首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

In many intensively cultured turfs, thatch, an organic layer of leaves, stems, and roots, that develops above the soil surface, is recognized as a potentially serious problem. This study evaluated the constituents of turfgrass thatch in terms of organic matter (OM), cellulose, and lignin content. Ten samples were analyzed containing two or three layers of 2‐cm thick for a total of 30 layers. As thatch layers may often include mineral matter, a technique was developed to separate the OM from any mineral particles in the samples. An important loss of OM was observed during the separation process. Despite problems encountered during the constituent analyses due to the heterogeneity of the samples and the presence of mineral matter, results showed a significant increase in lignin content with depth.  相似文献   

2.
Abstract

An irrigated field trial was conducted to test the effects of white clover in three turfgrass species (perennial ryegrass, Kentucky bluegrass, and creeping bentgrass) on color, clipping yield, and botanical composition and to estimate nitrogen (N)2 fixation and N transfer from white clover to associated turfgrass species under different N‐fertilization conditions in 1999–2002.

Nitrogen fertilizers significantly increased color ratings in all observations. Grass–white clover mixtures had better color ratings than pure grass at all sampling dates and seasonal averages in unfertilized conditions. Fertilized pure grass plots yielded significantly more than control plots in all turfgrass species. Nitrogen fertilization did not affect clipping yield greatly in turfgrass–white clover mixtures. Nitrogen application significantly decreased white clover percentage in the harvested clippings in second and third year.

Nitrogen fertilization increased tissue N concentration positively in all turfgrass species grown alone. In contrast, N fertilization did not greatly affect tissue N concentration of either turfgrass species or white clover in the mixtures. Nitrogen fixation of white clover was estimated as 24.6, 30.7, and 33.8 g m?2 year?1 in perennial ryegrass, Kentucky bluegrass, and creeping bentgrass, respectively. The total estimated N2 fixation gradually decreased with increasing N fertilization. Nitrogen transfer from white clover to the associated turfgrass varied from 4.2 to 13.7% of the total N that the white clover fixed annually.  相似文献   

3.
Abstract

Responses of photosynthesis, Superoxide dismutase activity, and disease tolerance of creeping bentgrass (Agrostis palustris Huds. A.) to soluble potassium silicate (20.8% SiO2) treatments was investigated under two fertilization regimes during 1997 and 1998. Potassium silicate was applied twice a month at 603 and 1205 mL 100 m?2 under high or low fertilization regimes in the field, sampled from which were subjected to low soil moisture in a greenhouse environment. Foliar application of silicate stimulated antioxidant superoxide dismutase (SOD) activity in the bentgarss, especially under the high fertilization regime. Silicate increased photosynthetic capacity (PC) and chlorophyll content when applied at 603 mL 100 m?2. Dollarspot disease incidence was significantly reduced with silicate treatment regardless of fertilization regime. Silicate did not significantly impact clipping weight. Under low soil moisture (‐0.05 MPa), silicate also enhanced SOD activity, PC, and chlorophyll content as well as root mass of bentgrass. Results suggest silicate may be used to enhance turfgrass drought and disease tolerance of turfgrass.  相似文献   

4.
ABSTRACT

Limited information comparing foliar versus granular fertilization of turfgrasses is available. The objective of this research was to evaluate liquid and/or granular N fertilization on turfgrass quality, clipping yield, and root biomass of ‘L-93’ creeping bentgrass. Treatments consisted of two annual nitrogen (N) inputs, 127 and 190 kg ha?1, using 100% granular urea fertilizer, 50% granular urea + 50% liquid urea fertilizer, or 100% liquid urea fertilizer. These results suggest a rate of at least 190 kg N ha?1 yr?1 is needed to maintain acceptable bentgrass quality in the transition zone of the U.S. Combining both liquid and granular methods appear superior compared to relying on one method exclusively.  相似文献   

5.
Understanding genetic relationships among the three most important Agrostis species will be important in breeding and genomic studies aimed at cultivar improvement. Creeping, colonial, and velvet bentgrasses (Agrostis stolonifera L., A. capillaris L., and A. canina L., respectively) are commercially important turfgrass species often used on golf courses. Velvet bentgrass is a diploid and creeping and colonial bentgrasses are both allotetraploids. A model for the genomic relationships among these species was previously developed from cytological evidence. The genome designations were A1A1 for velvet bentgrass, A1A1A2A2 for colonial bentgrass, and A2A2A3A3 for creeping bentgrass. Here we used phylogenetic analysis based on DNA sequences of nuclear ITS and protein coding genes and the plastid trnK intron and matK gene to reexamine these relationships. In contrast to the previous model, the DNA sequence analysis suggested that velvet bentgrass was closely related to creeping bentgrass and it is likely the maternal parent of creeping bentgrass. Phylogenetic analysis of some conserved nuclear genes revealed a close relationship of the velvet bentgrass sequences with the A2 subgenome sequences of creeping bentgrass. We therefore propose that velvet bentgrass be designated as having the A2 genome, rather than the A1 genome as in the previous model.  相似文献   

6.
The effect of turfgrass cover on the leaching and dissipation of ethofumesate and halofenozide was studied. Sampling cylinders (20 cm diam. x 30 cm long) were placed vertically in plots of creeping bentgrass (Agrostis palustris Huds.), tall fescue (Festuca arundinaceae Schreb.), or bare soil. ethofumesate [(+/-)-2-ethoxy-2,3-dihydro-3,3-dimethylbenzofuran-5-yl methansulfonate] was applied at 840 g ai ha(-)(1) on September 21, 1997. Halofenozide (N-4-chlorobenzoyl-N'-benzoyl-N'-tert-butylhydrazine) was applied at 1680 g ai ha(-)(1) on August 30, 1998. Replicate sampling cylinders were removed 2 h after treatment and 4, 8, 16, 32, and 64 days after treatment. Sampling cylinders were sectioned by depths and soil extracts were assayed by HPLC with a pesticide detection limit of 0.01 mg kg(-)(1). Turfgrass was divided into verdure and thatch and analyzed separately. ethofumesate leaching in turfgrass was reduced by at least 95% compared to leaching in bare soil. The half-life of ethofumesate in bare soil was 51 days compared to 3 days in turfgrass. Halofenozide showed similar leaching with or without turfgrass. Fifty percent dissipation of halofenozide did not occur within 64 days, regardless of organic matter cover.  相似文献   

7.
ABSTRACT

Cluster root formation by white lupin (Lupinus albus L. cv. Kiev Mutant) in response to stratified application of hydroxyapatite was examined in a split-root system. The system consisted of two vertical compartments, each divided horizontally into five 60-mm layers. Hydroxyapatite was applied to different layers at 150 mg phosphorus(P) kg?1 soil. The proportion of dry biomass of cluster roots in the whole root system was significantly reduced when P concentration was high in shoots due to P application, suggesting that cluster root formation was regulated by the shoot P status. However, the cluster root percentage increased in the soil layer supplemented with P, and decreased in other layers, especially when P was applied in a deep layer. The formation of cluster roots is regulated by internal plant P status, but is also greatly affected by localized P supply. Heterogeneous P supply can modify the distribution of cluster roots.  相似文献   

8.
Plant growth can be an important factor regulating seasonal variations of soil microbial biomass and activity. We investigated soil microbial biomass, microbial respiration, net N mineralization, and soil enzyme activity in turfgrass systems of three cool-season species (tall fescue, Festuca arundinacea Schreb., Kentucky bluegrass, Poa pratensis L., and creeping bentgrass, Agrostis palustris L.) and three warm-season species (centipedegrass, Eremochloa ophiuroides (Munro.) Hack, zoysiagrass, Zoysia japonica Steud, and bermudagrass, Cynodon dactylon (L.) Pers.). Microbial biomass and respiration were higher in warm- than the cool-season turfgrass systems, but net N mineralization was generally lower in warm-season turfgrass systems. Soil microbial biomass C and N varied seasonally, being lower in September and higher in May and December, independent of turfgrass physiological types. Seasonal variations in microbial respiration, net N mineralization, and cellulase activity were also similar between warm- and cool-season turfgrass systems. The lower microbial biomass and activity in September were associated with lower soil available N, possibly caused by turfgrass competition for this resource. Microbial biomass and activity (i.e., microbial respiration and net N mineralization determined in a laboratory incubation experiment) increased in soil samples collected during late fall and winter when turfgrasses grew slowly and their competition for soil N was weak. These results suggest that N availability rather than climate is the primary determinant of seasonal dynamics of soil microbial biomass and activity in turfgrass systems, located in the humid and warm region.  相似文献   

9.
The sensitivity of creeping bentgrass (Agrostis palustris Huds.) to the extreme heat found in the southeastern United States has led to the development of new greens-management methods. The purpose of this study was to examine the effects of subsurface aeration and growth regulator applications on soil microbial communities and mycorrhizal colonization rates in a creeping bentgrass putting green. Two cultivars (Crenshaw and Penncross), a growth regulator (trinexapac-ethyl), and subsurface aeration were evaluated in cool and warm seasons. Total bacterial counts were higher in whole (unsieved) soils than in sieved soils, indicating a richer rhizosphere soil environment. Mycorrhizal infection rates were higher in trinexapac-ethyl (TE) treated plants. High levels of hyphal colonization and relatively low arbuscule and vesicle occurrence were observed. Principal components analysis of whole-soil fatty acid methyl ester (FAME) profiles indicated that warm-season microbial populations in whole and sieved soils had similar constituents, but the populations differed in the cool season. FAME profiles did not indicate that subsurface aeration and TE application affected soil microbial community structure. This is the first reported study investigating the influences of subsurface aeration and TE application on soil microorganisms in a turfgrass putting green soil.  相似文献   

10.
Soil compaction prevents turfgrass roots from growing deep into the soil and may limit access to water and nutrients. The objective of this study was to characterize the ability of turfgrass roots to penetrate a compacted subsurface layer. Seven turfgrasses were grown in soil columns. Each column was divided into three sections with the top and bottom packed to a bulk density of 1.6 g cm?3, and the middle (treatment) layer packed to 1.6, 1.7, 1.8, 1.9, or 2.0 g cm?3. Subsurface compaction reduced root mass for two of the species, and inhibited deep root growth in all seven species, with the greatest reduction occurring between 1.7 and 1.8 g cm?3. There appears to be little difference between species in ability to penetrate compacted soils, suggesting that soil preparation and routine management practices, rather than grass selection, is the more viable way to handle soil compaction problems in turf.  相似文献   

11.
Abstract

The fate of nitrogen (N) has been studied under several agronomic crops and agricultural profiles, but relatively little information has been collected from areas managed as turfgrass. The turfgrass industry has become the focus of environmental concerns in recent years and is often identified as a source of ground water contaminate. The objectives of this study were to: i) investigate the hydrology of 20‐cm diameter by 50‐cm deep undisturbed soil columns covered with a Kentucky bluegrass (Poa pratensis L.) turf under a heavy (one 2.54‐cm application) and a light (four 0.64‐cm applications) irrigation regime, and to ii) quantify the fate of 15N‐labeled urea when it is applied to an undisturbed soil columns having intact macropores. Clipping, verdure, and thatch/mat samples were taken from each column, and the soil was excavated in 10‐cm layers at the end of the 7‐day test period. A glass collection chamber was used to collect volatilized N and a plastic bag for leachate collection. All samples were analyzed for atom % 15N. Volatilization of N was negligible because irrigation was applied immediately after the application of N. The heavy irrigation regime significantly increased the transport of N below 30 cm by five times, compared to the light irrigation regime. Eighty‐five percent of the N found in the leachate from the 50‐cm columns was in the urea form indicating that macropores may have played a major role in transport of surface applied N through the soil profile.  相似文献   

12.
Abstract

Copper (Cu) can be toxic to creeping bentgrass (Agrostis palustris ’Penncross') grown in sand‐based systems. Plant analysis is not always a reliable predictor of toxic levels of Cu in these sand‐based systems. Therefore, there is need for soil analysis to detect potentially toxic Cu concentrations in soil. The objective of this research was to determine the effectiveness of AB‐DTPA and Mehlich III soil tests to assess Cu availability to ‘Penncross’ creeping bentgrass grown in calcareous and silica sand/peat media. Samples of sand/ peat were removed from greenhouse pots, air dried, and Cu was analyzed by inductively coupled argon plasma spectrometry (ICAP/IRIS). Correlations were made between extracted Cu and Cu in the shoot and root tissue of the plant. The AB‐DTPA‐extractable Cu was 24% and 42% higher for the calcareous sand at the 400 and 600 mg kg‐1 Cu treatments, respectively, when compared with Cu extracted from the silica sand. The Mehlich III soil test extracted 25% more Cu at the 400 mg kg‐1 Cu treatment and 37% more Cu at the 600 mg kg‐1 Cu treatment from the calcareous as compared to the silica medium. Shoot and root tissue Cu concentrations were higher at all Cu treatment levels for plants grown in silica sand. Although correlations were significant between Cu extracted from both sands by the AB‐DTPA and Mehlich III soil tests and Cu in the shoot and root tissue of plants, these extractants were unsuccessful in determining Cu availability from the two sand medium. This research indicates a need for a soil test which can be effectively used to extract plant‐available Cu from sand‐based systems.  相似文献   

13.
Microbial degradation of fungicides on leaf surfaces after repeated applications to turfgrass was investigated. Prior andcurrent work in our laboratory has identified two characteristicsof the turfgrass leaf system that may contribute to the enhanceddegradation of fungicides after repeated application to turfgrass:(1) The leaf surface is rich in microorganisms (~108 g-1 dr wt leaf), and (2) Leaf surface microorganisms may respond to repeated fungicide applications in a manner consistentwith the phenomena of enhanced biodegradation. Field studies wereconducted on ‘Penncross' creeping bentgrass with four fungicidesrepresenting three chemical families applied either two or eight times in one growing season. Biodegradation was estimated using data from both a field study and a parallel laboratory study thatfollowed the fate of 14C-labelled fungicides. For the laboratory incubations, the locations of the residual 14C fungicides were estimated using a sequential extraction protocolthat fractionated the materials into three pools: available,retained and bound. Data from both the field and laboratory studyrefuted our hypothesis that enhanced biodegradation would developfollowing repeated applications of the fungicides onto the leafsurface. Our studies support a conclusion that a two-stagephysical sorption process leads to plant incorporation and thiscontrols most of the fungicide's fate. Thus, our data suggestthat microbial activity plays a less important part in theprocess than would be indicated by considering the size of themicrobial population on the leaves.  相似文献   

14.
Abstract

Interpretations of soil zinc (Zn) tests for golf course greens vary among testing laboratories, with little information in the literature on which to base these interpretations. Our studies determined the effects of increasing fertilizer Zn on extractable soil Zn and tissue Zn levels for five creeping bentgrass (Agrostis palustris Huds.) cultivars, to investigate their potential for Zn toxicity. The effects of Zn concentrations up to 4000 mg/kg were investigated in three greenhouse studies on a potted soil mix of sand, Nicolett (fine‐loamy, mixed‐mesic, Aquic Hapludoll) soil, and Hypnum peat in an 8:1:1 ratio. ‘Penncross’ bentgrass was used in the first two studies, and ‘Penncross’, ‘Penneagle’, ‘Cobra’, ‘Emerald’, and ‘Prominent’ were compared in a third study. Mean DTPA‐extractable soil Zn concentrations increased from 0.6 mg/kg in the controls to 652 mg/kg in the pots treated with 4000‐mg Zn/kg soil. Tissue Zn concentrations increased from a low of 50 mg/kg for grass on the control pots to a high of 1500 mg/kg for plants grown in soil treated with 4000 mg/kg soil. No consistent deleterious effects were observed on the grass tissue of any of the varieties. Our study demonstrates that creeping bentgrass is capable of tolerating very high levels of Zn without tissue damage.  相似文献   

15.
Abstract

The uptake and distribution of 32P from labelled monocalcium phosphate by white radish (Raphanus Sativus) roots at five phosphorus fertilization rates were studied.

After on initial period of degradation (approximately 6 weeks), there is a sharp decline of phosphorus uptake. Graphical representation in Tables and Figures of the phosphorus distribution is presented.  相似文献   

16.
制种玉米连作恒量施磷对灌漠土与潮土中磷素利用的影响   总被引:2,自引:0,他引:2  
[目的]研究恒量外源磷施用对玉米种子生产的影响,为合理施磷提供依据。[方法]通过大田定位与实验室分析相结合,选用河西走廊石灰性潮土及灌漠土定位施肥。[结果]制种玉米连作8a,恒量磷二铵525kg/(hm^2·a)施用,除无机态二钙磷(Ca_2-P)外,2种不同土类总磷(T-P)、速效性磷(Av-P)、总无机磷(T-IP)、总有机磷(T-OP),以及其他各分级无机、有机磷组分均显著增加。无机磷占全磷总量65.2%~70.2%,有机磷占全磷总量6.5%~11.4%。无机磷中十钙磷(Ca10-P)>八钙磷(Ca8-P)>铝磷(Al-P)>铁磷(Fe-P)>闭蓄态磷(O-P)。有机磷中活性有机磷(MLO-P)>高稳性(HRO-P)>中稳性有机磷(MROP)>活性有机磷(LO-P)。随连作年限增加,灌漠土Ca10-P在连作第5a达到最大,Al-P,O-P均持续增加;潮土Ca10-P持续增加,Fe-P,O-P在连作第5a达到最大,磷增加量为3.94%~37.28%。0—60cm土层,两种土类无机磷各组分含量均呈现由表层至下层递减特点,但不同分级磷在不同土层所占比例不同,Ca10-P,Al-P,O-P,MRO-P底聚,Ca_2-P,HRO-P表聚,制种玉米连作生产8a,磷肥最大表观利用率为4.89%,磷素活化系数<2%,外源磷肥以174.3kg/(hm^2·a)残余在土壤中。[结论]制种玉米连作,总磷转化率低,磷素移动缓慢,大部分以溶解性较低的磷素形态在土壤表层积累,但随连作年限增加,土壤对磷素的固持及转化率下降,表现底聚趋势,对生态环境健康存在极大风险,应减量或停止施磷。潮土磷肥施用应采取更加合理措施。  相似文献   

17.
Abstract

We examined the vertical distributions of total, Bray II and organic phosphorus (P) in the Ap horizons of five paddy rice fields including no tillage treatment. Soil samples were collected from the Ap horizons as nine thin layers of 0–1, 1–2, 2–3, 3–4, 4–6, 6–8, 8–10, 10–15 and 15–20 cm from the soil surface after harvest. In three lowland paddy soils of no-tillage Hachirogata (HA-NT), conventional-tillage Hachirogata (HA-T) and conventional-tillage Furukawa (FU-T), the total P (TP) content was relatively low. In these soils, the modified Bray II P (soil : solution = 1:20; shaking time 60s) content decreased and the organic P (OP) content increased at a depth of 0–1 cm compared with the underlying layers, possibly because of high microbial activities as suggested from the increased total C and N contents in this layer. In contrast, the decrease in Bray II P content and the increase in the OP content of the surface layer were not evident in two Andosols of the conventional-tillage Utsunomiya (UM-T) and conventional-tillage Kawatabi (KA-T). Even TP content fluctuated in the thin surface layers of 0–3 cm depending on the sampling site. Accordingly, percentages of Bray II P and OP to TP were calculated to compare the vertical distribution curves between Bray II P and OP. The percentage of Bray II P to TP of the 0–1 cm layer was lower and the percentage of OP to TP in the layer was higher than the underlying layers for HA-T, HA-NT and FU-T. The decrease in Bray II P was nearly compatible with the increase in OP for the surface of the 0–1 cm layers of HA-NT, HA-T and FU-T. This result suggests that a part of Bray II P was converted to OP in the thin surface layer of the Ap horizons in these paddy soils. This change in chemical form of P was more pronounced in the HA-NT by accumulating the effect of the microbial activities over a longer period of time because of no tillage compared with HA-T and FU-T. These findings add a new dimension to P behavior in submerged rice soils under field conditions, particularly near the soil surface. Moreover, we must be careful in soil sampling for P availability evaluation, and soil samples should represent the vertical distribution of P in the whole Ap horizon of a paddy field. Changes in OP with depth in UM-T and KA-T may have been masked by the high OP content as well as by the high TP content in these Andosols.  相似文献   

18.
Abstract

No‐tillage induces the stratification of soil nutrients because of the return of crop residues to soil surface, fertilization and the lack of soil mixing. In this research we have attempted to develop a phosphorus (P) balance on soybean, to study the relative importance of the causes of P stratification. An experiment was performed on a Typic Hapludoll located in mid Buenos Aires province, Argentina. The treatments were fertilized and unfertilized. Soybean biomass and P concentration in grains, stubble and roots were determined. In both treatments the P stratification was produced by the enrichment of the surface layer and the impoverishment of the deeper layers. In the non‐fertilized plots the soil lost P (7.5 kg P ha1) meanwhile in the fertilized plots (20 kg P ha‐1added) the soil gained P (6.6 kg P ha‐1). The accumulation of plant residues alone is enough to redistribute P in soils, but fertilization was the main factor in P stratification.  相似文献   

19.
It is well established that increasing soil bulk density (SBD) above some threshold value reduces plant root growth and thus may reduce water and nutrient acquisition. However, formation and elongation of maize seminal roots and first order lateral (FOL) roots in various soil layers under the influence of SBD has not been documented. Two studies were conducted on a loamy sand soil at SBD ranging from 1.25 g cm–3 to 1.66 g cm–3. Rhizotrons with a soil layer 7 mm thick were used and pre‐germinated plants were grown for 15 days. Over the range of SBD tested, the shoot growth was not influenced whereas total root length was reduced by 30 % with increasing SBD. Absolute growth rate of seminal roots was highest in the top soil layer and decreased with increasing distance from the surface. Increasing SBD amplified this effect by 20 % and 50 % for the top soil layer and lower soil layers, respectively. At the end of the experiment, total seminal roots attributed to approximately 15 % of the total plant root length. Increasing SBD reduced seminal root growth in the lowest soil layer only, whereas FOL root length decreased with SBD in all but the uppermost soil layer. For FOL, there was a positive interaction of SBD with distance from the soil surface. Both, increasing SBD and soil depth reduced root length by a reduction of number of FOL roots formed while the length of individual FOL roots was not influenced. Hence, increasing SBD may reduce spatial access to nutrients and water by (i) reducing seminal root development in deeper soil layers, aggravated by (ii) the reduction of the number of FOL roots that originate from these seminal roots.  相似文献   

20.
白浆土某些理化特性与改良的研究   总被引:9,自引:0,他引:9       下载免费PDF全文
为了有效地开展白浆土改良工作,自1986年开始,作对白浆土某些理化特性进行了调查。结果表明,白浆土关键问题在于白浆层。主要表现在两个方面:一是该层土壤水分性状不良,有效水不足,只有5.39%,透水能力差,饱和透水系数仅为6.08×10^-5cm/s;二是土壤硬度过大,达25kg/cm^2以上。由于白浆层土壤出现部位浅,矛盾集中反映在耕层,造成耕层根系有效土层浅,表早表涝严重,直接混入耕层后,土壤  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号