首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract

Rice–wheat cropping system covers about 24 million hectares in China, India, Pakistan, Nepal, and Bangladesh, and zinc deficiency is widespread in rice–wheat belts of all these five countries. The current practice of applying zinc sulfate heptahydrate (ZnSO4 · 7H2O) to soil is problematic because of the poor quality of the nutrients available in the market to the farmers. Zinc (Zn)–coated urea is therefore being manufactured to guarantee a good‐quality Zn source. This article reports the results from a field study conducted to study the relative efficiency of zinc sulfate and zinc oxide (ZnO)–coated ureas in rice–wheat cropping system. The highest grain yield of rice–wheat cropping system was obtained with 2.0% coating of urea. Zinc sulfate was also a better coating material than ZnO. Partial factor productivity, agronomic efficiency, apparent recovery, and physiological efficiency of applied Zn decreased as the level of Zn coating was increased.  相似文献   

2.
In this study, efficacies of mined gypsum and phosphogypsum (PG), when applied at equivalent doses, were compared for sodic soil reclamation and productivity of rice–wheat system. Application of PG, followed by karnal grass as first crop, resulted in the greatest reduction of soil pH and exchangeable sodium percentage (ESP) followed by PG applied at 10 Mg ha?1 alone. Application of PG at 10 Mg ha?1 resulted in greater yields of both rice and wheat than other treatments. Ditheylenetriaminepentaacetic acid (DTPA)–extractable micronutrients of PG-treated soil were greater than in mined gypsum–treated soil. A greater portion of applied P entered the calcium (Ca)–phosphorus (P) fraction in PG-treated soil, which also resulted in more soluble P than the mined gypsum–treated soil. Phosphogypsum effected greater increase in aggregation, soil organic carbon, microbial biomass carbon, and aggregate associated carbon and decrease in zeta potential, leading to increased hydraulic conductivity and moisture retention capacity in soil over mined gypsum–treated soil.  相似文献   

3.
Long-term effects of integrated application of organics and chemical fertilizers on transformation of copper (Cu) into various chemical pools and their availability under rice (Oryza sativa L.)–wheat (Triticum aestivum L.) cropping system were investigated in the ongoing long-term fertilizer experiment initiated in 1991 kharif season (May–October) at the research farm of Chaudhary Sarwan Kumar Himachal Pradesh Agricultural University on an acidic soil in the Western Himalayas of India. The continuous use of chemical fertilizers alone for 20 years brought about marked depletion in all forms of copper except organically bound Cu (Cu-PYR) compared to buffer plots. Integrated use of organics and chemical fertilizers gave higher content of Cu forms over chemically treated plots except Cu occluded by free oxides (Cu-OX). Residual Cu was the most dominant form of copper contributing about 67% of the total Cu. Soil solution and exchangeable Cu (Cu-CA) was the most important fraction of copper contributing toward DTPA (diethylene triamine pentaacetic acid) extractable Cu. Content of DTPA extractable Cu increased over control when chemical fertilizers were applied in conjunction with different organics, whereas DTPA Cu content declined over control with application of chemical fertilizers alone for the last 20 years.  相似文献   

4.
A field study was conducted in alluvial sandy loam soil to assess the impact of amendments and hydrogel application on soil hydrophysical properties. Soil physical environment was characterized and quantified using soil physical quality index (S). The main treatments include farmyard manure (FYM) and tank soil applied at 5 t ha?1 and no amendment, and subtreatments included three rates of hydrogel: 5, 2.5, and 0 kg ha?1. Hydrogel was applied at 5–7 cm deep just below the seed in rows. Results revealed that FYM along with gel application at 5 kg ha?1 significantly increased mean weight diameter, field capacity moisture content, plant-available water content and relative field capacity, retention pores (Ret P), water-stable structural units, and structural coefficient and reduced transmission pores (TP), penetration resistance, and saturated hydraulic conductivity (Ks). Significantly greater values of S in hydrogel-treated plots and close associations of S with other soil physical parameters were obtained.  相似文献   

5.
The Fengqiu long-term field experiment was established to examine effects of organic manure and mineral fertilizers on soil total nitrogen (N) and natural 15N abundance. Fertilizer regimes include organic manure (OM), one-half N from organic manure plus one-half N from mineral N fertilizer (1/2OMN), mineral fertilizers [N–phosphorus (P)–potassium (K), NP, NK, PK], and a control. Organic manure (OM and 1/2OMN) significantly increased soil total N and δ15N, which was expected as a great amount of the N applied remained in soils. Mineral NPK fertilizer and mineral NP fertilizer significantly increased total N and slightly increaed δ15N. Phosphorus-deficient fertilization (NK) and N-deficient fertilization (PK) had no effect on soil total N. Significantly greater δ15N was observed in the NK treatment as compared to the control, suggesting that considerable N was lost by ammonia (NH3) voltalization and denitrification in this P-deficiency fertilization regime.  相似文献   

6.
A field experiment was conducted for 3 years during 2006–2009 in India to study the effects of plant nutrient recycling through crop residue management, green manuring, and fertility levels on yield attributes, crop productivity, nutrient uptake, and biofertility indicators of soil health in a rice–wheat cropping system. The study revealed that soil microbial biomass carbon (SMBC) and carbon dioxide (CO2) evolution were significantly greatest under crop residue incorporation (CRI) + Sesbania green manuring (SGM) treatment and were found at levels of 364 μg g?1 soil and 1.75 μg g?1 soil h?1, respectively; these were increased significantly by recycling of organic residues. Activities of dehydrogenase and phosphatase enzymes increased significantly after 3 years, with maximum activity under CRI + SGM treatment. The CRI with or without SGM significantly influenced the plant height, number of tillers m?2, number of grains panicle?1 or ear?1, and 1000-grain weight. Mean yield data of rice and wheat revealed that CRI or crop residue burning (CRB) resulted in slightly greater yield over crop residue removal (CRR) treatment. The CRI + SGM treatment again observed significantly greatest grain yields of 7.54 and 5.84 t ha?1 and straw yields of 8.42 and 6.36 t ha?1 in rice and wheat, respectively, over other crop residue management treatments. Total nitrogen (N), phosphorus (P) and potassium (K) uptake in rice–wheat system was greatest with amounts of 206.7, 37.2, and 205.6 kg ha?1, respectively, in CRI + SGM treatment. Fertility levels significantly influenced the rice and wheat yield with greatest grain yields of 6.66 and 5.68 t ha?1 and straw yields of 7.94 and 5.89 t ha?1 in rice and wheat, respectively, with the application of 150% of recommended NPK. Total NPK uptake in rice–wheat system also increased significantly with increase in fertility levels with greatest magnitude by supplying 150% of recommended NPK. Overall, nutrient recycling through incorporation of crop residues and Sesbania green manuring along with inorganics greatly improved the crop productivity, nutrient uptake, and biofertility indicators of soil health with substantial influence on SMBC, CO2 evolution, and dehydrogenase and phosphatase enzyme activities. This indicates that crop residue management along with Sesbania green manuring practice could be a better option for nutrient recycling to sustain the crop productivity and soil health in intensive rice–wheat cropping system in India as well as in similar global agroecological situations, especially in China, Pakistan, and Bangladesh.  相似文献   

7.
Rice husk ash (RHA) and bagasse ash (BA) are available in large quantities in South Asian countries growing rice and sugarcane. Land application of RHA and BA is likely to influence chemistry of soil phosphorus (P) and thereby P adsorption and desorption. Laboratory studies were carried out to investigate the short-term and long-term effects of RHA and BA application on P adsorption and desorption in an alkaline soil under a wheat–rice system. Addition of RHA or BA (10 Mg ha?1) resulted in a significant decrease in P adsorption compared to the control. The decrease in P adsorption was lower when RHA and BA were applied to either rice or wheat as compared with when applied to both the crops. The BA was more effective in reducing P adsorption than RHA because of its greater P concentration. Fresh addition of RHA and BA at 1% (dry-weight basis) showed a small effect on P adsorption as compared to their long-term application. The Frendulich isotherm equation gave better fit with the experimental data than the Langmuir equation and is reliable to describe the P quantity/intensity relationships of this soil as affected by the additions of RHA and BA. The P-adsorption capacities (revealed from the Langmuir isotherms) of the unamended control, RHA, and BA (applied to both wheat and rice) were 256, 313, and 385 mg kg?1, respectively; the corresponding bonding energies for the three treatments are 0.0085, 0.0041, and 0.0026 L kg?1, respectively. Desorption of P was minimum in the control plots and maximum with BA followed by RHA, especially when applied to both the crops.  相似文献   

8.
Abstract

Potassium (K) fixation and release in soil are important issues in long‐term sustainability of a cropping system. Fixation and release behavior of potassium were studied in the surface and subsurface horizons in five benchmark soil series, viz. Dhar, Gurdaspur, Naura, Ladowal, and Nabha, under rice–wheat cropping system in the Indo‐Gangetic plains of India. Potassium fixation was noted by adding six rates of K varying from 0 to 500 mg kg?1 soil in plastic beakers while K release characteristics were studied by repeated extractions with 1 M HNO3 and 1 M NH4OAc extractants. The initial status of K was satisfactory to adequate. Potassium fixation of added K increased with the rate of added K irrespective of soil mineralogy and soil depth. Soils rich in K (Ladowal and Nabha) fixed lower amounts (18–42%) of added K as compared to Gurdaspur, Dhar, and Naura (44.6–86.4%) soils low in K. The unit fertilizer requirement for unit increase in available K was more in low‐K soils. The study highlights the need for more studies on K fixation in relation to the associated minerals in a particular soil. Potassium‐release parameters such as total extractable K, total step K, and CR‐K varied widely in different soil series, indicating wide variation in the K‐supplying capacity of these soils. K released with 1 M NH4OAc extractant was 20–33% of that obtained with 1 M HNO3. Total extractable K using 1 M HNO3 varied from 213 to 528 mg kg?1 and NH4OAc‐extractable K ranged from 71 to 312 mg kg?1 soil in surface and subsurface layers of different soil series. The Ladowal and Nabha series showed higher rates of K release than Gurdaspur, Dhar, and Naura series, indicating their greater K‐supplying capacity.  相似文献   

9.
ABSTRACT

There is a need to improve the way in which crop residues and industrial organic wastes are managed and also to study their potential use in agriculture for improving soil fertility and biological activity. This study evaluated the effects of integrated use of organic (sewage sludge (SS) and rice straw compost (RSC)) and inorganic fertilizers on crop yield, soil enzymes activity, macro- and micro-nutrients availability under rice–wheat cropping system after three consecutive years of cropping in a subtropical semi-arid area. Different combinations of inorganic nitrogen and two doses of organic sources (SS and RSC) were applied to the soil. The results revealed that substitution with 50% N through RSC significantly increased the yield and biochemical properties as compared to inorganic fertilizers (NPK) alone. Micronutrients availability was found increased in treatment having substitution of 50% N through SS @10 t ha?1. All the enzymatic activities viz. dehydrogenase, fluorescein diacetate (FDA), phosphatase, phytase, and urease) were found to be maximum by substitution of 50% N through RSC. Also, a significant positive correlation was found between soil enzymes (dehydrogenase and FDA) and organic carbon as well as crop yield. Thus, the study demonstrated that substitution of 50% inorganic nitrogen through organic sources will be a better alternative for improving soil quality and productivity.  相似文献   

10.
India imports large amounts of rock phosphate (RP) and potassium (K) fertilizers from other countries; hence, research priorities have been directed toward finding alternative sources of phosphorus (P) and K fertilizers. This study focuses on the transformations of P and K in soil amended with RP and waste mica–enriched compost. The enriched compost had greater total P, K, calcium (Ca), magnesium (Mg), micronutrients, and biological properties than ordinary compost. In a wheat–soybean rotation, application of 5 t ha?1 enriched compost along with 50% of the recommended rate of inorganic fertilizer resulted in increased concentrations of saloid P, iron (Fe) P, aluminum (Al) P, Ca-P, occluded P, water-soluble K, exchangeable K, and nonexchangeable K over unfertilized plots. In addition, plots that received enriched compost had greater microbial biomass and phosphatase activities than unfertilized plots. Thus, enriched compost could be an alternative source of water-soluble P and K fertilizers for crop production.  相似文献   

11.
Agricultural productivity is increasingly becoming dependent upon soil fertility, which is generally thought to be supplemented through the application of nutrients mainly through inorganic fertilizers. The present study aims to characterize the soil physical environment in relation to long-term application of farmyard manure (FYM) and inorganic fertilizers in a maize–wheat cropping system. The treatments in both the maize and wheat systems included a control (without any fertilizer or FYM), FYM (farmyard manure at 20 t ha?1), N100 (nitrogen at 100 kg ha?1), N100P50 (nitrogen and phosphorus at 100 and 50 kg ha?1), and N100P50K50 (nitrogen, phosphorus, and potash at 100, 50, and 50 kg ha?1). The treatments were replicated four times in a randomized complete block design in sandy loam soil. The root mass density in surface layers of both the crops was lower in FYM and higher in inorganic fertilizer plots. The root length density was found to be highest in FYM-treated plots and lowest in control plots. The periodic soil matric suction during wheat following maize remained highest in FYM plots followed by that in N100 plots in all the layers. The soil water storage of wheat at harvest (rice–wheat) was highest (21.1 cm) in control and lowest (17.8 cm) in FYM-treated plots. The soil water status, root growth, and crop performance improved with balanced fertilization.  相似文献   

12.
Organic matter is essential to enhance the soil quality and sustainability of an agroecosystem and ecological services. Thus a 2-year (2007–2009) study was carried out at Agriculture Experiment Farm, Giridih, India. Baby corn (Zea mays L.) yielded maximum cobs (0.84 Mg/ha) and green fodder (17.65 Mg/ha) yield when grown with inorganic fertilizers alone (F1, nitrogen, phosphorus pentoxide, potassium oxide (N:P2O5:K2O):: 150:60:60 kg/ha). Rice (Oryza sativa L.) produced most grain (3.10 Mg/ha) and straw (4.16 Mg/ha) yield when the preceding crop received nutrients in equal proportion of organic and inorganic (50:50) sources (F4 and F5). System productivity in terms of baby corn equivalent yield (1.08 Mg/ha) was greatest when nutrients were applied in 30:70 ratio (F2 and F3). Baby corn grown with F1 took up the maximum nitrogen (N), phosphorus (P), and potassium (K). Remarkable improvement was noticed in microbial activity (microbial population, soil respiration, microbial biomass carbon), soil enzymes (urease and acid phosphatase), and soil fertility parameters [NPK, organic carbon, and cation exchange capacity] with F4 and F5 treatments as compared to others. Integrated nutrient-management practices improved soil health. Almost all the parameters were nonsignificantly greater in vermicompost than that of farmyard manure.  相似文献   

13.
Abstract

Influence of long‐term sodic‐water (SW) irrigation with or without gypsum and organic amendments [green manure (GM), farmyard manure (FYM), and rice straw (RS)] on soil properties and nitrogen (N) mineralization kinetics was studied after 12 years of rice–wheat cropping in a sandy loam soil in northwest India. Long‐term SW irrigation increased soil pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) and decreased organic carbon (OC) and total N content. On the other hand, application of gypsum and organic amendments resulted in significant improvement in all these soil properties. Mineralization of soil N ranged from 54 to 111 mg N kg?1 soil in different treatments. Irrigation with SW depressed N mineralization. In SW‐irrigated plots, two flushes of N mineralization were observed; the first during 0 to 7 d and the second after 28 d. Amending SW irrigated plots with GM and FYM enhanced mineralization of soil N. Gypsum application along with SW irrigation reduced cumulative N mineralization at 56 days in RS‐amended plots but increased it under GM‐treated, FYM‐treated, or unamended plots. Nitrogen mineralization potential (No) ranged from 62 to 543 mg N kg?1 soil. In the first‐order zero‐order model (FOZO), the easily decomposable fraction ranged from 5.4 to 42 mg N kg?1 soil. Compared to the first‐order single compartment model, the FOZO model could better explain the variations in N mineralization in different treatments. Variations in No were influenced more by changes in pH, SAR, and ESP induced by long‐term SW irrigations and amendments rather than by soil OC.  相似文献   

14.
Different fractions of potassium (K) and the kinetics of K release as influenced by 21 cycles of rice–rice cropping with different rates of fertilizers and manuring were investigated on an Aeric Haplaquept (kaolinitic Inceptisol) soil profile from Bhubaneswar, India. The neutral 1 N ammonium acetate–extractable K in the surface soil layer (0–15 cm) increased from its initial value of 11.2 mg K kg?1 to 14.8, 14.2, and 17.5 mg K kg?1 soil in different treatments. However, the nonexchangeable K content in the surface soil layer dropped considerably to a level of 4.8–20.0 mg K kg?1 soil. Cumulative nonexchangeable K release after 121 h of extraction with 0.01 M calcium chloride (CaCl2) was <14 mg K kg?1. The first-order kinetic model best described the nonexchangeable K release. The decrease in pH and increase in iron (Fe) content indicated the possibilities of K supply to plants through the dissolution of soil minerals.  相似文献   

15.
Available micronutrient status of zinc, copper, manganese, and iron (Zn, Cu, Mn, and Fe) in surface soil samples under a rice–wheat system collected from farmers' fields in 40 districts representing different agroclimatic zones of the Indo‐Gangetic Plain (IGP) were determined. The selection of farmers, villages, blocks, and districts within an agroclimatic zone was made on the basis of a multistage statistical approach. In Trans‐Gangetic Plains, the diethylenetriaminepentaacetic acid (DTPA)–extractable Zn ranged from 0.11 to 5.08, Cu ranged from 0.22 to 4.72, Mn ranged from 2.9 to 101.2, and Fe ranged from 1.05 to 97.9 mg kg?1. In the Upper Gangetic Plains, the DTPA‐extractable Zn ranged from 0.04 to 2.53, Cu ranged from 0.06 to 4.32, Mn ranged from 11.1 to 421.0, and Fe ranged from 3.48 to 90.2 mg kg?1. In the Middle Gangetic Plains, the DTPA‐extractable Zn ranged from 0.17 to 8.60, Cu ranged from 0.09 to 7.80, Mn ranged from 3.0 to 155.1, and Fe ranged from 9.22 to 256.7 mg kg?1. In the Lower Gangetic Plains, the DTPA‐extractable Zn ranged from 0.04 to 3.46, Cu ranged from 0.21 to 4.38, Mn ranged from 9.54 to 252.2, and Fe ranged from 3.60 to 182.5 mg kg?1. The intensively cultivated Trans‐Gangetic transect representing the midplain and Siwalik had more available micronutrients than the arid plain. Midplain and arid plain showed 17 to 20% of soil samples were low to medium in Zn and 5 and 8% were low in Fe. In the Upper Gangetic Plains, only 25% samples were deficient in Zn, especially in central and southwest plains. In the Middle Gangetic Plains, 20 to 30% of samples were deficient in Zn, and very few samples were deficient in other micronutrients. In the Lower Gangetic Plains, a majority of the samples were medium to high in micronutrients except in Barind and Rarh Plains where 30% of samples were deficient in Zn. In the Lower Gangetic Plains, the available micronutrients were plentiful. Available micronutrients increased with increase in organic C content and decreased with increase in sand content, pH, and calcium carbonate. These soils are alluvial in nature, and there was no definite pattern of micronutrient distribution with depth in the profile. However, there was more accumulation in the Ap horizon than in the B horizon.  相似文献   

16.
The effects of seven amendments on the distribution and accumulation of copper and cadmium in a soil–rice system were investigated using a pot experiment. Results showed that application of limestone, calcium magnesium phosphate (Ca–Mg–P fertilizer), calcium silicate (silicon fertilizer), Chinese milk vetch, pig manure, and peat significantly decreased the concentrations of Cu and Cd in rice roots by 24.8–75.3% and 9.7–49.9%, respectively. However, no significant difference was observed between zinc sulfate (zinc fertilizer) and the control treatment. The concentrations of Cu and Cd in different parts of rice followed the order: root > straw > grain, and all amendments restrained the transfer of Cu and Cd from rice root to stem. Copper and Cd concentrations in rice stems at the tillering stage were the highest, and then decreased from the tillering stage to the heading stage. However, they increased again at the ripening stage. The results also showed that application of amendments changed Cu and Cd solubility in soil and decreased their bioavailability, which resulted in the reduction of Cu and Cd uptake by rice. Significant correlations between the concentrations of Cu and Cd in soil solutions and in rice stems were found. The result demonstrated that limestone has the best efficiency among all the amendments used in reducing Cu and Cd contamination to rice production.  相似文献   

17.
A field experiment was conducted to evaluate the effects of directly, residually, and cumulatively applied mixed sludge generated by the soft-drink industry on rice and wheat yields, soil fertility, grain heavy-metal uptake, depthwise distribution of micronutrients and heavy-metals after 3 years of application. Crop (rice/wheat) yield (grain/straw) increased significantly with direct sludge application at 10.0 t ha?1 year?1, either alone or jointly with fertilizers, over the absolute control. Interestingly, the effects of sludge application on crop (rice/wheat) yield either applied directly at 10.0 t ha?1 year?1, residually at 30.0 t ha?1 year?1, and/or cumulatively at 15.0 t ha?1 were nonsignificant. Direct sludge application at 5.0/10.0 t ha?1 year?1 resulted in significant increase in heavy-metal uptake over the absolute control. The micronutrient/heavy-metal contents in surface soil were significantly greater with sludge application than those in subsurface layers. The results thus show that sludge application results in significant improvement in yield and soil fertility.  相似文献   

18.
A 2-year field experiment was conducted to study the influence of three planting methods (Happy Seeder, Straw Chopper + Zero Tillage, and Conventional tillage) and four nitrogen rates (control, 75, 100, and 125% of recommended nitrogen) on the chemical and biological properties of soil. The results revealed that after soybean harvest, dehydrogenase activity and population of Bradyrhizobium sp. (LSBR 3) and plant growth promoting rhizobacteria (PGPR) were increased significantly in Happy Seeder sowing and Straw Chopper + Zero Tillage sowing than conventional sowing and population of Bradyrhizobium sp. significantly increased up to the 100% nitrogen level. There was no significant effect of different planting methods on soil chemical properties. Organic carbon and available nitrogen were increased significantly with an increase in the nitrogen level up to 100% nitrogen (N).  相似文献   

19.
ABSTRACT

Soil and plant samples were collected from on-going long-term experiment at Indian Agricultural Research Institute, New Delhi farm to study the distribution of various forms of copper (Cu) and their contribution to availability and plant uptake in maize (Zea mays L.)—wheat (Triticum aestivum L.) sequence. The optimum dose-based treatments selected for the study were nitrogen-phosphorus-potassium (NPK), NPK + Farmyard manure (FYM), NPK+ zinc (Zn) and control (no fertilizer or manure). Uptake of Cu by maize and wheat varied from 17.0 to 37.5 and 60.8 to 149.3 g ha?1, respectively, under different treatments. Copper uptake by wheat was significantly higher under 100% NPK + FYM than that with 100% NPK. There was no significant difference among the treatments with respect to diethylenetriaminepentaacetic acid (DTPA)-extractable Cu in 0–15, 15–30, 30–45, and 45–60 cm soil layers. However, with increasing depth of soil, it showed declining trend under all the treatments. Mean value of total Cu was 28, 32, 25, and 21 mg kg?1 in 0–15, 15–30, 30–45, and 45–60 cm depths, respectively. Major part of the total Cu was present as residual form. Sorbed copper (SORB–Cu) contributed directly towards its availability both in pre-sowing maize and post-harvest wheat soil samples. SORB–Cu and organic matter bound Cu (OM–Cu) contributed directly towards the uptake by the component crops. Copper associated with easily reducible manganese, carbonate, and iron and aluminum oxides were most recalcitrant forms present in soil and their effects on availability and crop uptake were adverse.  相似文献   

20.
Potassium is one of the most important nutrients for rice production in many areas of Asia, especially in southeast China where potassium deficiency in soil is a widespread problem. Field experiments were conducted for four consecutive years in Jinhua City, Zhejiang Province, to determine utilization of nutrients (N,P and K) by inbred and hybrid rice and rice grain yields as affected by application of potassium fertilizer under irrigated conditions. Grain yield and nutrient harvest index showed a significant response to the NPK treatment as compared to the NP treatment. This suggested that potassium improved transfer of nitrogen and phosphorus from stems and leaves to panicles in rice plants. N and P use efficiencies of rice were not strongly responsive to potassium, but K use efficiency decreased significantly despite the fact that the amount of total K uptake increased. A significant difference between varieties was also observed with respect to nutrient uptake and use efficiency. Hybrid rice exhibited physiological advantage in N and P uptake and use efficiency over inbred rice. Analysis of annual dynamic change of exchangeable K and non-exchangeable K in the test soil indicated that non-exchangeable K was an important K source for rice. Potassium application caused an annual decrease in the concentration of available K in the soil tested, whereas an increase was observed in non-exchangeable K. It could be concluded that K fertilizer application at the rate of 100 kg ha^-1 per season was not high enough to match K output, and efficient K management for rice must be based on the K input/output balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号