首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rice, dry bean, corn, and soybean are important food crops. Phosphorus (P) deficiency is one of the most yield-limiting factors for these crops grown on highly weathered Brazilian Oxisols. Four greenhouse experiments were conducted to determine P requirements of these four crops. The P levels used were 0, 50, 100, 200, and 400 mg kg?1. Growth, yield, and yield components evaluated of four crop species were significantly increased with the application of P fertilization. Most of the responses were quadratic in fashion when the P was applied in the range of 0 to 400 mg kg?1. Maximum grain yield of upland rice was obtained with the application of 238 mg P kg?1 of soil, maximum dry bean grain yield was obtained with the application of 227 mg P kg?1 of soil, and maximum grain yield of soybean was obtained with the application of 224 mg P kg?1 of soil. Maximum shoot growth of corn was obtained with the addition of 323 mg P kg?1 of soil. Most of the growth and yield components had significant positive association with grain yield or shoot dry weight. Phosphorus concentration and uptake were greater in the grain compared to straw in upland rice and dry bean plants. Overall, P-use efficiencies decreased with increasing P rates.  相似文献   

2.
In tropical regions, soil acidity and low soil fertility are the most important yield‐limiting factors for sustainable crop production. Using legume cover crops as mulch is an important strategy not only to protect the soil loss from erosion but also to ameliorate soil fertility. Information is limited regarding tolerances of tropical legume cover crops to acid soils. A greenhouse experiment was conducted to determine the differential tolerance of 14 tropical legume cover crops to soil acidity. The acidity treatments were high (0 g lime kg?1 soil), medium (3.3 g lime kg?1 soil), and low (8.3 g lime kg?1 soil). Shoot dry weight of cover crops were significantly affected by acidity treatments. Maximum shoot dry weight was produced at high acidity. Jack bean, black mucuna, and gray mucuna bean species were most tolerant to soil acidity, whereas Brazilian lucern and tropical kudzu were most susceptible to soil acidity. Overall, optimal soil acidity indices were pH 5.5, hydrogen (H)+ aluminum (Al) 6.8 cmolc kg?1, base saturation 25%, and acidity saturation 74.7%. Species with higher seed weight had higher tolerance to soil acidity than those with lower seed weight. Hence, seed weight was associated with acidity tolerance in tropical legume species.  相似文献   

3.
Dry bean is an important legume for South American population, and phosphorus (P) deficiency is the most yield-limiting nutrient for crop production in South American soils. A greenhouse experiment was conducted with the objective of evaluating influence of P fertilization on grain yield and yield components of 30 dry bean genotypes. The P levels used were 0 mg P kg?1 (natural level of the soil) and 200 mg P kg?1 applied with triple superphosphate fertilizer. Yield and yield components were significantly influenced with P as well as genotype treatments. The P?×?genotype interactions were significant for yield as well as yield components, indicating different responses of genotypes at two P levels. Root dry weight and maximum root length were also significantly increased with the addition of P fertilization. There were also significant differences among the genotypes in the growth of root system. Based on grain yield efficiency index (GYEI), genotypes were classified as P efficient, moderately efficient, and inefficient. Among 30 genotypes, 17 were classified as efficient, 12 were classified as moderately efficient, and 1 was classified as inefficient. Yield components such as pods per plant and seeds per pod were having significant positive association with grain yield. In addition, grain harvest index (GHI) was also having significant linear association with grain yield. Hence, it is possible to improve grain yield of dry bean in Brazilian Oxisol with the addition of adequate rate of P fertilization as well as use of P-efficient genotypes.  相似文献   

4.
Rice is a staple food for about 50 percent of the world’s population. Potassium (K) is absorbed in large amounts by rice plants and adequate amounts of this element are fundamental to improve productivity and maintain sustainability of the cropping systems. A greenhouse experiment was conducted to determine the adequate rate of K for lowland rice grown on a Brazilian Inceptisol. The K rates used were 0, 50, 100, 200, 400, and 600 mg K kg?1 soil. Most of the growth, yield, and yield components were significantly and quadratically increased with increasing K levels. Based on a quadratic equation, maximum grain yield was obtained with the addition of 371 mg K kg?1 soil. Maximum plant height and shoot dry weight were obtained at 414 and 398 mg K kg?1 soil, respectively. Root growth (maximum length and dry weight) was also significantly increased in a quadratic fashion with the increasing K rate in the growth medium. Maximum root length was achieved at 58 mg K kg?1 whereas maximum root dry weight was obtained with the addition of 394 mg K kg?1 soil. Plant height, shoot dry weight, 1000-grain weight, root length, and root dry weight were significantly associated with grain yield. Hence, manipulation of these growth and yield components with the addition of K fertilizer can improve yield of lowland rice in varzea soils of central part of Brazil. Potassium uptake increased significantly in a quadratic fashion with increasing K rate. However, K-use efficiency (mg grain per mg K applied) decreased significantly with increasing K rate in a quadratic fashion. Maximum grain yield was obtained with 117 mg kg?1 Mehlich 1–extractable K, base saturation of 53 percent, Mg saturation of 9 percent, K saturation of 2 percent, and Ca/Mg ratio of 4.  相似文献   

5.
A pot experiment evaluated the growth of lettuce (Lactuca sativa L.) and barley (Hordeum vulgar) and accumulation of molybdenum (Mo) in plants and soils following amendments of Mo compost (1.0 g kg?1) to a Truro sandy loam. The treatments consisted of 0 (control), 12.5, 25, and 50% Mo compost by volume. The Mo compost did not affect dry‐matter yield (DMY) up to 25% compost, but DMY decreased at the 50% compost treatment. The 50% compost treatments increased the soil pH an average of 0.5 units and increased the nitric acid (HNO3)–extractable Mo to 150 mg kg?1 and diethylenetriaminepentaacetic acid (DTPA)–extractable Mo to 100 mg kg?1 in the growth medium; the same treatment increased tissue Mo concentration to 569 and 478 mg kg?1 in the lettuce and barley, respectively. Plants grown in the 25% compost produced about 55 mg kg?1 of total Mo in the growth medium; this resulted in tissue Mo concentration of 348 mg kg?1 in lettuce and 274 mg kg?1 in barley without any phytotoxicity. Our results suggested that 55 mg Mo kg?1 soil would be an appropriate limit for Mo loading of soil developed from compost additions, a value which is presently greater than the Canadian Council for Ministers of the Environment (CCME) Guidelines for the use of type B compost in Canada.  相似文献   

6.
Copper (Cu) is an essential micronutrients and its deficiency has been reported in many crops including dry bean. A greenhouse experiment was conducted to evaluate thirty dry bean genotypes (G) for Cu-use efficiency. The Cu levels used were low (natural soil level) and adequate [10 mg Cu kg?1 soil, applied with copper sulfate (24 percent Cu)]. Straw yield, seed yield, number of pods per plant, seed per pod, seed harvest index (SHI), maximum root length (MRL), and root dry weight (RDW) were significantly affected by Cu and genotype treatments. The Cu × G interactions were also significant for these traits, indicating variation in genotype responses with the variation in Cu levels. Based on seed yield efficiency index (SYEI), genotypes were grouped in three classes: Cu efficient, moderately Cu efficient, and Cu inefficient. Fifty-three percent of the genotypes were classified as efficient, 40 percent were classified as moderately efficient, and 7 percent were classified as inefficient in Cu-use efficiency.  相似文献   

7.
Ammonium sulfate and urea are main sources of nitrogen (N) for annual crop production in developing countries. Two greenhouse experiments were conducted using ammonium sulfate and urea as N sources for upland rice grown on a Brazilian Oxisol. The N rates used were 0, 50, 100, 150, 3000, and 400 kg N kg?1 of soil. Yield and yield components were significantly increased in a quadratic fashion with increasing N rate. Ammonium sulfate X urea interaction was significant for grain yield, shoot dry matter yield, panicle number, plant height and root dry weight, indicating a different response magnitude of these plant parameters to two sources of N. Based on regression equation, maximum grain yield was achieved with the application of 380 mg N kg?1 by ammonium sulfate and 271 mg N kg?1 by urea. Grain yield and yield components were reduced at higher rates of urea (>300 mg kg N) but these plant parameters’ responses to ammonium sulfate at higher rates was constant. In the intermediate N rate range (125 to 275 mg kg?1), urea was slightly better compared to ammonium sulfate for grain yield. Grain yield was significantly related with plant height, shoot dry weight, panicle number, grain harvest index and root dry weight. Hence, improving these plant characteristics by using appropriate soil and plant management practices can improve upland rice yield.  相似文献   

8.
《Journal of plant nutrition》2013,36(8):1683-1696
Abstract

Soil acidity is one of the limiting factors affecting the production and sustainability of pastures and crops in many parts of the world. An on‐farm experiment was conducted in Australia to investigate the cultivar variation in alfalfa (lucerne) (Medicago sativa L.) with respect to soil acidity and response to applied lime. The experimental site was a brown sandy clay loam with a soil pH of 4.8 (1:5 calcium chloride). Ten cultivars (Hunter River, Hunterfield, Sceptre, Aurora, Genesis, Aquarius, Venus, PL90, PL55, and breeding line Y8804) were tested at two levels of lime (0 and 2 t ha?1). Lime application significantly increased the root growth, nodulation, leaf retention, leaf to stem ratio, herbage yield, and crude protein content of alfalfa. Liming had a significant effect on elemental composition of alfalfa shoots. Aluminum (Al) concentration was reduced from 93 mg kg?1 DM in nil lime treatment to 45 mg kg?1 DM in +lime treatment. Similarly, manganese (Mn) and iron (Fe) shoot concentrations were reduced from 74 mg kg?1 DM and 92 mg kg?1 DM to 59 mg kg?1 DM and 76 mg kg?1 DM, respectively. Liming significantly improved the calcium (Ca) concentration of shoots, while there was a little effect on phosphorus (P) and zinc (Zn) concentrations of alfalfa shoots. Cultivars had differential response to lime application. Response to lime application was greater in Y8804 and Aurora alfalfa where yield increased by 32% and 31%, while yield increase was 11–22% in other cultivars. Cultivars also differed significantly in root growth, nodulation, leaf drop, leaf to stem ratio, crude protein content, and elemental composition of shoots. Cultivars with better performance in no liming treatment had comparatively lower shoot Al, Mn, and Fe concentrations compared with other cultivars.  相似文献   

9.
Deficiency of micronutrients increasing in field crops, including upland rice in recent years. The objective of this study was to determine requirement of zinc (Zn), copper (Cu) boron (B) and iron (Fe) for upland rice grown on a Brazilian Oxisol. The levels used were: Zn (0, 10, 20, 40, and 80 mg kg?1), Cu (0, 5, 10, 20 and 40 mg kg?1), B (0, 5, 10, 20 and 40 mg kg?1) and Fe (0, 250, 500, 1000, and 2000 mg kg?1). Plant height, straw yield, grain yield, panicle number and grain harvest index (GHI) were significantly improved with the addition of these micronutrients. Root growth was also improved with the application of micronutrients, except with the addition of B. Maximum grain yield was obtained with the addition of 51 mg Zn, 24 mg Cu, 5 mg B kg?1, and 283 mg Fe kg?1 soil. Similarly, maximum straw yield was obtained with the addition of 38 mg Zn, 17 mg Cu, 6 mg B kg?1, and 1500 mg Fe kg?1 soil. Maximum plant height was obtained with the addition of 54 mg Zn, 10 mg B kg?1, and 1197 mg Fe kg?1 soil. Copper did not affect plant height significantly. Maximum panicle number was obtained with the addition of 22 mg Cu kg?1, 3 mg B kg?1, and 1100 mg Fe kg?1 soil. Zinc did not affect panicle number significantly. Maximum GHI was obtained with the addition of 61 mg Zn kg?1, and 8 mg B kg?1. Zinc was had a linear increase in GHI in the range of 0 to 80 mg kg?1, and Fe showed a negative relationship with GHI.  相似文献   

10.
The plant root system is an important organ which supplies water and nutrients to growing plants. Information is limited on influence of nitrogen fertilization on upland rice root growth. A greenhouse experiment was conducted to evaluate influence of nitrogen (N) fertilization on growth of root system of 20 upland rice genotypes. The N rate used was 0 mg kg?1(low) and 300 mg kg?1(high) of soil. Nitrogen X genotype interactions for root length and root dry weight were highly significant (P < 0.01), indicating that differences among genotypes were not consistent at two N rates. Overall, greater root length, root dry weight and tops-roots ration were obtained at an N fertilization rate of 300 mg kg?1compared with the 0 mg N kg?1soil. However, genotypes differ significantly in root length, root dry weight and top-root ratio. Nitrogen fertilization produced fine roots and more root hairs compared with absence of N fertilizer treatment. Based on root dry weight efficiency index (RDWEI) for N use efficiency, 70% genotypes were classified as efficient, 15% were classified as moderately efficient and 15% were classified as inefficient. Root dry weight efficiency index trait can be incorporated in upland rice for improving water and nutrient efficiency in favor of higher yields.  相似文献   

11.
Two greenhouse experiments were conducted simultaneously to evaluate polymer-coated and common urea in upland rice production. The nitrogen (N) levels used for both the N sources were from 0 to 400 mg kg?1 of soil. Maximum grain yield was obtained with the addition of 167 mg N kg?1 polymer-coated urea and 238 mg N kg?1 common urea. Maximum value of other plant traits was obtained with N applied from 233 to 313 mg kg?1 depending on plant traits and N source. Nitrogen-use efficiency (NUE) decreased with increasing N rate in the two N sources. Based on results of growth, yield, and yield components, and NUE it can be concluded that the N sources were equally effective in upland rice production. Base saturation, pH, and exchangeable calcium (Ca) increased with increasing N rates while iron (Fe), manganese (Mn), and copper (Cu) contents decreased with the increasing N rates.  相似文献   

12.
Tropical legume cover crops are important components in cropping systems because of their role in improving soil quality. Information is limited on the influence of nitrogen (N) fertilization on growth of tropical legume cover crops grown on Oxisols. A greenhouse experiment was conducted to evaluate the influence of N fertilization with or without rhizobial inoculation on growth and shoot efficiency index of 10 important tropical cover crops. Nitrogen treatment were (i) 0 mg N kg?1 (control or N0), (ii) 0 mg N kg?1 + inoculation with Bradyrhizobial strains (N1), (iii) 100 mg N kg?1 + inoculation with Bradyrhizobial strains (N2), and (iv) 200 mg N kg?1 of soil (N3). The N?×?cover crops interactions were significant for shoot dry weight, root dry weight, maximal root length, and specific root length, indicating that cover crop performance varied with varying N rates and inoculation treatments. Shoot dry weight is considered an important growth trait in cover crops and, overall, maximal shoot dry weight was produced at 100 mg N kg?1 + inoculation treatment. Based on shoot dry-weight efficiency index, cover crops were classified as efficient, moderately efficient, and inefficient in N-use efficiency. Overall, the efficient cover crops were lablab, gray velvet bean, jack bean, and black velvet bean and inefficient cover crops were pueraria, calopo, crotalaria, smooth crotalaria, and showy crotalaria. Pigeonpea was classified as moderately efficient in producing shoot dry weight.  相似文献   

13.
Soils of the Brazilian Cerrado biome have been found to be deficient in copper (Cu) and zinc (Zn). In this area, an Oxisol was deeply excavated in 1962 during the construction of a hydroelectrical plant, and the exposed saprolite material was abandoned, without any reclamation measures. The abandoned land was a harsh environment for plant growth, and the secondary vegetation has not recovered. A field trial was established in 1992 to assess the effects of different grass species and lime amendments on soil reclamation at the degraded site. In 2011 soil samples were collected at three depths (0–10, 10–20, and 20–40 cm) from vegetated and bare plots over tilled saprolite, from an untreated area of the saprolite, and from an Oxisol under native forest, used as external reference. Nineteen years after the reclamation effort was begun, the organic carbon (OC) content of the restored saprolite still was much lower than that of the Oxisol under natural vegetation. The undisturbed Oxisol was deficient in extractable Cu (0.16–0.10 mg kg?1) and Zn (0.10–0.02 mg kg?1) and exhibited rather low concentrations of extractable iron (Fe; 5.24–1.47 mg kg?1) and manganese (Mn; 3.21–0.77 mg kg?1). However, the saprolite under reclamation showed even lower levels of these elements compared to the native forest soil. In the natural soil, OC, N, extractable Fe, Mn, and Cu showed stratification, but this was not the case for extractable Zn. Although the reclaimed saprolite still was far from predisturbance conditions, the revegetation treatments promoted recovery of OC, N, Fe, Mn, and Cu at the surface layers, which resulted in incipient stratification. Extractable Fe, Mn, and Cu were correlated to OC, whereas no association between Zn and OC was detected. Our results also suggest that reclamation of the excavated saprolite may be constrained by micronutrient deficiencies and mostly by the extremely low levels of Zn and Cu.  相似文献   

14.
Upland rice is an important crop in the cropping systems of South America, including Brazil. Two greenhouse experiments were conducted to determine influence of lime and gypsum on yield and yield components of upland rice and changes in the chemical properties of an Oxisol. The lime rates used were 0, 0.71, 1.42, 2.14, 2.85, and 4.28 g kg?1 soil. The gypsum rates were 0, 0.28, 0.57, 1.14, 1.71, and 2.28 g kg?1. Lime as well as gypsum significantly increased plant height, straw and grain yield, and panicle density in a quadratic fashion. Adequate lime and gypsum rates for maximum grain yield were 1.11 g kg?1 and 1.13 g kg?1, respectively. Plant height, straw yield, and panicle density were positively related to grain yield. Lime as well as gypsum application significantly changed extractable calcium (Ca), magnesium (Mg), hydrogen (H)+aluminum (Al), base saturation, and effective cation exchange capacity. In addition, liming also significantly increased pH, extractable phosphorus (P) and potassium (K), calcium saturation, magnesium saturation, and potassium saturation. Optimum acidity indices for the grain yield of upland rice were pH 6.0, Ca 1.7 cmolc kg?1, base saturation 60%, and calcium saturation 47%. In addition, upland rice can tolerate 42% of acidity saturation.  相似文献   

15.
The root is an important organ which supplies water and nutrients to growing plants. Data related to root growth and nutrient uptake by tropical legume cover crops are limited. The objective of this study was to evaluate root growth of tropical legume cover crops and nutrient uptake and use efficiency under different phosphorus (P) levels. The P levels used were 0 (low), 100 (medium) and 200 (high) mg kg?1 of soil and 5 cover crops were evaluated. Root dry weight, maximum root length, specific root length were significantly influenced by P and cover crop treatments. Maximum values of these root growth parameters were achieved with the addition of 100 mg P kg?1 soil. The P X cover crops interaction for all the macro and micronutrients, except manganese (Mn) was significant, indicating variation in uptake pattern of these nutrients by cover crops with the variation in P rates. Overall, uptake pattern of macronutrients was in the order of nitrogen>calcium>potassium>magnesium>phosphorus (N > Ca > K > Mg > P) and micronutrient uptake pattern was in the order of iron>manganese>zinc>copper (Fe > Mn > Zn > Cu). Cover crops which produced maximum root dry weight also accumulated higher amount of nutrients, including N compared to cover crops which produced lower root dry weight. Higher uptake of N compared to other nutrients by cover crops indicated that use of cover crops in the cropping systems can reduce loss of nitrate (NO3?) from soil-plant systems. Increase in root length and root dry weight with the addition of P can improve nutrient uptake from the soil and less loss of macro and micronutrients from the soil-plant systems.  相似文献   

16.
Dry bean is an important legume worldwide, and potassium (K) deficiency is one of the important constraints for bean production in most of the bean growing regions. A greenhouse experiment was conducted with the objective to evaluate fifteen dry bean genotypes grown on a Brazilian lowland (Inceptisol) United States Soil Taxonomy classification and Gley humic Brazilian Soil Classification system), locally known as “Varzea” soil. The K rate used was 0 mg kg?1 (low, natural soil level) and 200 mg kg?1 (high, applied as fertilizer). Straw yield, seed yield, pods per plant, seeds per pod, 100 seed weight, and seed harvest index were significantly increased with the addition of K fertilizer. These traits were also significantly influenced by genotypic treatment. Similarly, root length and root dry weight were also influenced significantly by K and genotype treatments. The K X genotype interactions for most of these traits were also significant, indicating variation in these traits with the variation in K level. Based on seed yield efficiency index (SYEI), genotypes were classified as efficient, moderately efficient, and inefficient in K use efficiency. Maximum grain yield was obtained with 74 mg K kg?1 extracted by Mehlich 1 extracting solution. Similarly, K saturation required for maximum grain yield was 1.1%.  相似文献   

17.
Upland rice is an important crop in South America, including Brazil. Nutrient interactions are important in determining crop yields. A greenhouse experiment was conducted to evaluate interaction among nitrogen (N), phosphorus (P), and potassium (K) in upland rice production. The treatments applied to upland rice grown on an Oxisol were three levels of N (N0, N150 and N300 mg kg?1), three levels of P (P0, P100 and P200 mg kg?1) and three levels of K (K0, K100 and K200 mg kg?1). These treatments were tested in a 3 × 3 × 3 factorial arrangement. Grain yield, shoot dry weight, plant height, root dry weight, maximum root length, panicle number, 1000-grain weight, and grain harvest index were significantly influenced by N, P, and K treatments. The treatment that did not receive P fertilization did not produce panicle or grain. Hence, P was most yield-limiting nutrient compared to two other nutrients. At the N0P0K0 treatment, rice did not produce grains, indicating severe deficiency of these nutrients in Brazilian Oxisols. Maximum grain yield was obtained with the N300P200K200 treatment. Grain yield had significant positive association with plant height, shoot dry weight, root dry weight, maximum root length, 1000-grain weight, panicle number, and grain harvest index. Among these growth and yield components, shoot dry weight had the highest positive association with grain yield and root length minimum positive association with grain yield. Hence, adopting adequate soil and crop management practices can improve growth and yield components and increase grain yield of upland rice.  相似文献   

18.
Manganese (Mn) deficiency in upland rice grown after common bean or soybean, which received adequate rate of liming on highly weathered Oxisols, is observed. A greenhouse experiment was conducted to evaluate Mn‐use efficiency of 10 promising upland rice genotypes. The genotypes were grown on an Oxisol at 0 mg Mn kg?1 (natural soil Mn level) and 20 mg Mn kg?1 of soil applied as manganese sulfate. Grain yield, panicle number, and grain harvest index (GHI) were significantly (P < 0.01) influenced by genotype. However, shoot dry weight was significantly affected by Mn as well as genotype treatments. Manganese uptake in the shoot as well as in the grain was also affected by genotype treatment. On the basis of Mn‐use efficiency (mg grain weight/mg Mn accumulated in shoot and grain), genotypes were classified as efficient and responsive (ER), efficient and nonresponsive (ENR), nonefficient and responsive (NER), and nonefficient and nonresponsive (NENR). Genotypes Carisma, CNA8540, and IR42 were classified as ER, and genotypes CNA8557 and Maravilha were classified as ENR. Genotype Caipo was in the group NER, and in the NENR group were genotypes Bonança, Canastra, Caraja, and Guarani. From a practical point of view, genotypes that produce high grain yield at a low level of Mn and respond well to Mn additions are the most desirable because they are able to express their high yield potential in a wide range of Mn availability.  相似文献   

19.
Suaeda aegyptiaca is an important native annual halophyte in salt-affected soils around coastal areas of the Persian Gulf. In order to study the effects of different levels of saturation paste soil salinity (10, 20, 40, 60, and 80 dS m?1) and nitrogen supply (25, 50, and 75 mg kg?1 N as urea) on growth and physiological characteristic of S. aegyptiaca, a greenhouse factorial experiment in completely randomized design was conducted with three replications. Salinity treatments were established after early growth of plants and nitrogen was applied in two steps. Results showed that increasing salinity up to 20 dS m?1 led to increase in dry weight (DW) of plants and this decreased by increasing salinity. Also, DW of plants was significantly increased by application of 75 mg kg?1 nitrogen. Increasing salinity significantly decreased plant height, chlorophyll index, and total nitrogen content; while proline content and total soluble solids (TSS) were significantly increased. The electrolyte leakage (EL) and sodium concentration were increased under salinity stress. However, further increase in salinity decreased these two parameters. By increasing the nitrogen levels, relative water content (RWC), chlorophyll index, proline, and total nitrogen contents were increased, whereas EL was decreased.  相似文献   

20.
Abstract

The effect of cadmium (Cd) and sulphur (S) on dry weight, biochemical parameters and anatomical features of mustard (Brassica campestris L. cv. Pusa Bold) plant was investigated in a pot culture experiment using Cd (25, 50, and 100 mg kg?1 of soil), S (40 mg kg?1 of soil), and the combination of Cd+S (25+40 mg kg?1 of soil, 50+40 mg kg?1 of soil, and 100+40 mg kg?1 of soil). Sulphur treatment was given at sowing and Cd treatment was given when seedlings were fully established. Observations were recorded at the flowering stage. A significant and antagonistic interaction of Cd and S was observed. Compared to the control, leaf dry weight, total chlorophyll content, sugar content, nitrate reductase activity, and protein content decreased significantly with each Cd treatment, whereas the reverse was observed with S treatment. Combined treatments of Cd+S also reduced these parameters, but this reduction was less than the one observed with Cd treatments alone. However, nitrate accumulation in the leaves was 2.35 times higher with treatment of 100 mg Cd+40 mg S kg?1 of soil than in the controls, whereas it was 3.5 times higher with Cd (100 mg kg?1 of soil) alone. The relative proportion of vasculature in the stem, stoma length and width, and stomata length and width were inhibited with Cd treatments, whereas the combined treatments mitigated the adverse effect caused by Cd. Thus, S could alleviate the Cd induced impairment of biochemical and anatomical features of the plant and the enhancement of nitrate accumulation in the leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号