kg‐1 dropped successively from 150, to 50, to 10 ppm during the first, second, and third growth periods. This suggests that 40 mg kg‐1 of soil‐applied PO3 ‐3‐P had largely oxidized to PO4 ‐3‐P by 90 days after application.  相似文献   

7.
Phosphorus (P) mobilizing bacteria play an important role in the availability of soil and fertilizer P for all crops including wheat. Two greenhouse experiments were conducted to evaluate the effects of six P mobilizing bacterial strains and three P sources tricalcium phosphate {[Ca3(PO4)2], calcium hydrogen phosphate [CaHPO4.2H2O] and rock phosphate} on yield and P uptake of wheat. All the bacterial inoculants increased grain yield significantly over control in one greenhouse experiment while only three strains produced significantly higher grain yield over control in a second experiment. Difference among P sources were not significant in acquiring grain yield in experiment 1 while Ca3(PO4)2 and CaHPO4.2H2O produced significantly higher grain yield over rock phosphate in experiment 2. The differential pattern in results in two experiments might be due to difference in growth conditions. More greenhouse studies as well field experiments are recommended to confirm the beneficial effects of these P mobilizing bacterial strains on wheat.  相似文献   

8.
Although fungicidal properties of phosphite have been recognized, its use as a fertilizer-P is still being debated. The objective of this study was to evaluate the effect of foliar-applied phosphite (HPO3?2) on the growth and yield of corn (Zea mays L.). Traditional fertilizer-P was also applied to compare the efficacy of phosphite. Dry matter yield, grain yield, and tissue P concentrations (grain, leaf, and stem) were evaluated in two field and two greenhouse studies in Oklahoma for 2 years. A commercial phosphite solution which contains 200?g P kg?1 was sprayed at the rate of 2.34?L ha?1 at different growth stages. Foliar phosphite did not increase dry matter and grain yield. In general, P concentrations in the grain, leaf, and stem were unaffected regardless of number of applications. Farmers should take with caution while using phosphite as a fertilizer to correct P deficiency for corn production.  相似文献   

9.
Increasing zinc (Zn) concentration of cereal grains is a global challenge to alleviate Zn deficiency‐related health problems in humans caused by low dietary Zn intake. This study investigated the effects of soil‐ and foliar‐applied nitrogen (N) and Zn fertilizers on grain Zn accumulation of durum wheat (Triticum durum) grown on a Zn‐deficient soil. In addition, localization of Zn and protein within durum wheat grain was studied by using Bradford reagent for protein and dithizone (diphenyl thiocarbazone) for Zn. Grain Zn concentration was greatly enhanced by soil or foliar applications of Zn. When Zn supply was adequately high, both soil and foliar N applications improved grain Zn concentration. Consequently, there was a significant positive correlation between grain concentrations of Zn and N, when Zn supply was not limiting. Protein and Zn staining studies showed co‐localization of Zn and protein within grain, particularly in the embryo and aleurone. Results indicate that N and Zn fertilization have a synergistic effect on grain Zn concentration. Possibly, increasing N supply contributes to grain Zn concentration by affecting the levels of Zn‐chelating nitrogenous compounds or the abundance of Zn transporters. Our results suggest that nitrogen management can be an effective agronomic tool to improve grain Zn concentration.  相似文献   

10.
Abstract

Phosphorus (P) fertilization is quite important for crop production grown on Andosols. Fertilizer P‐use efficiency was 17% in a long‐term wheat experiment on a low‐humic Andosol. Residual effects of P fertilization were investigated using field soils in pot experiments. Topsoil was collected from the plots with or without annual P fertilizer at the rate of 65 kg‐P ha?1 for 23 years (nitrogen phosphorous potassium (NPK) soil and nitrogen potassium (NK) soil, respectively). There was no significant difference in dry matter of wheat and P uptake between NPK and NK soils. However, dry matter of rice and P uptake were higher in NPK soil than in NK soil. Inorganic aluminum P (Al‐Pi) and iron P (Fe‐Pi) increased in NPK soil. Increase in Al‐Pi and Fe‐Pi during 23 years contributed little to P uptake by wheat, and repeated P fertilization is indispensable to obtain acceptable grain yield.  相似文献   

11.
Nitrogen (N) fertilizer is generally the most costly input for winter wheat (Triticum aestivum L.) production. Therefore, it was important to maximize fertilizer use efficiency and minimize N losses to the environment. One of the mechanisms responsible for decreased N use efficiency (NUE) was plant N loss. The objectives of this experiment were to determine fertilizer N recovery in winter wheat when produced for forage and grain, and to quantify potential plant N losses from flowering to maturity in winter wheat. Two long‐term (>25 years) winter wheat (Triticum aestivum L.) N rate fertility experiments (Experiment 222 and Experiment 502) were selected to evaluate 15N fertilizer recovery. Percent 15N recovery was determined from all microplots in plant tissue at flowering, in the grain, and straw at harvest and in the soil. Fertilizer N(15NH4 15NO3) was applied atratesof 0, 45, 90, and 135kg N ha‐1 in Experiment 222, and 0, 22, 45, 67, 90, and 112 kg N ha‐1 in Experiment 502. The ratio ofNO3 to NH4 + in wheat forage at flowering was positively correlated with estimated plant N loss. Estimated plant N loss (total N uptake in wheat at flowering minus N uptake in the grain and straw at maturity) ranged from a net gain of 12 kg N ha‐1 to a loss of 42 kg N ha‐1, and losses increased with increasing N applied.  相似文献   

12.
Abstract

Three greenhouse experiments were conducted to compare the response of five tobacco (Nicotiana tabacum L.) cultivars to different levels of NaH2PO4 and ammonium polyphosphate (APP) in nutrient media by measuring tissue content of selected nutrient elements (P, Na, K, Ca and Mg). Plants were grown in sand cultures fertilized with nutrient solutions in two experiments and a soil‐sand mix fertilized with solid materials in a third experiment. Plant P and Na content increased as the concentrations of these elements increased in nutrient solution. Plant K content was not generally affected by treatments. Magnesium was reduced in flue‐cured and cigar‐filler tobaccos but was not changed in cigar‐wrapper and Turkish types by increasing amounts of NaH2PO4. All of the cultivars responded similarly to NaH2PO4 with respect to plant Ca. High levels of P in the nutrient media were consistently related to low levels of Ca in plant tissue.  相似文献   

13.
Twenty‐seven durum wheat genotypes originating from different geographical areas, all expressing LMW‐2 at Glu‐B3, and five bread wheats were evaluated for flour mixing properties, dough physical characteristics, and baking performance. Gluten polymeric composition was studied using size‐exclusion HPLC of unreduced flour protein extracts. As a group, durum wheats had poorer baking quality than bread wheats in spite of higher protein and total polymer concentrations. Durum wheats exhibited weaker gluten characteristics, which could generally be attributed to a reduced proportion of SDS‐unextractable polymer, and produced less extensible doughs than did bread wheats. However, substantial variation in breadmaking quality attributes was observed among durum genotypes. Better baking performance was generally associated with greater dough extensibility and protein content, but not with gluten strength related parameters. Extensibility did not correlate with gluten strength or SEHPLC parameters. Genotypes expressing high molecular weight glutenin subunits (HMW‐GS) 6+8 exhibited better overall breadmaking quality compared with those expressing HMW‐GS 7+8 or 20. Whereas differences between genotypes expressing HMW‐GS 6+8 and those carrying HMW‐GS 7+8 could only be attributed to variations in extensibility, the generally inferior baking performance of the HMW‐GS 20 group relative to the HMW‐GS 6+8 group could be attributed to both weaker and less extensible gluten characteristics.  相似文献   

14.
Some South Dakota soils contain high levels of available selenium (Se) for crop uptake. A field study was conducted to determine if any popular wheat (Triticum aestivum) varieties demonstrate differential Se uptake. A total of 280 samples including eight winter wheat and ten spring wheat varieties were analyzed for grain Se concentration and uptake for two growing years. Soil samples were sequentially fractionated into (1) plant available (0.1?M KH2PO4 extractable) and (2) conditionally available (4?M HCl extractable) pools and analyzed separately for total Se. Selenium concentration in wheat grain had a wide variability and the mean value over two years was 0.63?µg?Se?g?1. Grain Se concentration and Se uptake were not significantly different by wheat varieties tested in this study. Grain Se concentration was significantly correlated with soil Se levels, soil pH, and orthophosphate-P content within a location, but grain Se concentration was strongly influenced by geographical location in which different amounts of soil Se bioavailability occurred.  相似文献   

15.
Field experiments were carried out to study the effect of different seed‐zinc (Zn) content on grain yield and grain Zn concentration in a bread wheat cultivar Atay 85 grown in a severely Zn‐deficient soil under rainfed and irrigated conditions for two years. Three groups of seeds with Zn contents of 355, 800, and 1,465 ng Zn seed‐1 were obtained through different number of foliar applications of ZnSO4.7H2O in the previous crop year. Experiments were carried out with 23 kg Zn ha‐1 (as ZnSO4.7H2O) and without Zn fertilization to the soil. Grain yield from seeds with 800 and 1,465 ng Zn seed‐1 content was significantly higher than that from low seed‐Zn, especially under rainfed conditions. In the first year, under rainfed and Zn‐deficient conditions, yield of plants grown from the highest seed‐Zn content was 116% higher than the yield of plants grown from the low seed‐Zn content. However, in the first year soil‐Zn application combined with low‐Zn seed resulted in a yield increase of 466% compared to nill Zn treatment with low‐Zn seed, indicating that higher seed‐Zn contents could not compensate for the effects of soil Zn application. Soil Zn application significantly increased Zn concentrations in shoot and grain. However, the effect of different seed Zn contents on Zn concentrations of plants was not significant, probably due to the dilution of Zn in tissues resulting from enhanced dry matter production. The results presented show that wheat plants grown from seed with high Zn content can achieve higher grain yields than those grown from the low‐Zn seed when Zn was not applied to the soil. Therefore, sowing seeds with higher Zn contents can be considered a practical solution to alleviate Zn deficiency problem, especially under rainfed conditions in spite of it being insufficient to completely overcome the problem.  相似文献   

16.
The waxy character is achieved in durum wheat (Triticum turgidum L. var. durum) when the granule‐bound starch synthase activity is eliminated. The result is a crop that produces kernels with no amylose in the starch. The presence of two Waxy loci in tetraploid wheat permits the production of two partial waxy wheat genotypes. Advanced full and partial waxy durum wheat genotypes were used to study the effect of waxy null alleles on pasta quality. Semolina from full and partial waxy durum wheats was processed into spaghetti with a semicommercial‐scale extruder, and pasta quality was evaluated. Cooked waxy pasta was softer and exhibited more cooking loss than pasta made from traditional durum cultivars. These features were attributed to lower setback of waxy starch as measured with the Rapid Visco Analyser. High cooking loss may be due to the lack of amylose‐protein interaction, preventing the formation of a strong protein network and permitting exudates to escape. Waxy pasta cooked faster but was less resistant to overcooking than normal pasta. Partial waxy pasta properties were similar to results obtained from wild‐type pasta. This indicates that the presence of a single pair of functional waxy genes in durum wheat was sufficient to generate durum grain with normal properties for pasta production. Waxy durum wheat is not suitable for pasta production because of its softening effect. However, this property may offer an advantage in other applications.  相似文献   

17.
Abstract

Groundnut (Arachis hypogae L.) is the most important oilseed crop of India and it is abundantly grown under rainfed conditions in vertisols of Western India. The objective of this work was to study the effect of potassium (K) basal and foliar fertilization on yield, nutrient concentration in tissue and quality parameters of groundnut. Two varieties, GAUG‐1 (bunch type) and GAUG‐10 (spreading type) were grown during Kharif (rainfed) and Rabi (irrigated) seasons at Junagadh, Gujarat. The experiment compared two foliarapplied K fertilizers (KCl and K2SO4) at two different doses (0.5 and 1.0%) with basal KCl application (0 and 50 kg K2O ha?1). Field soil was highly calcareous (pH 8.2, NH4OAc extractable K 188 kg ha?1 with 40% lime reserve) Vertic ustochrept. The results showed a significant response in pod yield with foliar and soil‐applied potassium as compared to the control treatment. Pod yields were significantly higher when basal and foliar applications were combined. The best results were achieved with foliar application of 1% KCl together with a basal fertilization with 50 kg K2O ha?1. Response to foliar‐applied K was higher in rainfed kharif crop than in irrigated rabi crop. Groundnut variety GAUG‐10 out yielded GAUG‐1. Foliar K application increased plant tissue concentration of K. Foliar fertilization with KCl and K2SO4 did not cause leaf burn. Potassium application improved the crop harvest index and grain quality parameters of boldness, protein and oil contents. Response to K in quality parameters of protein and oil contents of seed was more consistent with foliar applied K2SO4 . The results confirmed that the practice of foliar K nutrition when used as a supplement and not a substitute for standard soil fertilization, is beneficial for groundnut crop in Western India.  相似文献   

18.
Cadmium (Cd) is a major pollutant in soils as a result of extensive use of fertilizers, mining and industrial discharges. Zinc (Zn) and certain bacterial species have been known to alleviate Cd toxicity in plants. In this study, the individual and combined effects of the application of Zn and Pseudomonas species with the aim of reducing Cd stress in wheat cultivars were investigated. Plants (durum wheat and bread wheat) were exposed to different concentrations of Cd and Zn, and either P. putida or P. fluorescens in a growth chamber. Concentrations of Zn, Cd, chlorophyll (Chl), carotenoid, hydrogen peroxide (H2O2), and malondialdehyde (MDA), as well as antioxidant enzyme activities were assayed. The addition of Zn in soils reduced the toxicity of Cd in durum wheat more than in bread wheat even though there was more uptake of Zn in bread wheat. Analysis of variance showed that by using Zn fertilizer and Pseudomonas species the amounts of peroxidase (POD), polyphenoloxidase (PPO), MDA, and H2O2 were reduced at three growth stages. Surprisingly, with increasing Zn concentration, Cd concentration in plant tissue was slightly increased, which suggests that adding Zn to soil could facilitate Cd desorption from soil particles. Application of Pseudomonas and Zn could be a promising solution to reduce detrimental effects of Cd, especially in durum wheat.  相似文献   

19.
小麦和玉米中后期大量元素叶面施用的生物效应   总被引:4,自引:0,他引:4  
采用盆载和田间小区试验了小麦和玉米叶面10g/L尿素、10g/LKH2PO2和5.4g/LKCl及其配合用一些生理效应,叶面施用尿素,尤其是N、P和K的配合施用可显著延缓两种作物在拔节后其根系活力的下降,叶面追肥增强职责上作物功能叶的生理活性,在N,K或P+K三者之间,尿素的效果较佳。三者的配合施用是最大限度延长叶珠措施,作物后期喷尿素+KH2PO4能显著增加小麦和玉米的籽粒产量。叶面施用N、P、  相似文献   

20.
Previous experiments have indicated that under greenhouse and hydroponic conditions, spring wheat (Triticum aestivum L.) produces higher yields, more tillers and dry matter when supplied with mixtures of NH4 and NO3 than when supplied with only one of them. The goal of this study was to evaluate the effect of selected ammonium and nitrate mixtures on dry matter yield, content of soluble protein, and phosphoenolpyruvate carboxylase (PEPCase) and glutamine synthetase (GS) enzymatic activities. Cultivar ‘Salamanca’ wheat plants, 21 days old, were grown in one of five solutions containing one of the following: 7/0, 5/2, 3.5/3.5, 2/5 or 0/7 meq l‐1 of NH4NO3.

After two weeks of treatment applications, the highest dry matter production in both roots and shoots of the 35‐day‐old plants was observed in plants receiving the 2/5 NH4/NO3 ratio. The same response was observed on the accumulation of soluble protein and the potential activity of PEPCase. The specific activity of PEPCase was related to the plant applications of ammonium.

Treatments 3.5/3.5 and 2/5 NH4/NO3 ratio enhanced leaf GS activity between 28 and 57 days, and it was consistently 300–500% higher than root activity during the same period. Dry weight of the leaves, stems and grain showed the highest yields with those treatments at the physiological maturity of grains (105 days).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号