首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
冬小麦-夏玉米适宜氮磷用量和平衡施肥效应   总被引:2,自引:0,他引:2  
在河北衡水对冬小麦-夏玉米适宜氮、磷用量及高产高效平衡施肥效应的研究表明,在土壤中等肥力水平下,冬小麦-夏玉米施用氮肥和磷肥均能显著增加产量和效益,冬小麦和夏玉米施用氮肥分别增产11.1%~32.2%(平均22.5%)和12.5%~24.1%(平均19.2%),分别增收853.50~2 775.00元/hm2(平均1 876.60元/hm2)和1 352.33~2 293.77元/hm2(平均1 651.04元/hm2);施用磷肥分别增产8.1%~14.0%(平均11.7%)和2.5%~13.2%(平均9.1%),分别增收563.4~1 380.6元/hm2(平均974.7元/hm2)和189.74~1 458.39元/hm2(平均765.31元/hm2).冬小麦-夏玉米适宜N用量范围分别为220~260 kg/hm2和220~280kg/hm2,适宜施氮水平的氮肥利用率分别为36.5%和26.3%;适宜P2O5用量分别为90~110 kg/hm2和95~115kg/hm2,适宜施磷水平的磷肥利用率分别为16.8%~17.3%和11.8%~20.5%.冬小麦-夏玉米高产高效平衡施肥较农民习惯施肥增产5.3%~9.0%,增收454.19~992.5元/hm2,提高氮肥利用率5.0~15.2个百分点.  相似文献   

2.
Long-term field experiments are among the best means to predict soil management impacts on soil carbon storage. Soil organic carbon (SOC) and natural abundance 13C (δ13C) were sensitive to tillage, stover harvest, and nitrogen (N) management during 13 years of continuous corn (Zea mays L.), grown on a Haplic Chernozem soil in Minnesota. Contents of SOC in the 0–15 cm layer in the annually-tilled [moldboard (MB) and chisel (CH)] plots decreased slightly with years of corn after a low input mixture of alfalfa (Medicago sativum L.) and oat (Avena sativa L.) for pasture; stover harvest had no effect. Storage of SOC in no-till (NT) plots with stover harvested remained nearly unchanged at 55 Mg ha−1 with time, while that with stover returned increased about 14%. The measured δ13C increased steadily with years of corn cropping in all treatments; the NT with stover return had the highest increase. The N fertilization effects on SOC and δ13C were most evident when stover was returned to NT plots. In the 15–30 cm depth, SOC storage decreased and δ13C values increased with years of corn cropping under NT, especially when stover was harvested. There was no consistent temporal trend in SOC storage and δ13C values in the 15–30 cm depth when plots received annual MB or CH tillage. The amount of available corn residue that was retained in SOC storage was influenced by all three management factors. Corn-derived SOC in the 0–15 cm and the 15–30 cm layers of the NT system combined was largest with 200 kg N ha−1 and no stover harvest. The MB and CH tillage systems did not influence soil storage of corn-derived SOC in either the 0–15 or 15–30 cm layers. The corn-derived SOC as a fraction of SOC after 13 years fell into three ranges: 0.05 for the NT with stover harvested, 0.15 for the NT with no stover harvest, and 0.09–0.10 for treatments with annual tillage; N rate had no effect on this fraction. Corn-derived SOC expressed as a fraction of C returned was positively biased when C returned in the roots was estimated from recovery of root biomass. The half-life for decomposition of the original or relic SOC was longer when stover was returned, shortened when stover was harvested and N applied, and sharply lengthened when stover was not harvested and N was partially mixed with the stover. Separating SOC storage into relic and current crop sources has significantly improved our understanding of the main and interacting effects of tillage, crop residue, and N fertilization for managing SOC accumulation in soil.  相似文献   

3.
Abstract

Nitrogen, tillage, and residue management systems influence the ability of microorganisms to mineralize plant residues in soil. The objective of this research was to investigate the seasonal changes in autoclave extractable‐N (AN) as influenced by different N rates, tillage practices and residue management systems. A field study under a continuous corn rotation was initiated in 1980, with factorial combinations of 2 or 20 g N/m2, roto‐tillage or no‐tillage, and residue (corn stover) returned or removed treatments. Soil water, AN, and inorganic N were measured at regular intervals over a three‐year period (1984 to 1986). AN, as a soil N mineralization index, was shown to be sensitive to changes in the nitrogen, tillage, and residue management systems. Correlations between corn yields and the N mineralization index suggest that AN was sampling a biologically‐active N pool.  相似文献   

4.
腐植酸氮肥对玉米产量、氮肥利用及氮肥损失的影响   总被引:9,自引:4,他引:9  
【目的】 通过研究新型腐植酸氮肥对玉米产量、氮肥吸收利用和分配及氮肥在土壤中分布以及损失的影响,为促进新型肥料的应用,减少环境污染,提高作物产量提供理论依据。 【方法】 采用固定装置,应用同位素示踪技术进行田间试验。试验共设 4 个处理:CK1 (不施氮肥)、CK2 (普通尿素 N 225 kg/hm2)、HA1 (脲基活化腐植酸氮肥 N 225 kg/hm2)、HA2 (常规掺混腐植酸氮肥 N 225 kg/hm2)。采集玉米播种前、施肥前和收获后 0—20 cm、20—40 cm、40—60 cm 土壤样品,采用静态箱体内置硼酸吸收池法测定氨挥发,氧化亚氮通过静态箱体收集、真空瓶贮存后气相色谱仪测定。玉米成熟后采集地上部植株样品,将营养器官与籽粒分离,计产并测定产量构成指标。 【结果】 籽粒中氮素 34.6%~36.2% 来自肥料,营养器官中氮素 14.6%~17.4% 来自肥料。CK2、HA1 和 HA2 处理的氮肥利用率分别为 25.1%、30.9%、28.5%,氮肥损失率分别为 38.1%、19.8%、27.2%。与 CK2 相比:1) 施用 HA1 能提高玉米产量;2) HA1 和 HA2 处理的氮素吸收总量分别增加 25.8 和 16.3 kg/hm2,氮肥利用率分别提高 5.8 个百分点和 3.4 个百分点,氮肥损失率分别减少 18.3 个百分点和 10.9 个百分点;3) HA1 和 HA2 处理 0—60 cm 土壤氮素残留率分别增加 12.5 个百分点和 7.5 个百分点;4) 施用腐植酸氮肥明显提高 0—20、20—40 cm 土壤铵态氮和硝态氮含量。 【结论】 腐植酸氮肥能显著提高玉米产量和氮肥利用率,促进玉米对土壤氮素的吸收利用,显著增加 0—20 cm 土壤氮素残留量和 0—40 cm 土壤无机态氮含量,减缓氮素向深层土壤迁移,从而减少淋溶损失。腐植酸氮肥能改善氮素在土壤中的分布,满足作物根系需肥特性;腐植酸氮肥能显著降低氧化亚氮产生量和其它途径的氮素损失,从而减少氮素损失量。其中,脲基活化腐植酸氮肥作用效果更加明显。   相似文献   

5.
Quantifying seasonal dynamics of active soil C and N pools is important for understanding how production systems can be better managed to sustain long-term soil productivity especially in warm subhumid climates. Our objectives were to determine seasonal dynamics of inorganic soil N, potential C and N mineralization, soil microbial biomass C (SMBC), and the metabolic quotient of microbial biomass in continuous corn (Zea mays L.) under conventional (CT), moldboard (MB), chisel (CH), minimum tillage (MT), and no-tillage (NT) with low (45kgNha–1) and high (90kgNha–1) N fertilization. An Orelia sandy clay loam (fine-loamy, mixed, hyperthermic Typic Ochraqualf) in south Texas, United States, was sampled before corn planting in February, during pollination in May, and following harvest in July. Soil inorganic N, SMBC, and potential C and N mineralization were usually highest in soils under NT, whereas these characteristics were consistently lower throughout the growing season in soils receiving MB tillage. Nitrogen fertilization had little effect on soil inorganic N, SMBC, and potential C and N mineralization. The metabolic quotient of microbial biomass exhibited seasonal patterns inverse to that of SMBC. Seasonal changes in SMBC, inorganic N, and mineralizable C and N indicated the dependence of seasonal C and N dynamics on long-term substrate availability from crop residues. Long-term reduced tillage increased soil organic matter (SOM), SMBC, inorganic N, and labile C and N pools as compared with plowed systems and may be more sustainable over the long term. Seasonal changes in active soil C and N pools were affected more by tillage than by N fertilization in this subhumid climate. Received: 20 September 1996  相似文献   

6.
Irrigated green forage production under reduced tillage is thwarted by the failure to obtain adequate N fertilization. Forage accumulation, yield and nitrogen response in relation to tillage and N application were studied for two years during 1980–1982. Forage accumulation, plant height and final forage yield were significantly affected under minimum tillage (T1). However, plant growth and green and dry forage yields were comparable under reduced (T2) and conventional (T3) tillage. Reduction in yield under T1 was associated with restricted root growth and high soil strength and bulk density in the surface and subsurface layers. The optimum dose of N for T1, T2 and T3 was calculated to be 107, 120 and 113 kg N ha?1 and the estimated dry matter yield for these rates of N under each of the three tillage systems was 6.6, 9.1 and 9.5 t ha?1, respectively. The interaction between different tillage systems and N application rates for green and dry matter production was not significant.  相似文献   

7.

Tillage systems and fertilization have important effects on soil microorganism activity. Information regarding the simultaneous evaluation of long-term tillage and fertilization on soil microbial traits in sunflower fields is not available. Therefore, this study was conducted to determine the best tillage and fertilization system for soil microbial parameters. The experimental design was a split plot based on a randomized complete block design with three replications. Main plots consisted of the long-term tillage systems (1999–2011) including: no tillage (NT), minimum tillage (MT) and conventional tillage (CT). Six methods of fertilization, including farmyard manure (N1), compost (N2), chemical fertilizers (N3), farmyard manure + compost (N4); farmyard manure + compost + chemical fertilizers (N5), and control (N6) were arranged in subplots. Results showed that the highest amount of microbial biomass was observed in treatment NTN4. The highest and lowest values of enzyme activities (acid, alkaline phosphatase, urease, dehydrogenase and protease) were found in organic fertilizers + NT and chemical fertilizers + CT plots, respectively. Highest basal and induced respiration values were found for NTN4 treatment. Correlation coefficients between enzyme activity, respiration and microbial biomass carbon were significant.  相似文献   

8.
保护性耕作及氮肥运筹对玉米生长的影响   总被引:3,自引:0,他引:3  
保护性耕作(以留残茬为主要方式)具有优良的保水增产作用以及防沙固土的生态效益已多见报道.目前对于保护性耕作条件下有关作物的研究主要集中在耕作方式对作物产量、生长发育、蓄水肥田以及土壤结构等方面的影响上.多数研究认为,保护性耕作可以引起土壤温度降低,微生物数量增加及活性增强;促进作物生长发育,提高产量;节水保墒,提高水分利用率;植株残体可以培肥地力,并且长期采用保护性耕作可以明显改善土壤结构和微环境[1-3].但是其对作物品质等方面的影响研究相对较少.为此,在研究保护性耕作提高作物产量的同时开展了其对作物品质的影响;分析比较了不同耕作方式下追施氮肥对玉米组织含氮量的影响和保护性耕作条件下玉米对氮素的吸收利用效率,为保护性耕作条件下实现玉米高产优质高效生产提供技术和科学依据.  相似文献   

9.
The long-term effects of cropping systems and management practices on soil properties provide essential information for assessing sustainability and environmental impact. Field experiments were undertaken in southern Spain to evaluate the long-term effects of tillage, crop rotation and nitrogen (N) fertilization on the organic matter (OM) and mineral nitrogen (Nmin) contents of soil in a rain-fed Mediterranean agricultural system over a 6-year period. Tillage treatments included no tillage (NT) and conventional tillage (CT), crop rotations were of 2 yr with wheat (Triticum aestivum L.)-sunflower (Helianthus annuus L.) (WS), wheat-chickpea (Cicer arietinum L.) (WP), wheat-faba bean (Vicia faba L.) (WB), wheat-fallow (WF), and in addition, continuous wheat (CW). Nitrogen fertilizer rates were 50, 100, and 150 kg N ha−1. A split-split plot design with four replications was used. Soil samples were collected from a depth of 90 cm at the beginning of the experiment and 6 yr later. Soil samples were also collected from a depth of 30 cm after 4 yr. These samples, like those obtained at the beginning of the experiment, were subjected to comprehensive physico-chemical analyses. The soil samples that were collected 6 yr later were analyzed for OM, NH4+---N and NO3---N at the 0–30, 30–60 and 60–90 cm soil depths. The tillage method did not influence the OM or Nmin contents of the soil, nor did legume rotations increase the OM content of soil relative to CW. A longer period may have been required for differences between treatments to be observed owing to the small amount of crop residue that is returned to soil under rain-fed conditions of semi-arid climates. The WF rotation did not raise the Nmin content of the soil relative to the other rotations. The consistent significant interaction between tillage and crop rotation testifies to the differential effect of the management system on the OM content and N status of the soil. The ammonium levels clearly exceeded those of NO3---N throughout the soil profile. The high Nmin content of the soils reveals the presence of abundant N resources that should be borne in mind in establishing N fertilization schemes for crops under highly variable climatic conditions including scant rainfall such as those of the Mediterranean region.  相似文献   

10.
The objective of this work was to use the logistic equation to relate grain and total plant yield of corn [Zea mays (L.)] to water and applied N. Data from field Studies in Florida and Georgia were used in the analysis. Nonlinear correlation coefficients R > 0.98 were obtained. Variation among hybrids, between plant components (grain and total plant), and among years (rainfall) was accounted for in the linear model parameter A, with constant exponential parameters b and c. The linear model parameter A exhibited linear dependence on seasonal rainfall for corn in Georgia. Data from a third study in Florida showed linear dependence of A upon seasonal rainfall plus irrigation for total amounts up to 70 cm. This model provides a convenient tool for relating corn yields to applied N and available water, with the response function separating into the product of a term depending upon water and another depending upon applied N. The equation is mathematically well‐behaved and is easy to use on a pocket calculator by managers and engineers.  相似文献   

11.
花生-春玉米轮作中氮磷钾的产量效应与养分平衡   总被引:1,自引:1,他引:1  
采用田间肥料定位试验研究氮磷钾肥料对春玉米和花生生长与产量的影响。NPK处理的花生、春玉米产量分别为4 799、8 762 kg·hm-2,花生不施氮、磷、钾处理的产量分别为NPK处理产量的80.7%、80.8%、75.9%;春玉米分别为83.1%、84.7%、89.5%,差异均达到显著水平。土壤氮、磷、钾限制因子排序:花生茬口为KN,P,春玉米茬口为N,PK,NPK处理土壤氮、磷、钾的收支表观平衡均为盈余,用量减半基本维持土壤氮、磷、钾收支表观平衡;不施氮肥和磷肥主要影响花生和春玉米的营养生长,不施钾肥主要影响生殖生长,氮、磷、钾对高产的贡献率为花生茬口KN,P,春玉米茬口N,PK。  相似文献   

12.
Abstract

Bragg soybeans [Glycine max. (L. ) Merill] were grown under field conditions near Sanford, Florida on a tile‐drained Immokalee fine sand (sandy, siliceous, hyperthermic Arenic Haplaquod). The objectives were: 1) to assess the K and P fertilizer requirements of soybeans grown in central Florida 2) to correlate soil and tissue nutritional levels with extractable soil nutrients and 3) to assess the influence of K application time on yield.

Experimental treatments were four K rates (0, 50, 100, and 200 kg K/ha), three P rates (0, 25, and 50 kg P/ha), and two sidedress K rates (0 and 50 kg K/ha) at early bloom. Treatments were arranged in a randomized complete block design and replicated four times.

Yield increased with each increase in applied K. Statistical maximum yield was obtained on plots which contained 103 ppm double‐acid extractable K during the pod‐filling stage of growth. Tissue K at early bloom exceeded 2.85% at maximum statistical yield. Potassium applied broadcast at early bloom did not significantly influence yield.

This soil contained approximately 390 ppm double‐acid extractable P prior to P application. No significant yield response to applied P was observed, indicating that the original extractable P content of the soil was adequate for the yield level obtained.

The quadratic regression of the ratio equivalents of double‐acid extractable K:Ca + Mg on the same ratio for the plant tissue is highly significant. This expression was a good predictor of tissue accumulation of these nutrients in that the coefficient for determination was 0.68.  相似文献   

13.
Conservation management systems can improve soil organic matter stocks and contribute to atmospheric C mitigation. This study was carried out in a 18-year long-term experiment conducted on a subtropical Acrisol in Southern Brazil to assess the potential of tillage systems [conventional tillage (CT) and no-till (NT)], cropping systems [oat/maize (O/M), vetch/maize (V/M) and oat + vetch/maize + cowpea (OV/MC)] and N fertilization [0 kg N ha−1 year−1 (0 N) and 180 kg N ha−1 year−1 (180 N)] for mitigating atmospheric C. For that, the soil organic carbon (SOC) accumulation and the C equivalent (CE) costs of the investigated management systems were taken into account in comparison to the CT O/M 0 N used as reference system. No-till is known to produce a less oxidative environment than CT and resulted in SOC accumulation, mainly in the 0–5 cm soil layer, at rates related to the addition of crop residues, which were increased by legume cover crops and N fertilization. Considering the reference treatment, the SOC accumulation rates in the 0–20 cm layer varied from 0.09 to 0.34 Mg ha−1 year−1 in CT and from 0.19 to 0.65 Mg ha−1 year−1 in NT. However, the SOC accumulation rates peaked during the first years (5th to 9th) after the adoption of the management practices and decreased exponentially over time, indicating that conservation soil management was a short-term strategy for atmospheric C mitigation. On the other hand, when the CE costs of tillage operations were taken into account, the benefits of NT to C mitigation compared to CT were enhanced. When CE costs related to N-based fertilizers were taken into account, the increases in SOC accumulation due to N did not necessarily improve atmospheric C mitigation, although this does not diminish the agricultural and economic importance of inorganic N fertilization.  相似文献   

14.
Abstract

Squash, cv Dixie, grown on a Lakeland sand was subjected to factorial combinations of 3 tillage systems and 2 N application methods during 1979 and 1980. Fruit yield was greatest with a combination of moldboard plow tillage and application of 22 kg N/ha preplant and 18 kg/ha increments of N by fertigation 2, 3, 4, 5 and 6 weeks after planting. Plant growth and nutrient uptake were greatest and N available for potential contamination of the ground‐water was least with subsoil‐bed tillage and N application by fertigation. Disc harrow tillage with 67 kg N/ha preplant and 45 kg N/ha 4 weeks after planting resulted in 42% less yield, 61% less plant growth, 29 to 64% less nutrient uptake and more than 5 times as much N available for potential contamination of the groundwater as the best practices.  相似文献   

15.
Maintaining and/or conserving organic carbon (C) and nitrogen (N) concentrations in the soil using management practices can improve its fertility and productivity and help to reduce global warming by sequestration of atmospheric CO2 and N2. We examined the influence of 6 years of tillage (no-till, NT; chisel plowing, CP; and moldboard plowing, MP), cover crop (hairy vetch (Vicia villosa Roth.) vs. winter weeds), and N fertilization (0, 90, and 180 kg N ha−1) on soil organic C and N concentrations in a Norfolk sandy loam (fine-loamy, siliceous, thermic, Typic Kandiudults) under tomato (Lycopersicon esculentum Mill.) and silage corn (Zea mays L.). In a second experiment, we compared the effects of 7 years of non-legume (rye (Secale cereale L.)) and legume (hairy vetch and crimson clover (Trifolium incarnatum L.)) cover crops and N fertilization (HN (90 kg N ha−1 for tomato and 80 kg N ha−1 for eggplant)) and FN (180 kg N ha−1 for tomato and 160 kg N ha−1 for eggplant)) on soil organic C and N in a Greenville fine sandy loam (fine-loamy, kaolinitic, thermic, Rhodic Kandiudults) under tomato and eggplant (Solanum melogena L.). Both experiments were conducted from 1994 to 2000 in Fort Valley, GA. Carbon concentration in cover crops ranged from 704 kg ha−1 in hairy vetch to 3704 kg ha−1 in rye in 1999 and N concentration ranged from 77 kg ha−1 in rye in 1996 to 299 kg ha−1 in crimson clover in 1997. With or without N fertilization, concentrations of soil organic C and N were greater in NT with hairy vetch than in MP with or without hairy vetch (23.5–24.9 vs. 19.9–21.4 Mg ha−1 and 1.92–2.05 vs. 1.58–1.76 Mg ha−1, respectively). Concentrations of organic C and N were also greater with rye, hairy vetch, crimson clover, and FN than with the control without a cover crop or N fertilization (17.5–18.4 vs. 16.5 Mg ha−1 and 1.33–1.43 vs. 1.31 Mg ha−1, respectively). From 1994 to 1999, concentrations of soil organic C and N decreased by 8–16% in NT and 15–25% in CP and MP. From 1994 to 2000, concentrations of organic C and N decreased by 1% with hairy vetch and crimson clover, 2–6% with HN and FN, and 6–18% with the control. With rye, organic C and N increased by 3–4%. Soil organic C and N concentrations can be conserved and/or maintained by reducing their loss through mineralization and erosion, and by sequestering atmospheric CO2 and N2 in the soil using NT with cover crops and N fertilization. These changes in soil management improved soil quality and productivity. Non-legume (rye) was better than legumes (hairy vetch and crimson clover) and N fertilization in increasing concentrations of soil organic C and N.  相似文献   

16.
A greenhouse study was conducted to evaluate the response of corn (Zea mays L.) to K fertilization on Kewaunee silty clay loam, Plainfield loamy sand, and Plano silt loam soils compacted to two bulk density levels. Treatments were established in a factorial combination of two soil bulk density levels, three soil K levels, with and without banded placement of K. Increasing soil bulk density did not affect the height growth of the corn on any soil, but did increase shoot dry matter weight on the Kewaunee soil. Root dry matter was reduced by increased soil bulk density on the Kewaunee soil. The shoot/ root ratio was greater at the higher bulk density on all soils. Increasing soil K increased the shoot dry matter content on all soils and increased root dry matter content on the Kewaunee and Plano soils. The banded K treatment did not affect height growth or dry matter accumulation. Shoot K concentration was reduced at the higher soil bulk density on the Kewaunee and Plano soils. Both methods of K application increased the K concentration of the shoots on all soils.  相似文献   

17.
Forest soil carbon (C) pools may act as sinks for, or sources of, atmospheric carbon dioxide, while nitrogen (N) fertilization may affect the net exchange of C in forest ecosystems. Since all major C and N processes in soil are driven by soil microorganisms, we evaluated the effects of N fertilization on biomass and bacterial and fungal activity in soils from three Norway spruce forests with different climatic and N availability conditions. N deposition and net N mineralization were higher at the sites in southern Sweden than at the site in northern Sweden. We also studied the extent to which N fertilization altered the nutrient(s) limiting bacterial growth in soil. We found that on average microbial biomass was reduced by ~40% and microbial activity by ~30% in fertilized plots. Bacterial growth rates were more negatively affected by fertilization than fungal growth rates, while fungal biomass (estimated using the phospholipid fatty acid (PLFA) 18:2ω6,9) decreased more than bacterial biomass as a consequence of fertilization. The microbial community structure (indicated by the PLFA pattern) was changed by fertilization, but not in the same way at the three sites. Soil bacteria were limited by a lack of carbon in all forests, with the carbon limitation becoming more evident in fertilized plots, especially in the forests that had previously been the most N-limited ones. This study thus showed that the effects of N fertilization differed depending on the conditions at the site prior to fertilization.  相似文献   

18.
蕹菜平衡施用氮磷钾肥料效应研究   总被引:4,自引:0,他引:4  
采用“3414”最优回归设计方法,对蕹菜高优栽培氮磷钾肥料合理配施技术进行研究。结果表明,本试验条件下当N223.6、P2O5 50.0和K2O 97.5kg/hm^2,三要素比例为1:0.224:0.436时,蕹菜最高经济产量达31391.4kg/hm^2;当N215.7、P2O5 46.4和K2O9 0.0kg/hm^2,三要素比例为1:0.215:0.417时,蕹菜最佳施肥利润为36211.8元/hm^2,经济产量亦达31360.1kg/hm^2。在同等肥力下,蕹菜硝酸盐含量与施氮水平呈显著正相关;与施磷、钾水平呈极显著负相关。  相似文献   

19.
Abstract

Nitrogen (N) fertilizer recommendations for corn (Zea mays L.) are normally developed from field experiments that determine yield response to applied N. The objective of this study was to examine the severity of border row competition with the harvest rows for sidedressed N in field experiments measuring grain yield. This study was conducted in 1993 and 1994 on a Sharpsburg silty clay loam (fine, montmorillonitic, mixed, mesic argiudoll). Ammonium nitrate was broadcast to the center two rows of a four row plot, all four rows of a four row plot and all six rows of a six row plot. Results showed that grain yield from four and six row plots were similar and indicated that while grain yields were much less in 1993 than 1994 (7.36 versus 12.06 Mg ha‐1, respectively), corn yield response to N was similar regardless of the number of rows fertilized. Thus, there is little reason for plots larger than four rows. The results also lend credibility to sidedressing only harvest rows for soil test calibration studies where grain yield response is the primary response variable.  相似文献   

20.
Poultry (Gallus gallus domesticus L.) litter (PL) is a readily available nutrient source for crop production in the Southeast USA. Long-term PL application may alter availability of N and the effect may be dependent on tillage practice. Tillage [no till (NT) vs. conventional (CT)] and N source (PL vs. commercial fertilizer CF) effects on N availability and plant uptake were evaluated in years 9, 10, and 11 of a long-term cropping systems study at the United States Department of Agriculture, Agricultural Research Service, J. Phil Campbell Sr. Natural Resource Conservation Center, Watkinsville, GA, USA. Mineral N in the top 10 cm, measured in situ, varied each year and was influenced by time, tillage, and N source. In 2003 (year 9), soil mineral N content was greater in CT–CF (100 kg ha−1) than in NT–PL (95 kg ha−1) but in 2004 (year 10) and 2005 (year 11) it was lower in CT–CF (93 and 60 kg ha−1) compared to NT–PL (140 and 71 kg ha−1). Nitrogen mineralization rates were generally greater for PL than for CF treatments with the difference being almost 1 kg ha−1 day−1 in 2003. Mineralization rates were greater for NT–PL compared to CT–CF in 2004 and 2005. Across the three growing seasons, corn (Zea mays L.) aboveground biomass was consistently greater in the NT–PL treatment than in the NT–CF and CT–CF treatments. Correlation between aboveground biomass and N mineralization was greater for PL than for CF (0.75 vs. 0.48). Patterns of N mineralization and total soil mineral N indicated that the distribution of N through the growing season more closely matched corn N demand in PL treatments. Results indicate that improved N availability through the growing season, by combining NT and PL, can result in more profitable corn production in the southeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号