首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
With increasing water shortages in China, rice (Oryza sativa L.) cultivation is gradually shifting away from continuously flooded conditions to partly or even completely aerobic conditions. The effects of this shift on the growth and iron (Fe) nutrition of different aerobic and lowland rice genotypes are poorly understood. A field experiment was conducted to determine the effects of cultivation system (aerobic vs. flooded), genotype (five aerobic rice varieties and one lowland rice variety), and Fe fertilization [no Fe and 30 kg ha?1 ferrous sulfate (FeSO4·7H2O] on rice grain yield and Fe nutrition. Plants were sampled at tillering and physiological maturity. In both aerobic and flooded plots, Fe application significantly increased shoot dry weight, shoot Fe concentration, and shoot Fe content at tillering but not physiological maturity. At physiological maturity, grain yield and Fe and grain harvest indices were significantly lower in aerobic than in flooded plots. Shoot dry weight and shoot Fe content differed among genotypes at tillering and at physiological maturity. The grain harvest index of aerobic rice genotype 89B-271-17(hun) was significantly greater than that of the other five genotypes when no Fe was applied. Because soil Fe fertilization did not improve the Fe nutrition of rice in aerobic plots, the results indicate that the shift from flooded to aerobic cultivation will increase Fe deficiency in rice and will increase the problem of Fe deficiency in humans who depend on rice for nutrition.  相似文献   

2.
Field experiments were conducted on rice (cv ‘IET 4094’) in an Aeric endoaquept (pH 7.2) to evaluate the various zinc (Zn) extractants in lowland rice soil under the influence of Zn sulfate and chelated Zn. The diethylenetriaminepentaacetic acid (DTPA), 0.1 N hydrochloric acid (HCl), and 0.05 N HCl‐extractable Zn concentrations in soil increased initially up to the Z29 stage of crop growth when Zn was applied as a single basal source, being greater with Zn ethylenediaminetetraacetic acid (Zn‐EDTA) compared to zinc sulfate (ZnSO4) application. Among the various extractants, the performance of 0.1 N HCl in extracting Zn was better than the other two extractants and followed the trend 0.1 N HCl > 0.005 M DTPA > 0.05 N HCl. The greatest increase in grain and straw yield of rice was 37.8 and 20.4%, respectively, over the control in the treatment T7 (1 kg Zn ha?1 as Zn‐EDTA at basal).  相似文献   

3.
ABSTRACT

A greenhouse experiment with four bread wheat [Triticum aestivum L.] genotypes, ‘Rushan,’ ‘Kavir,’ ‘Cross,’ and ‘Falat,’ and a durum wheat [Triticum durum L.] genotype, ‘Dur-3,’ at two zinc (Zn) rates (0 and 15 mg Zn kg?1 dry soil) and four salinity levels (0, 60, 120, and 180 mM NaCl) was conducted. After 45 d of growth, the shoots were harvested, and Zn, iron (Fe), potassium (K), sodium (Na), and cadmium (Cd) concentrations were determined. In the absence of added Zn, visual Zn deficiency symptoms were observed to be more severe in ‘Dur-3’ and ‘Kavir’ than in other genotypes. The effect of Zn deficiency on shoot dry matter was similar to its effect on visual deficiency symptoms, such that shoot growth was most depressed in ‘Kavir’ and ‘Dur-3.’ At the 180 mM treatment, Zn fertilization had no effect on shoot dry matter of genotypes. Genotypes with high Zn efficiency had greater shoot Zn content than genotypes with low Zn efficiency. In the absence of added Zn, the Dur-3, and ‘Cross’ genotypes had the highest and lowest Cd concentrations, respectively. Application of Zn had a positive effect on salt tolerance of plants.  相似文献   

4.
ABSTRACT

Different micronutrients have variable residual effects in the soil. Again, crops have variability in their response to applied micronutrient. An experiment was conducted in floodplain soil of Bangladesh using cauliflower, maize, and rice in a pattern to explore differential effects of micronutrients on crops. Seven treatments following additive element trial technique including a control were used in the study. Micronutrients were applied @ 3 kg Zn, 2 kg B, 2 kg Cu, 3 kg Mn, 5 kg Fe and 1 kg Mo per hectare. Cauliflower as the first crop of the pattern responded to direct application of both zinc and boron whereas significant residual effects of these elements were observed in the second crop (maize). In rice as the third crop, no significant residual effects were estimated. In floodplain soil, zinc and boron fertilizers are needed to apply in each third crop of a pattern where the second crop is nutrient exhaustive like maize.  相似文献   

5.
A field experiment was conducted on Indian mustard (Brassica juncea) with five levels of sulfur (S), 0, 15, 30, 45, and 60 kg S ha?1 in sub-tropical Inceptisol of Jammu, North India. The residual effect of S on rice crop was evaluated. The seed and stover yield of mustard increased in the linear order up to 60 kg S ha?1 but significant yield increase was obtained up to 30 S kg ha?1 which was 21.4 percent higher in comparison to the yield obtained in control. The uptake of S at maturity was significantly affected with all the levels of S application. The seed S uptake increased significantly up to 30 kg S ha?1 and stover 45 kg S ha?1. The residual effect of S was convincing in enhancing the rice yield to the tune of 5.3% over control, but was statistically non-significant. The S uptake was also favourably influenced by the residual S which was evidenced through increased S use efficiency. Agronomic and physiological efficiency as well as S recovery were all greatly influenced by direct and residual effect of S. Apparent S recovery was higher at 30 kg S ha?1 in mustard (12.06%).  相似文献   

6.
Sulfur (S) and zinc (Zn) deficiencies are frequently reported in Bangladesh rice paddy. However, its effects on rice productivity and soil fertility need to be reevaluated as sulfur oxides (SOx) and heavy metals are increasingly emitted to the environment in the recent years. To examine the long-term effects of S and Zn fertilization on rice yield and nutrient efficiency, the standard fertilization plot of nitrogen, phosphorus, potassium, sulphur, and zinc (NPKSZn) was installed in a typical double rice cropping paddy at the Bangladesh Rice Research Institute (BRRI) farm in 1985. The recommended treatment (NPKSZn) and the comparison treatments (NPKZn and NPKS) were selected for calculating S and Zn efficiencies. The same levels of chemical fertilizers in NPKSZn treatment were applied with the rates of N-P-K-S-Zn as 80–25–35–20–5 kg ha?1 and 120–25–35–20–5 kg ha?1 in the wet and dry seasons, respectively. The changes in rice productivity, as well as S and Zn fertilization efficiencies, were monitored for 23 years. Sulfur fertilization significantly increased the mean grain and straw yields by around 13% in the wet season and only 4–5% in the dry season. The mean S fertilization efficiencies were 9.3% and 5.3% in the wet and dry seasons, respectively. Sulfur fertilization efficiency was relatively high until 1997 (the 13th year after the installation). Thereafter, however, S fertilization did not increase rice productivity or efficiency, regardless of the season. Also, Zn fertilization did not result in a significant increase in rice productivity, and its fertilization efficiency was similar level with a mean of 1.2%, irrespective of the season. This study revealed that S and Zn fertilization may no longer be required to increase rice productivity in Bangladesh paddy soil due to fast industrialization and urbanization.  相似文献   

7.
The aim of this study was to compare the behavior of residual zinc (Zn) from different synthetic chelates containing the chelating agents EDTA (ethylenediaminetetraacetate acid), HEDTA (hydroxyethyl-ethylenediaminetriacetate acid), and DTPA (diethylenetriaminepentaacetate acid) applied at different rates. This incubation experiment was carried out under two different moisture conditions (60 percent field capacity and waterlogged) and in two different soils from the central region of Spain (Soilacid, Typic Haploxeralf, and Soilcalc, Typic Calcixerept). The potentially available Zn concentration and short-term available Zn were estimated using the DTPA-TEA (diethylenetriaminepentaacetic acid–triethanolamine) and LMWOAs (low-molecular-weight organic acids) methods. In both soils, the amount of water-soluble Zn was estimated under 60 percent field-capacity conditions. Immediately available Zn was estimated under waterlogged conditions. The Zn concentrations depended on the soil type, the experimental time, and the Zn chelate used. Under both moisture conditions, the soil characteristics caused the residual effects of Zn-EDTA in Soilacid and Zn-DTPA-HEDTA-EDTA applied to Soilcalc, to produce the greatest Zn concentrations.  相似文献   

8.
Moisture conditions in rice paddies play an important role in phosphorus (P) cycling and may affect P loss to nearby water bodies. This study seeks to identify factors that contribute to P-fraction transformations in flooded rice paddies on Cambosols and Anthrosols using Zhangjiagang County of the Yangtze River delta region, China, as a study area. Soil samples preserved under flooded and aerobic conditions (n?=?60) were collected, and P fractions and soil properties were measured. Under flooded conditions, soluble and loosely bound P significantly decreased to half of aerobic levels, aluminum/iron-bound P increased by 66%, and organic-bound P decreased by 64%. Soil organic matter, cation exchange capacity, pH, and active iron were well correlated with soil P fractions under both moisture conditions across two soil orders despite a disparity in soil properties. Further research goals that would aid in specific fertilizer recommendations and management strategies are identified.  相似文献   

9.
Genotypic variation to zinc (Zn) deficiency in barley indicates that selection for Zn efficiency is possible. Sahara (Zn-efficient) and Clipper (Zn-inefficient) were evaluated at different Zn nutrition in soil and chelator-buffered nutrient. Zinc deficiency symptoms appeared first in Clipper and later in Sahara. At 0.8 mg Zn/kg soil, shoot and root Zn concentration and content were higher in Sahara than Clipper. The root:shoot dry matter ratio of genotypes increased as Zn application decreased. The 4th and 5th leaf elongation were depressed greater in Clipper than Sahara by Zn deficiency. The genotypes responses to Zn in solution and soil were consistent in all parameters except root growth. In contrast to soil, root drymatter was greater in Clipper than Sahara in solution under Zn deficiency. Shoot Zn concentration and content can be used in assessment of barley genotypes, and may be useful criteria in screening large genotypes aimed at developing molecular markers for Zn efficiency.  相似文献   

10.
采用盆栽试验,研究了淹水条件下施用锌肥(ZnSO4.7H2O)与含巯基废弃物(蒜皮)对污染土壤中镉生物有效性的影响。结果表明,与对照相比,施用锌肥(0.2 g kg-1)后水稻增产25%(P<0.05),在淹水平衡7 d时土壤中有效硫和有效锌含量显著提高,增幅分别为267.9%和684.4%,而土壤中有效态镉含量降幅达61.3%(P<0.05);水稻移栽30 d和60 d时,土壤中有效硫和有效锌含量仍显著高于对照,有效态镉显著低于对照,但随着时间的推移均呈下降趋势,水稻根系和糙米镉含量较对照降低了31.0%(P<0.05)和38.9%(P<0.05)。与对照相比,施用蒜皮(1 g kg-1)的土壤有效硫随时间的推移呈上升趋势,同时有效态镉含量下降,水稻根系和糙米中镉含量降低,但差异均不显著。锌肥与蒜皮配合施用的效果优于两者单施。因此,淹水还原条件下施用适量含硫锌肥可有效降低污染土壤中镉的活性,减少水稻的镉累积,而本试验条件下施用富含巯基的蒜皮效果不明显。  相似文献   

11.
Rice is very sensitive to low zinc(Zn) supply in submerged paddy soils and Zn deficiency is one of the major limiting factors in determining rice production in India. A field experiment was conducted during the summer-rainy seasons of 2009 and 2010 at the research farm of the Indian Agricultural Research Institute, New Delhi, to determine the effects of summer green manure crops and Zn fertilizers on diethylenetriaminepentaacetic acid(DTPA)-extractable(available) Zn concentration in soil and total Zn content in Basmati rice cultivar Pusa Basmati 1 at periodic intervals. Summer green manure crops included Sesbania aculeata(Dhaincha),Crotalaria juncea(Sunhemp), and Vigna unguiculata(Cowpea) and the Zn fertilizers used were ethylenediaminetetraacetic acid(EDTA)-chelated Zn, ZnSO_4·7H_2O, ZnSO_4·H_2O, ZnO, and ZnSO_4·7H_2O + ZnO. Beneficial effects of summer green manure crops and Zn fertilizers on DTPA-extractable Zn concentration in soil and total Zn content in dry matter of Basmati rice at periodic intervals were observed, with significant increases in all the determined parameters, in comparison with those in the control(no Zn application or summer fallow). The rate of increase varied among summer green manure crops and Zn fertilizers during both years. Among the summer green manures, incorporation of S. aculeata led to a significant increase in mean Zn content in Basmati rice grain and straw when compared with C. juncea, V. unguiculata, and summer fallow treatments. Among the Zn fertilizers, significant increases in Zn content in Basmati rice dry matter and DTPA-extractable Zn concentration in soil during various growth stages of the plant were recorded with EDTA-chelated Zn application, followed by the application of ZnSO_4·7H_2O, ZnSO_4·H_2O, ZnSO_4·7H_2O + ZnO, ZnO,and no Zn. The highest mean Zn content in Basmati rice grain and straw was recorded with EDTA-chelated Zn application in 2009 and 2010, respectively. The application of ZnSO_4·7H_2O was the second best treatment after EDTA-chelated Zn; however, it was statistically inferior to EDTA-chelated Zn. The lowest values were recorded with the control(no Zn application) during both years of study. The amount of Zn concentration in soil was found to be significantly positively correlated with the Zn content in Basmati rice dry matter during both years. Significantly higher levels of residual fertility in soil after the harvest of Basmati rice were observed with application of EDTA-chelated Zn and incorporation of S. aculeata when compared with those of other Zn sources and summer green manures.  相似文献   

12.
《Journal of plant nutrition》2013,36(11):1953-1962
Abstract

Zinc (Zn) deficiency is a yield limiting constraint for wheat production in central Iran. A field experiment was conducted for two consecutive years (1999/2000 and 2000/2001) to study Zn use efficiency of five wheat cultivars. Two Zn rates were used, i.e., 0 and 40 kg Zn ha?1 applied as zinc sulfate. Significant variation was found among wheat cultivars in relation to grain yield, straw yield, Zn use efficiency and yield components. Based on grain yield and Zn use efficiency across two years, cultivar Cross was most efficient and Dur-3 was most inefficient for Zn use efficiency. Cultivars Kavir, Falat, and Rushan were intermediate in Zn use efficiency. Zinc concentration and uptake were higher in the zinc efficient cultivar Cross, while these values were lowest in the Zn inefficient cultivar Dur-3.  相似文献   

13.
Commercial grade zinc (Zn) sulfate hepta hydrate (ZnSHH) is the most widely used source of Zn in India and several other countries for amelioration of Zn deficiency in crops. However, it releases water of hydration at temperature above 30°C and forms lumps on storage, which make it difficult to handle it and apply in fields. Therefore, conditioning of ZnSHH with ZnO and neem oil reduces the release of water of hydration and prevents lumps formation and can be well stored. Field experiments were conducted at the research farm of the Indian Agricultural Research Institute, New Delhi, India during rice growing seasons (July-November) of 2009 and 2010 to study the effect of conditioning ZnSHH with ZnO and neem oil on growth, productivity and Zn fortification of rice (Oryza sativa) grain and uptake by Basmati rice ‘Pusa 1121’. The experiment was conducted in a randomized block design with 3 replications comprised of 9 treatments of Zn fertilization. The present study shows that when conditioned with 2% ZnO and 4% neem oil ZnSHH improved yield attributes, grain and straw yields, Zn uptake and partial factor productivity (PFP), agronomic efficiency (AE), recovery efficiency (RE), and physiological efficiency (PE) of Zn in Basmati rice ‘Pusa 1121’. In general, ZnO was inferior to ZnSHH. Application of ZnSHH conditioned with 2% ZnO and 4% neem oil can be a better source of Zn for transplanted puddled Basmati rice on Zn deficient soils.  相似文献   

14.
锌离子活度对水稻锌积累与分配的影响   总被引:3,自引:0,他引:3  
采用HEDTA螯合剂缓冲营养液培养法,选用籽粒含锌量有明显差异的2个基因型水稻(BY和Z921),设置4种锌离子活度(pZn2+9.7、10.3、11.0、11.4),研究了锌离子活度对水稻锌积累、分配的影响以及对不同时期水稻叶片中锌的化学形态的影响。结果显示:(1)2个基因型水稻各器官的锌含量都随着锌离子活度的升高而升高,但不同基因型间,同一基因型不同器官间均存在差异,供锌正常的的条件下,锌首先向代谢活性较弱的营养器官分配;缺锌的条件下,锌首先满足籽粒的需要;(2)从籽粒锌分配看,当锌离子活度(pZn2+)小于10.3时,糙米锌含量最高,当pZn2+升高到9.7时,颖壳锌含量则超过糙米,糙米和精米锌含量的比值在0.79~0.90之间,并以pZn2+为9.7时为最小;(3)任一锌离子活度下,BY籽粒锌含量均大于Z921。表明通过筛选籽粒富锌水稻品种来提高稻米锌含量是经济可行的,且通过增加环境锌离子活度来改善水稻的锌营养能显著提高水稻籽粒的锌含量;(4)营养生长前期,水稻叶片中的锌主要以活性较低的醋酸提取态(重金属磷酸盐)存在;营养生长后期,锌主要以乙醇提取态(醇溶性蛋白、氨基酸等)存在。  相似文献   

15.
为了探讨在覆膜基础上不同剂量秸秆还田的保墒增产效果,在辽宁省朝阳市建平县的坡耕地上布设了田间小区试验;对未施入秸秆以及施入400,800,1200和1600kg/hm2共5种不同剂量处理秸秆还田的旱地农田土壤墒情及玉米产量进行了比较分析。结果表明,800kg/hm2处理的保墒效果优于其它各秸秆还田处理,400,800,1 200和1 600kg/hm2这4种不同剂量秸秆还田处理产量分别为5 069.20,5 781.46,5 462.25和5 407.46kg/hm2,较对照处理分别增产了18.62%,35.28%,27.81%和26.53%;800kg/hm2处理对玉米生长发育状况的影响优于其它剂量秸秆还田与未施入处理,差异均达极显著水平。  相似文献   

16.
Abstract

Loss of soil‐water saturation may impair growth of rainfed lowland rice by restricting nutrient uptake, including the uptake of added phosphorus (P). For acidic soils, reappearance of soluble aluminum (Al) following loss of soil‐water saturation may also restrict P uptake. The aim of this study was to determine whether liming, flooding, and P additions could ameliorate the effects of loss of soil‐water saturation on P uptake and growth of rice. In the first pot experiment, two acid lowland soils from Cambodia [Kandic Plinthaqult (black clay soil) and Plinthustalf (sandy soil)] were treated with P (45 mg P kg?1 soil) either before or after flooding for 4 weeks to investigate the effect of flooding on effectiveness of P fertilizer for rice growth. After 4 weeks, soils were air dried and crushed and then wet to field capacity and upland rice was grown in them for an additional 6 weeks. Addition of P fertilizer before rather than after flooding depressed the growth of the subsequently planted upland rice. During flooding, there was an increase in both acetate‐extractable Fe and the phosphate sorption capacity of soils, and a close relationship between them (r2=0.96–0.98). When P was added before flooding, Olsen and Bray 1‐extractable P, shoot dry matter, and shoot P concentrations were depressed, indicating that flooding decreased availability of fertilizer P. A second pot experiment was conducted with three levels of lime as CaCO3 [to establish pH (CaCl2) in the oxidized soils at 4, 5, and 6] and four levels of P (0, 13, 26, and 52 mg P kg?1 soil) added to the same two acid lowland rice soils under flooded and nonflooded conditions. Under continuously flooded conditions, pH increased to over 5.6 regardless of lime treatment, and there was no response of rice dry matter to liming after 6 weeks' growth, but the addition of P increased rice dry matter substantially in both soils. In nonflooded soils, when P was not applied, shoot dry matter was depressed by up to one‐half of that in plants grown under continuously flooded conditions. Under the nonflooded conditions, rice dry matter and leaf P increased with the addition of P, but less so than in flooded soils. Leaf P concentrations and shoot dry matter responded strongly to the addition of lime. The increase in shoot dry matter of rice with lime and P application in nonflooded soil was associated with a significant decline in soluble Al in the soil and an increase in plant P uptake. The current experiments show that the loss of soil‐water saturation may be associated with the inhibition of P absorption by excess soluble Al. By contrast, flooding decreased exchangeable Al to levels below the threshold for toxicity in rice. In addition, the decreased P availability with loss of soil‐water saturation may have been associated with a greater phosphate sorption capacity of the soils during flooding and after reoxidation due to occlusion of P within ferric oxyhydroxides formed.  相似文献   

17.
研究了直播稻田在不同耕作方式和秸秆还田下土壤有机碳(SOC)和水稻产量的变化。结果表明,秸秆还田能够显著增加SOC含量,耕作方式可显著影响土壤有机碳的垂直分布。SOC含量与水稻籽粒产量存在显著的正相关关系(R2=0.712 9**,n=6),SOC含量与土壤全氮(TSN)之间有显著的正相关性(R2=0.860 9**,n=43)。秸秆还田能够促进土壤有机碳的增加,稳定直播稻田系统的生产力,实现粮食安全和生态环境安全的双赢。  相似文献   

18.
ABSTRACT

Two field experiments (2000–2001 and 2001–2002) were conducted at two nearby fields in the Qanavat region of Qom province, central Iran, to investigate the effects of zinc (Zn) fertilization on production of sunflower. The experiment was conducted in a randomized complete block design with six treatments in three replicates. Treatments were: Zn0 (non-Zn fertilized), Zn10, Zn20, Zn30, and Zn60 (soil application of 10, 20, 30, and 60 kg Zn ha?1, respectively), and ZnSpray (foliar spraying of 0.5 kg Zn ha?1 using ZnSO4). Seeds of sunflower (Helianthus annuus cv. ‘Record’) were planted on June 20, 2000 and June 15, 2001. At harvest, shoot and seed yields as well as concentration of Zn, iron (Fe), manganese (Mn), sodium (Na), and chloride (Cl) in leaves of sunflower were determined. Addition of 20 kg Zn ha?1 significantly increased seed production and shoot dry-matter yield of sunflower, while other Zn treatments had no significant effect on shoot dry-matter yield, or decreased it. The thousand-seed weight was the yield component most affected by Zn fertilization, while plant height and head diameter did not change. The maximum content of seed oil was achieved under the Zn10 treatment, then decreased at higher rates of soil-applied Zn such that oil content of seed under the Zn30 and Zn60, treatments was significantly lower than that of the control. Seed oil content was unaffected by foliar spraying of Zn. The concentration of Zn in sunflower leaves was increased with an increase in soil-added Zn of from 0 to 60 kg Zn ha?1. The highest leaf concentrations of Zn (162 and 175 mg kg?1 day matter (DM) in the first and second year, respectively) were achieved by foliar application of ZnSO4. Leaf concentration of Fe was significantly increased in the Zn20 treatment compared with the control but decreased at the higher rates of soil-added ZnSO4. Soil addition of different levels of ZnSO4 decreased concentration of Na and Cl in leaves. The lowest concentration of Na and Cl in leaves was observed under Zn20. The results of this study suggest that soil application of a suitable amount of Zn has a positive effect on both quantitative and qualitative yield of sunflower in saline, calcareous soils.  相似文献   

19.
Liming reduces acidity neutralizes aluminum (Al3+) and manganese (Mn2+) toxicities and increases calcium (Ca2+) and magnesium (Mg2+) concentrations in many acid soils of the world. However, it reduces the availability of other cationic micronutrients that are essential for plant growth. Therefore, an experiment was conducted in greenhouse conditions for assessing the effects of higher lime rates in foliar and grain boron (B), copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn) concentrations of 15 soybean genotypes [Glycine max (L) Merrill]. The lime rates were calculated to raise base saturation (V) to 40 and 70%. The soybean genotypes were classified as efficient and moderately efficient in lime-use, the most efficient cultivar was BRS 295RR, and the least efficient was TMG 7161RR and BMX Força RR. The lime rates × genotypes interaction was significant for foliar Cu. The grain the interactions were significant for B, Cu, Fe, and Mn concentrations. Foliar and grain B, Cu, Fe, Mn, and Zn concentrations varied significantly among the genotypes. The Ca and Mg concentrations in the leaf, grain, and soil showed a positive correlation with foliar B concentrations and a negative correlation with leaf and grain Cu, Mn, and Zn concentrations.  相似文献   

20.
ABSTRACT

Soil acidity is one of the main limitations for optimal use of land resources for better crop production. And, long-term fertilization experiments found to be helpful in increasing the nutrient supply in these acidic soils. Keeping this in view, a field experiment on rice was carried out by applying biofertilizers and enriched compost in an acidic Inceptisol of Assam over 10 successive years (2006–15) to examine its effects on nutrient availability and soil enzymatic activity. This experiment had five treatments viz. absolute control (T1), 100% recommended doses (RD) of inorganic NPK (T2), 50% RD of inorganic NP + 100% K +biofertilizers (T3), 50% RD of inorganic NP + 100% K +1 tonne enriched compost ha?1 (T4) and 25% RD of inorganic NP + 100% K +2 tonnes enriched compost ha?1 (T5) under randomized block design with four replications. After completing 10 years of experiment, it was observed that integrated use of enriched compost and biofertilizers with reduced doses of inorganic fertilizers enhanced the soil enzymatic activity as well as nutrient availability in rice grown in acidic clay loam soils of Assam. Application of biofertilizers and enriched compost had positive impact on plant accessible nitrogen, phosphorus and potassium in soil as compared to inorganic fertilizers. Also soil organic matter content increased considerably by these treatment. Integrated nutrient management practice in rice had also significantly enhanced the dehydrogenase, fluorescein diacetate and phospho-monoesterase activity in soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号