首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A study was conducted to assess fertilizer effect on pearl millet–wheat yield and plant-soil nutrients with the following treatments: T1, control; T2, 100% nitrogen (N); T3, 100% nitrogen and phosphorus (NP); T4, 100% nitrogen, phosphorus and potassium (NPK); T5, 100% NPK + zinc sulfate (ZnSO4) at 25 kg ha?1; T6, 100% NPK + farmyard manure (FYM) at 10 t ha?1; T7, 100% NPK+ verimcompost (VC) at 2.5 tha?1; T8, 100% NPK + sulfur (S) at 25 kg ha?1; T9, FYM at 10 t ha?1; T10, VC at 2.5 t ha?1; T11, 100% NPK + FYM at 10 t ha?1 + 25 kg S ha?1 + ZnSO4 at 25 kg ha?1; and T12, 150% NPK treatments. Treatments differed significantly in influencing soil-plant nutrients and grain and straw yields of both crops. Grain yield had significant correlation with soil-plant N, P, K, S, and zinc (Zn) nutrients. The study indicated superiority of T11 for attaining maximum pearl millet grain yield (2885 kg ha?1) and straw yield (7185 kg ha?1); amounts of N (48.9 kg ha?1), P (8.8 kg ha?1), K (26.3 kg ha?1), S (20.6 kg ha?1), and Zn (0.09 kg ha?1) taken up; and amounts of soil N (187.7 kg ha?1), P (13.7 kg ha?1), K (242.5 kg ha?1), S (10.1 kg ha?1), and Zn (0.70 kg ha?1). It was superior for wheat with grain yield (5215 kg ha?1) and straw yield (7220 kg ha?1); amounts of N (120.7 kg ha?1), P (13.8 kg ha?1), K (30 kg ha?1), S (14.6 kg ha?1), and Zn (0.18 kg ha?1) taken up; and maintaining soil N (185.7 kg ha?1), P (14.5 kg ha?1), K (250.5 kg ha?1), S (10.6 kg ha?1), and Zn (0.73 kg ha?1). Based on the study, 100% NPK + FYM at 10 tha?1 + Zn at 25 kg ha?1 + S at 25 kg ha?1 could be recommended for attaining maximum returns of pearl millet–wheat under semi-arid Inceptisols.  相似文献   

2.
An experiment was conducted to study the effect of organic manure and chemical fertilizers on soil properties and vegetable crops in the cabbage-brinjal-red amaranth cropping pattern at the homestead in a Grey Terrace Soil (Aric Albaquept) of Bangladesh. There were eight treatments: poultry manure (PM) at 5 t ha?1, cowdung (CD) at 10 t ha?1, household waste (HW) at 10 t ha?1, PM at 2.5 t ha?1 + chemical fertilizers (CF), CD at 5 t ha?1 + CF, HW at 5 t ha?1 + CF, CF, and Control. The lone CF treatment indicates 100% chemical fertilizers and any manure + CF indicates supplementary or reduced rate of fertilizers. The PM at 2.5 t ha?1 + CF treatment performed the best yield for cabbage and brinjal, and HW at 5 t ha?1 + CF yielded the highest for red amaranth. The highest uptake of nitrogen, phosphorus, potassium, and sulfur was also found in the treatment that produced the highest yield. Bulk density, organic carbon, and nutrient availability in soil as determined after two-crop cycles were improved due to the applications of manure.  相似文献   

3.
Leaf color chart (LCC) guides fertilizer nitrogen (N) application to rice as per requirement of the crop on the basis of a critical leaf color. Two field experiments were conducted to evaluate the effect of silicon (Si) and LCC based N management in aerobic rice. Following LCC-based N management, from 60 to 90 kg N ha?1 and 75 to 100 kg N ha?1 with 10–40% and 25–30% less fertilizer N was used without any reduction in yield as compared to the package of practices of 100 (50 kg N ha?1 as basal + two split of 25 kg N ha?1) kg N ha?1 respectively, during both the seasons. The highest grain yield was noticed with 90 kg N ha?1 (30 kg N ha?1 as basal + LCC-3) and 100 kg N ha?1 (50 kg N ha?1 as basal + two split of 25 kg N ha?1) along with the application of calcium silicate (CaSiO3) at 2 t ha?1 as sources of Si and on par with 60 kg N ha?1 (no basal + LCC-3) and 75 kg N ha?1 (30 kg N ha?1 as basal + LCC-3), respectively, during the season in 2008 and 2009. Higher fertilizer N use efficiency was recorded with Si and need-based N management using LCC-3 rather than recommended dose of fertilizer N.  相似文献   

4.
A long-term field experiment was conducted at the research farm of the All-India Coordinated Research Project for Dryland Agriculture, Phulbani, Orissa, India, from 2001 to 2006 to identify the best integrated nutrient-use treatments for ensuring greater productivity, profitability, sustainability, and improved soil quality in pigeon pea + rice (two rows of pigeon pea followed by five rows of rice alternately) intercropping system. In all, nine treatments, eight comprising integrated nutrient-use practices, chemical fertilizer (CF), farmyard manure (FYM), and green leaf manure (GLM) to supply nitrogen (N) at 45 kg N ha–1 and one farmer's practice equivalent to 25 kg N ha–1 (FYM 5 t ha–1), were tested on a long-term basis. Results of the study revealed that 20 kg N ha–1 (FYM) + 25 kg N (CF) gave maximum mean rice grain yield of 1.52 t ha–1, followed by 20 kg N (GLM) + 25 kg N (urea) with grain yield of 1.51 t ha–1. In the case of pigeon pea, 30 kg N (FYM) +15 kg N (urea) gave maximum pigeon pea grain yield of 0.94 t ha–1, which was 34% greater than the sole application of chemical fertilizer. Pigeon pea grain yield tended to increase with increasing proportion of organic N in FYM + CF or GLM + CF combinations. Application of 20 kg N (FYM) + 25 kg N (urea) recorded maximum mean rice equivalent yield of 3.59 t ha–1 and sustainability yield index of 59%. While studying profitability, application of 20 kg N (FYM) + 25 kg N (CF) gave maximum net returns of US$168.94 ha–1. Impact of treatments on soil quality as assessed in terms of relative soil quality indices (RSQI) increased with increasing proportion of organic sources of N. Using an innovative and new approach, an index of integrated productivity–sustainability–profitability–soil quality performance index (I P,S,Pr,SQ) was computed to make a precise evaluation of the treatments. Based on this index, the order of performance of the treatments was T6 [20 N (FYM) + 25 N (CF)] (7.7) > T7 [30 N (FYM) + 15 N (CF) (6.9)] > T3 [20 N (GL) + 25 N (CF)] (6.8) > T5 [10 N (FYM) + 35 N (CF) (6.6)] > T9 [GL] (6.5) > T8 [CF] (6.2) > T4 [30 N (GL) + 15 N (CF)] (6.0) > T2 [10 N (GL) + 35 N (CF)] (5.7) > T1 [FYM at 5 t ha–1] (4.1). Thus, the results and the methodology adopted in this study using long-term data would be very useful to researchers, farmers, land managers, and other stakeholders not only in India but also across the world under similar climatic and edaphic situations.  相似文献   

5.
Abstract

This three-year study (2003–2005) aimed to improve the yield and quality of pastures growing naturally that are colonized by naturally occurring vegetation without agricultural input under hazelnut (Corylus sp.) orchards in the middle and eastern Black Sea regions of Turkey. There were eight treatments: 1) control; 2) fertilizer only (triple superphosphate 44% and calcium ammonium nitrate 26%) (80kg ha?1 P and 60 kg ha?1 N in Samsun; 100 kg ha?1 P and 80 kg ha?1 N in Ordu; 100 kg ha?1 P and 40 kg ha?1 N in Giresun); 3) lime only (calcium carbonate 94%) (3.0 t ha?1 lime in Samsun; 4.5 t ha?1 lime in Ordu and Giresun); 4) early cut only; 5) soil aeration only; 6) fertilizer+lime; 7) fertilizer+lime+early cut; 8) fertilizer+lime+soil aeration, laid out in a randomized complete block design with four replicates at each location. The highest dry matter (DM) yield of kg ha?1 and crude protein content (%) was obtained from the treatments that included fertilizer. There was no difference in DM production between any of the combination treatments that involved fertilizer and the fertilizer alone treatment. Only lime and aeration applications also increased yield compared to control, but not as much as did any treatment including fertilizer. Crude protein content of the pasture ranged from 13.3 to 18.1% across locations. Nitrogen and phosphorus fertilizer are recommended to improve DM yields and herbage quality for pastures under hazelnut orchards.  相似文献   

6.
A long-term study was conducted to study the impact of integrated nutrient management on soil quality in post-monsoon sorghum (Sorghum bicolor) at Solapur in Maharashtra State in Western India under All India Coordinated Research Project for Dryland Agriculture. The experiment was laid out with ten Integrated Nutrient Management Treatments in a randomized block design with three replications. The results of the study indicated that among all the integrated nutrient management treatments practiced, the application of 25 kg nitrogen (N) ha?1 through crop residue (CR) + 25 kg N ha?1 (urea) showed the highest soil quality index of 2.36, which was at par with other treatments receiving farmyard manure (FYM) and crop residues along with urea. The relative order of performance of the integrated nutrient management treatments in influencing soil quality was: T6: 25 kg N ha?1 (CR) + 25 kg N ha?1 (urea) (2.36) >T5: 25 kg N ha?1 (FYM) (2.31) > T7: 25 kg N ha?1 (FYM) +25 kg N ha?1 (urea) (2.30) = T8: 25 kg N ha?1 (CR) +25 kg N ha?1 (Leucaena loppings) (2.30) > T10: 25 kg N ha?1 (Leucaena loppings) +25 kg N ha?1 (urea) (2.17) > T4: 25 kg N ha?1 (CR:crop residues) (2.16) > T9: 25 kg N ha?1 (Leucaena loppings) (2.15) > T3: 50 kg N ha?1 (urea) (2.10) > T2: 25 kg N ha?1 (urea) (1.99) > T1: 0 kg N ha?1 (control) (1.77). The results of the study also indicated that average percent contribution of each soil key indicator towards soil quality indices was: pH (3.97%), EC (1.94%), organic carbon (18.6%), available P (2.80%), available K (6.57%), exchangeable Ca (7.02%), available S (3.45%), Available Zn (17.9%), dehydrogenase (DHA) (16.2%), microbial biomass carbon (MBC) (18.5%) and mean weight diameter (MWD) (3.14%). Thus, the results of the present study will be highly useful to the land managers in planning effective management of soil quality.  相似文献   

7.
Productivity of rainfed finger millet in semiarid tropical Alfisols is predominantly constrained by erratic rainfall, limited soil moisture, low soil fertility, and less fertilizer use by the poor farmers. In order to identify the efficient nutrient use treatment for ensuring higher yield, higher sustainability, and improved soil fertility, long term field experiments were conducted during 1984 to 2008 in a permanent site under rainfed semi-arid tropical Alfisol at Bangalore in Southern India. The experiment had two blocks—Farm Yard Manure (FYM) and Maize Residue (MR) with 5 fertilizer treatments, namely: control, FYM at 10 t ha?1, FYM at 10 t ha?1 + 50% NPK [nitrogen (N), phosphorus (P), potassium (K)], FYM at 10 t ha?1 + 100% NPK (50 kg N + 50 kg P + 25 kg K ha?1) and 100% NPK in FYM block; and control, MR at 5 t ha?1, MR at 5 t ha?1 + 50% NPK, MR at 5 t ha?1 + 100% NPK and 100% NPK in MR block. The treatments differed significantly from each other at p < 0.01 level of probability in influencing finger millet grain yield, soil N, P, and K in different years. Application of FYM at 10 t ha?1 + 100% NPK gave a significantly higher yield ranging from 1821 to 4552 kg ha?1 with a mean of 3167 kg ha?1 and variation of 22.7%, while application of maize residue at 5 t ha?1 + 100% NPK gave a yield of 593 to 4591 kg ha?1 with a mean of 2518 kg ha?1 and variation of 39.3% over years. In FYM block, FYM at 10 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.45%), available N (204 kg ha?1), available P (68.6 kg ha?1), and available K (107 kg ha?1) over years. In maize residue block, application of MR at 5 t ha?1 + 100% NPK gave a significantly higher organic carbon (0.39%), available soil N (190 kg ha?1), available soil P (47.5 kg ha?1), and available soil K (86 kg ha?1). The regression model (1) of yield as a function of seasonal rainfall, organic carbon, and soil P and K nutrients gave a predictability in the range of 0.19 under FYM at 10 t ha?1 to 0.51 under 100% NPK in FYM block compared to 0.30 under 100% NPK to 0.67 under MR at 5 t ha?1 application in MR block. The regression model (2) of yield as a function of seasonal rainfall, soil N, P, and K nutrients gave a predictability in the range of 0.11 under FYM at 10 t ha?1 to 0.52 under 100% NPK in FYM block compared to 0.18 under MR at 5 t ha?1 + 50% NPK to 0.60 under MR at 5 t ha?1 application in MR block. An assessment of yield sustainability under different crop seasonal rainfall situations indicated that FYM at 10 t ha?1 + 100% NPK was efficient in FYM block with a maximum Sustainability Yield Index (SYI) of 41.4% in <500 mm, 64.7% in 500–750 mm, 60.2% in 750–1000 mm and 60.4% in 1000–1250 mm rainfall, while MR at 5 t ha?1 + 100% NPK was efficient with SYI of 29.6% in <500 mm, 50.2% in 500–750 mm, 40.6% in 750–1000 mm, and 39.7% in 1000–1250 mm rainfall in semi-arid Alfisols. Thus, the results obtained from these long term studies incurring huge expenditure provide very good conjunctive nutrient use options with good conformity for different rainfall situations of rainfed semiarid tropical Alfisol soils for ensuring higher finger millet yield, maintaining higher SYI, and maintaining improved soil fertility.  相似文献   

8.
Based on a long-term finger millet-groundnut rotation study conducted for 24-years during 1992–2015 under Alfisols at Bangalore, organic and inorganic fertilizer effects on soil organic carbon (SOC) sequestration and sustainability of yield were assessed. Field experiments were conducted with T1:Control; T2:FYM@ 10t ha?1; T3:FYM@ 10t ha?1 + 50% NPK; T4:FYM@ 10t ha?1 + 100% NPK, and T5:100% recommended NPK in same plot every year. T5 comprised of 50 kg N, 50 kg P2O5 and 25 kg K2O ha?1 for finger millet and 25 kg N, 50 kg P2O5 and 25 kg K2O ha?1 for groundnut. Sustainability yield index of treatments was assessed using measurements made on variability of yield over years. The amount of carbon sequestered was assessed to identify a superior treatment for improving soil quality. Balanced use of 100% NPK+ FYM for maintenance of SOC at antecedent level with biomass-C of 1.62 Mg C ha?1 year?1 was feasible for sustaining production under semi-arid Alfisols.  相似文献   

9.
Long-term fertilizer experiments were conducted on cotton (Gossypium hirsutum) for 21 years with eight fertilizer treatments in a fixed site during 1987–2007 to identify an efficient treatment to ensure maximum yield, greater sustainability, monetary returns, rainwater-use efficiency, and soil fertility over years. The results indicated that the yield was significantly influenced by fertilizer treatments in all years except 1987 1988, and 1994. The mean cotton yield ranged from 492 kg ha?1 under the control to 805 kg ha?1 under 25 kg nitrogen (N) [farmyard manure (FYM)] + 25 kg N (urea) + 25 kg phosphorus (P) ha?1. Among the nutrients, soil N buildup was observed with all treatments, whereas application of 25 kg N + 12.5 kg P ha?1 exhibited increase in P status. Interestingly, depletion of potassium (K) was recorded under all the fertilizer treatments as there was no K application in any of the treatments. An increase in soil N and P increased the plant N and P uptake respectively. Using relationships of different variables, principal component (PC) analysis technique was used for assessing the efficiency of treatments. In all the treatments, five PCs were found significant that explained the variability in the data of variables. The PC model of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 explained maximum variability of 79.6% compared to other treatments. The treatment-wise PC scores were determined and used in developing yield prediction models and measurement of sustainability yield index (SYI). The SYI ranged from 44.4% in control to 72.7% in 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1, which attained a mean cotton yield of 805 kg ha?1 over years. Application of 25 kg N (FYM) + 25 kg N (urea) + 25 kg P ha?1 was significantly superior in recording maximum rainwater-use efficiency (1.13 kg ha?1 mm?1) and SYI (30.5%). This treatment also gave maximum gross returns of Rs. 30272 ha?1 with benefit–cost ratio of 1.60 and maintained maximum organic carbon and available N, P, and K in soil over years. These findings are extendable to cotton grown under similar soil and agroclimatic conditions in any part of the world.  相似文献   

10.
Based on experiments conducted during 1988–2009 on rainfed pearl millet/sorghum with 9 treatments in Vertisols, an efficient treatment for sustainable productivity is identified. Twenty kg of nitrogen (N) from farmyard manure (FYM) + 20 kg N (urea) + 10 kg phosphorus (P) ha?1 in pearl millet and 40 kg N (urea) + 20 kg P + 25 kg zinc sulfate (ZnSO4) ha?1 in sorghum gave maximum yield and rainwater-use efficiency, whereas 20 kg N (FYM) + 20 kg (urea) + 10 kg P ha?1 in pearl millet and 40 kg (urea) + 20 kg P ha?1 in sorghum and gave maximum soil N, P, and potassium (K) over years. The regression model of 20 kg N (crop residue) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 for predicting sorghum equivalent yield separately through precipitation and soil variables, whereas 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 under combined model of both variables. Treatment of 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 was superior for attaining maximum sorghum equivalent yield of 1062 kg ha?1, net returns of Rs. 4805 ha?1, benefit/cost (BC) ratio of 1.50, and 127 kg ha?1 of soil N, 10.3 kg ha?1 of soil P, and 386 kg ha?1 of soil K over years.  相似文献   

11.
A study was conducted at Hyderabad during 2009–11 to determine phosphorus (P) dose for ricerice and rice–sunflower. Available P increased when 100% recommended P dose (RDP) was applied. P applied to rice gave at par yield under 100 or 75% RDP. In rice–rice, grain yield of 5668 and 5775 kg ha?1 in kharif (5654 and 5760 kg ha?1 in rabi) were attained with P@75 and 100% RDP. Kharif P residual effect in rabi affected rice yield. P@100/75% RDP in kharif and rabi gave grain of 5916/5973 and straw 6230/6673 kg ha?1. P applied to sunflower revealed that yield was similar with 100 or 75% RDP. Sunflower yield was at par with P@100 or 75% RDP. 25% RDP in rice and sunflower may be reduced to attain similar yield of 100% RDP. In rice–rice, grain yield attained by 100% RDP in both seasons was 11.42t ha?1 yr?1, while 75% RDP gave yield of 11.45t ha?1yr?1.  相似文献   

12.
Alarming climate change, rainfed upland farming, and low resource-use efficiency of conventional fertilizer management practices are major production constraints detrimental to rice productivity in the northwestern (NW) Himalayas. Recent agronomic intervention of direct-seeded rice (DSR) coupled with suitable rice germplasm well suited to rainfed upland ecosystems in combination with appropriate integrated nutrient-management (INM) technology can enhance the rice productivity in the region. Thus, a field experiment with seven treatments replicated three times in a randomized block design was conducted on INM technology in rainfed upland rice cv. HPR-1156 (Sukaradhan-1) to harness the potential of DSR technology in order to boost rice productivity in the NW Himalayas. Results on INM in direct-seeded upland rice revealed that nitrogen, phosphorus, and potassium (NPK) at 90:45:45 kg ha?1 + farm yard manure (FYM) at 5 t ha?1 (oven dry-weight basis) significantly resulted in the greatest magnitude of growth and development (plant height, tillers m?2) and yield-contributing characters (panicles m?2, panicle length, grains panicle?1 and 1000-grain weight), resulting in significantly greatest grain, straw, and biological yield followed by sole use of NPK at 90:45:45 kg ha?1 and NPK at 60:30:30 kg ha?1 + FYM at 5 t ha?1, respectively, in rainfed upland rice. Application of NPK at 90:45:45 kg ha?1 + FYM at 5 t ha?1 again resulted in significant improvement in soil organic carbon and available NPK status over other treatments and initial soil fertility status in an acidic Alfisol. Overall, it is inferred that INM technology with judicious use of NPK at 90:45:45 kg ha?1 + FYM at 5 t ha?1 in rainfed upland rice under DSR technology can enhance the rice productivity and resource-use efficiency in NW Himalayas.  相似文献   

13.
The effects of integrated nutrient management, cultivation method, and variety on root and shoot growth, grain yield and its components of lowland rice under alternate wetting and drying (AWD) irrigation were evaluated. Treatments included were three varieties (Pathumthani 1, RD57, and RD41), three cultivation methods [dry direct seeding, wet direct seeding, and transplanting], and three nutrient combinations [100% NPK (160?kg ha?1), 50% NPK (80?kg ha?1) + 50% FYM (5 t ha?1), and 100% FYM (10 t ha?1)] under AWD. Root dry matter of RD41 and RD57 was reduced by 12–25% at the 100% NPK and 100% FYM compared with the 50% NPK + 50% FYM. Panicle number, panicle length, and 1000-grain weight were higher at the 50% NPK + 50% FYM. Application of the 50% NPK + 50% FYM could be a feasible option under AWD irrigation; however, benefits may vary with varieties and cultivation methods.  相似文献   

14.
A field study evaluated the effects of NPK (21:17:17) and compost on vegetative growth, proteins, and carbohydrates of Moringa oleifera. The experimental design was randomized complete block design (RCBD) with six treatments replicated three times. Compost and NPK fertilizers were applied together which include control (without fertilizer) 5 t ha?1 (Compost), 120 kg ha?1 (NPK), 50 + 50% ha?1 (NPK + Compost), 10 + 50% ha?1 (NPK + Compost), and 50 + 10% ha?1 (NPK + Compost) per plot. For NPK fertilizer, the rate was 10 and 50% of 120 kg ha?1 and for compost it was 10 and 50% of 5 t ha?1. The measured growth parameters were plant height (cm), stem girth (mm), number of leaves, and number of branches per plant. Results showed that 120 kg ha?1 (NPK) treatment produced plants of more height, stem girth, more number of leaves, maximum number of branches as compared to other treatments at week 8 with higher protein. Carbohydrate content was high in 50 + 50% (NPK + Compost) compared to others.  相似文献   

15.
Field experiments were conducted to assess the effect of nutrients management practices on yield and rainwater use efficiency of green gram (Vigna radiata), and soil fertility under moist sub-humid Alfisols at Phulbani, India, during 2005–2008. Ten treatment combinations of lime @ 10% and 20% of lime requirement (LR) @ 8.3 t ha?1, farmyard manure (FYM) @ 5 t ha?1, green leaf manure @ 5 t ha?1, and nitrogen, phosphorus, and potassium (N–P–K) (20–40–20 kg ha?1) were tested. The analysis of variance indicated that treatments differed significantly from each other in influencing yield and rainwater use efficiency. Application of lime @ 20% LR + FYM @ 5 t/ha + 40 kg P + 20 kg K ha?1 was superior with maximum mean yield of 531 kg ha?1, while lime @ 10% LR + FYM @ 5 t ha?1 + 40 kg P + 20 kg K ha?1 was the second best with 405 kg ha?1 and maintained maximum soil fertility of nutrients. The superior treatment gave maximum sustainability yield index of 67.5%, rainwater use efficiency of 0.49 kg ha?1 mm?1, improved soil pH, electrical conductivity, and soil nutrients over years.  相似文献   

16.
Rainfed semi-arid tropical Vertisols of the Indian subcontinent encounter many problems on account of the physical, chemical, and biological soil qualities and consequently have poor crop yields. To ensure sustainable crop production, there is a need to improve and periodically assess the quality of these soils by adopting suitable soil and nutrient-management practices on a long-term basis. Hence, soil quality assessment studies were conducted at the Central Research Institute for Dryland Agriculture, Hyderabad, India, by adopting an ongoing long-term experiment from Akola Centre (Maharashtra) of All-India Coordinated Research Project for Dryland Agriculture (AICRPDA) for the rainfed Vertisol. This long-term experiment was initiated in 1987 with six soil and nutrient management treatments: T1, control; T2, 50 kg nitrogen (N) + 25 kg phosphorus pentoxide (P2O5) ha?1; T3, 25 kg N ha?1 through leuceana; T4, 25 kg N ha?1 through farmyard manure (FYM); T5, 25 kg N + 25 kg P2O5 + 25 kg N ha?1 through FYM; and T6, 25 kg P2O5 ha?1 + 50 kg N ha?1 through leuceana under cotton + greengram intercropping (1:1). Out of the 19 soil quality parameters studied, significant influence of the soil and nutrient-management treatments was observed on almost all the parameters except exchangeable calcium (Ca), available iron (Fe), labile carbon (LC), and bulk density (BD). A standard methodology using principal component analysis (PCA) and linear scoring technique (LST) was adopted to identify the key indicators and for computation of soil quality indices. The various key soil quality indicators identified for these Vertisols under cotton + green gram system were pH, electrical conductivity (EC), organic carbon (OC), available K, exchangeable magnesium (Mg), dehydrogenase assay (DHA), and microbial biomass carbon (MBC). The soil quality indices as influenced by different long-term soil and nutrient-management treatments varied from 1.46 to 2.10. Among the treatments, the conjunctive use of 25 kg P2O5 ha?1 + 50 kg N ha?1 through leuceana green biomass (T6) maintained significantly higher soil quality index with a value of 2.10 followed by use of 25 kg N + 25 kg P2O5 + 25 kg N ha?1 through FYM (T5) (2.01). The order of percent contribution of these identified indicators to soil quality indices was OC (28%) > MBC (25%) > available K (24%) > EC (7%) > pH (6%) = DHA (6%) > exchangeable Mg (4%). Thus, the findings of the present study could be of immense use to the researchers, land managers, farmers, nongovernment organizations (NGOs) and other stakeholders for making periodical assessment of key indicators of soil quality, identifying the best soil and nutrient-management treatments and practices, and planning for improving soil quality to achieve higher productivity goals on a sustainable basis in rainfed semi-arid tropical Vertisol regions. The methodology of the study could also be useful for other rainfed semi-arid tropical Vertisol regions of the world.  相似文献   

17.
Long-term effects of the different combinations of nutrient-management treatments were studied on crop yields of sorghum + cowpea in rotation with cotton + black gram. The effects of rainfall, soil temperature, and evaporation on the status of soil fertility and productivity of crops were also modeled and evaluated using a multivariate regression technique. The study was conducted on a permanent experimental site of rain-fed semi-arid Vertisol at the All-India Coordinated Research Project on Dryland Agriculture, Kovilpatti Centre, India, during 1995 to 2007 using 13 combinations of nutrient-management treatments. Application of 20 kg nitrogen (N) (urea) + 20 kg N [farmyard manure (FYM)] + 20 kg phosphorus (P) ha?1 gave the greatest mean grain yield (2146 kg ha?1) of sorghum and the fourth greatest mean yield (76 kg ha?1) of cowpea under sorghum + cowpea system. The same treatment maintained the greatest mean yield of cotton (546 kg ha?1) and black gram (236 kg ha?1) under a cotton + cowpea system. When soil fertility was monitored, this treatment maintained the greatest mean soil organic carbon (4.4 g kg?1), available soil P (10.9 kg ha?1), and available soil potassium (K) (411 kg ha?1), and the second greatest level of mean available soil N (135 kg ha?1) after the 13-year study. The treatments differed significantly from each other in influencing soil organic carbon (C); available soil N, P, and K; and yield of crops attained under sorghum + cowpea and cotton + black gram rotations. Soil temperature at different soil depths at 07:20 h and rainfall had a significant influence on the status of soil organic C. Based on the prediction models developed between long-term yield and soil fertility variables, 20 kg N (urea) + 20 kg N (FYM) + 20 kg P ha?1 could be prescribed for sorghum + cowpea, and 20 kg N (urea) + 20 kg N (FYM) could be prescribed for cotton + black gram. These combinations of treatments would provide a sustainable yield in the range of 1681 to 2146 kg ha?1 of sorghum, 74 to 76 kg ha?1 of cowpea, 486 to 546 kg ha?1 of cotton, and 180 to 236 kg ha?1 of black gram over the years. Beside assuring greater yields, these soil and nutrient management options would also help in maintaining maximum soil organic C of 3.8 to 4.4 g kg?1 soil, available N of 126 to 135 kg ha?1, available soil P of 8.9 to 10.9 kg ha?1, and available soil K of 392 to 411 kg ha?1 over the years. These prediction models for crop yields and fertility status can help us to understand the quantitative relationships between crop yields and nutrients status in soil. Because black gram is unsustainable, as an alternative, sorghum + cowpea could be rotated with cotton for attaining maximum productivity, assuring sustainability, and maintaining soil fertility on rain-fed semi-arid Vertisol soils.  相似文献   

18.
The field experiment was conducted on black soil (Vertic Ustropept) at Zonal Agricultural Research Station farm, Solapur, for successive 30 years from 1987–1988 to 2016–2017 under dryland condition in a randomized block design with 10 treatments and 3 replications. The pooled results of seven years (2010–2011 to 2016–2017) revealed that the application of 25 kg N ha?1 through crop residue (CR, byre waste) along with 25 kg N ha-1 through Leucaena lopping (Leucaena leucocephala) to rabi sorghum gave significantly higher grain and stover yield and Sustainable Yield Index (14.61 and 36.11 q ha?1 and 0.47, respectively) which was on par with T7, where 25 kg N ha?1 through farmyard manure (FYM) + 25 kg N ha?1 through urea was applied for grain and stover yield (13.95 and 34.46 q ha?1 and 0.44, respectively). The gross and net monetary returns and benefit–cost ratio were also influenced significantly due to integrated nitrogen management (Rs. 59,796, Rs. 47,353 ha?1, and 3.13, respectively). This was also reflected in residual soil fertility status of soil after harvest of rabi sorghum. The organic carbon content and available nitrogen content of soil, as well as nitrogen uptake and moisture use efficiency for grain, were also increased. The total microbial count of bacteria, fungi, and actinomycetes was more where FYM or CR addition was done. The count of N fixers and P solubilizers was more under Leucaena application either alone or with CR or urea. Application of CR at 4.8 t ha?1 (25 kg N ha?1) along with Leucaena lopping at 3.5 t ha?1 (25 kg N ha?1) as green leaf manure is the best alternative organic source for fertilizer urea (50 kg N ha?1) to increase the production of dryland rabi sorghum.  相似文献   

19.
A greenhouse experiment was conducted in the Department of Soil Science and Agricultural Chemistry, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi (U.P.), India, during kharif 2013 to find out the effect of biochar and sewage sludge (SS) on growth, yield, and micronutrient uptake in rice crop. Nine treatments were employed using six different doses of biochar (2.5, 5.0, 7.5 10, 15, and 20 t ha?1) amended with a fixed dose of SS (30 t ha?1) and 50% recommended dose of nitrogen (50% RDN), i.e., 60 kg ha?1. Other three treatments were absolute control (no fertilizers), 100% recommended dose of fertilizers (100% RDF) which was 120:60:60 kg ha?1 as nitrogen (N): phosphorus pentoxide (P2O5):dipotassium oxide (K2O), and 30 t ha?1SS + 50% RDN. Experimental results showed a significant increase in yield of rice crop with increasing levels of biochar along with SS. Application of biochar at 20 t ha?1 along with 30 t ha?1SS increased grain yield to the extent of 2.5 times over absolute control (no fertilizers) and 8.5% over control (100% RDF). The uptake of iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) (micronutrients) increased significantly with graded doses of biochar application from 2.5 to 20 t ha?1 in the soil. The maximum micronutrient uptake and grain yield of rice were found in T9 where 30 t ha?1SS along with 20 t ha?1 biochar was applied with only 50% RDN. The maximum availability of micronutrients in soil was found with 30 t ha?1 of SS + 50% RDN (T3) followed by conjoint application of 20 t ha?1 of biochar and 30 t ha?1 SS + 50% RDN (T9).  相似文献   

20.
ABSTRACT

Sulfur (S) availability is a characteristic of conservation tillage. We studied the effects of S on sunflower yield and fatty acid profile under conventional and conservation tillage in silty clay soil of D.I. Khan, Pakistan. Conventional tillage consisted of disk plowing followed by tiller and rotavator, while conservation tillage comprises tiller and disc harrowing. Treatments comprise six sulfur levels (S1 = 0, S2 = 20 kg S ha?1 at sowing, S3 = 10 kg S ha?1 at sowing +10 kg S ha?1 25 days after sowing (DAS), S4 = 40 kg S ha?1 at sowing, S5 = 20 kg S ha?1 at sowing + 20 kg S ha?1 25 DAS, and S6 = 20 kg S ha?1 at sowing + 10 kg S ha?1 25 DAS + 10 kg S ha?1 50 DAS) replicated thrice. After 2 years of experimentation, soil samples were collected (from 0 to 0.30 m depth) for organic matter (OM), total soil N (TSN), and available sulfur analysis. Conservation tillage significantly increased OM, TSN, and S contents in 0–0.30 m soil compared to conventional tillage. Likewise, sunflower plants showed higher achene yield, better fatty acid profile, and net economic returns in conservation tillage than in conventional tillage. Application of 20 kg S ha?1 at sowing and 10 kg S ha?1 at each 25 and 50 DAS recorded significantly higher achene yield, higher oil, and linoleic acid contents; however, oleic and oleic/linoleic ratio did not increase with higher S rates. Conservation tillage was effective in increasing OM, TSN, and available S besides increasing yield and economics in silty clay soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号