首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
施硅对高锰诱发苹果粗皮病的影响   总被引:2,自引:0,他引:2  
为解决辽宁等地高锰引起苹果生理粗皮病发生的问题,2004年在盆栽脱毒富士幼苗上进行施锰的同时施硅与单施锰的试验,待叶、枝发生粗皮病后再施硅矫正。结果表明,本试验条件下施锰400.mg/kg的同时施硅400mg/kg,可安全有效防治粗皮病的发生;施锰400.mg/kg诱发叶片发病后,施硅400.mg/kg可较好地控制粗皮病的发生。施锰400.mg/kg枝干发病后施硅,对粗皮病的蔓延有一定控制作用,但效果不明显。随着施硅量增加,土壤速效钾含量提高,有效铁、有效锌含量降低,说明粗皮病的发生也与上述养分有关系。  相似文献   

2.
【目的】探究不同苹果品种对低磷、低氮及低磷低氮胁迫的生理响应,为养分高效利用苹果品种的选育提供理论基础。【方法】采用沙培盆栽试验方法,供试材料为三年生‘嘎拉’/M9T337、‘富士’/M9T337和‘蜜脆’/M9T337矮化自根砧苹果(M9T337为矮化砧木)。以改良1/2Hoagland营养液为基础,设置正常、低氮两个氮水平(NO3~–15、1.5 mmol/L)和正常、低磷两个磷水平(H2PO4~–1.0、0.1 mmol/L),共配置适氮适磷、适氮低磷、低氮适磷和低氮低磷4个处理。测定了苹果树体生长、叶片光合作用和叶绿素荧光参数,分析了苹果叶片氮、磷代谢相关酶活性,树体氮、磷累积量。【结果】与适氮适磷相比,适氮低磷和低氮适磷条件下,‘嘎拉’和‘蜜脆’的植株总干物质量均显著降低,‘富士’的植株总干物质量有显著增加;适氮低磷条件下的‘嘎拉’、‘富士’和‘蜜脆’叶绿素b含量均显著降低,Fo呈升高趋势,但‘嘎拉’和‘富士’的Fv/Fm显著升高且Pn...  相似文献   

3.
Manganese (Mn) deficiency has become a serious nutritional problem for wheat grown in alkaline coarse textured soil. The study aimed to investigate post-anthesis Mn partitioning in different wheat species. Cultivars of bread wheat (‘PBW509’, ‘DBW17’, ‘PBW550’ and ‘PBW636’); durum wheat (‘PDW291’) and triticale (‘TL2908’) were grown in 6.5 L pots with two treatments of Mn (0 and 50 mg Mn kg?1 soil) in screen house and harvested at anthesis, 18- days post-anthesis, and maturity to record Mn uptake. Durum cv. ‘PDW291’ retained highest proportion of Mn in its vegetative parts under Mn deficiency resulting into lowest partitioning to the grain and had the lowest grain yield. All bread wheat cv. facilitated superior Mn partitioning to the grain, lesser retention in vegetative organs and higher Mn utilization efficiency, than triticale and durum wheat species. Cultivars producing higher yield on Mn deficit soils are viable alternative to foliar application of Mn.  相似文献   

4.
【目的】 研究不同施氮水平对矮化自根砧红富士苹果幼树氮素吸收、分配和利用的影响,为矮化自根砧苹果园氮素管理提供依据。 【方法】 采用盆栽试验,以2年生矮化自根砧红富士苹果幼树为试材,利用15N同位素示踪技术,研究三个施氮水平下幼树对氮素的吸收、分配及利用特性。试验设三个处理,每千克土施氮 (N) 量为0.1 g (N0.1)、0.2 g (N0.2) 和0.3 g (N0.3),分别在春梢停长期 (6月23日)、秋梢停长期 (8月25日)、养分回流期 (9月20日) 和落叶前期 (10月23日) 取全株样品进行氮的分析测定。 【结果】 至落叶前期,矮化自根砧红富士苹果幼树总干重和根系生物量以N0.1水平最高。不同氮素水平下,植株不同器官从肥料中吸收分配到的15N量对该器官全氮量的贡献率 (Ndff) 差异较大。氮肥施入至春梢停长期,幼树地上部新生营养器官Ndff值最高;秋梢停长期至落叶前期均以根系的Ndff值最高,同时根部吸收的15N也优先向营养器官运转;树体对氮的吸收征调能力随施氮量的增加而减弱。果树春梢停长期,N0.1处理树体新吸收的氮素可更为快速地转运至新生器官;春梢停长期至养分回流期,叶片15N分配率最大;落叶前期,N0.1处理根系15N分配率 (33.8%) 显著高于N0.2 (17.0%) 和N0.3 (22.5%) 处理,叶片中约37.6%的氮素回流到树体内。随着生育期的推移,树体15N利用率显著提高,至养分回流期各处理15N利用率为N0.1(30.0%) > N 0.2 (27.9%) > N 0.3 (21.7%)。春梢停长期至养分回流期,三个施氮水平下树体吸收的15N均占整个生育期氮素吸收的80%或以上。 【结论】 春梢停长期至养分回流期是矮化自根砧红富士苹果幼树氮素营养需求的关键时期,N0.1处理有利于幼树营养生长和氮素的吸收利用及贮藏,建议生产上应适当控制氮肥的投入,根据果树需肥关键时期合理施用氮肥,满足树体不同生长发育阶段对氮素的需求,提高氮肥利用率。   相似文献   

5.
Abstract

The apple cultivars ‘Discovery’, ‘Jonagold’ and ‘Mutsu’ were planted in 1980 at row distances of 3 and 4.5 m. Tree heights of 1.5, 2 and 2.5 m were established at 3 m row distance, and 2.25, 2.75 and 3.25 m at 4.5 m row distance. The tree heights were effective from 1985–86; yield and fruit development were followed during 1982–90. Yield per tree, tree size and fruitfulness were larger at the wider row distance, especially for ‘Mutsu’. Thus, in ‘Mutsu’, yield per hectare at 4.5 m equalled that at 3 m, contrary to ‘Discovery’ and ‘Jonagold’, where yield per hectare was higher at 3 m. Also, dry matter contents and colour development (‘Jonagold’) were improved by 4.5 m row distance in several cases. Reduced tree heights decreased yields and colour development (‘Jonagold’), but with minor reductions at tree heights of 2.0–2.5 m during the first 7–8 years. A tree height of 1.5 m, at 3 m row distance, responded negatively, especially for ‘Discovery’ and ‘Jonagold’.  相似文献   

6.
Abstract

Rhizosphere soils had higher amounts of ‘readily soluble’, ‘weakly adsorbed’, ‘carbonate bound’ and ‘specifically adsorbed’ Mn, but had lower amounts of ‘oxide‐Mn’, than did bulk soils. This observation was true regardless of whether the comparison was based on values within moist or air‐dried treatments. Observed trends in Mn distribution between different soil fractions were qualitatively similar regardless of method of sample preparation. However, there were substantial quantitative differences depending on the method of sample preparation. Air‐dried samples increased significantly in the ‘oxide‐Mn’ fraction and decreased in its soluble and adsorbed fractions relative to moist soil samples. There was a significant effect of method of air‐drying on the distribution of Mn in rhizosphere samples. Samples that were extracted moist at first and then air‐dried accumulated more adsorbed Mn and were depleted in ‘oxide‐Mn’ relative to samples that were air‐dried initially. There was a significant rhizosphere x air‐drying interaction. Air‐drying of some rhizosphere samples resulted in a significant underestimation of the ‘readily soluble’, ‘specifically adsorbed’, and ‘oxide‐Mn’ fractions beyond the overall effect of air‐drying. The results of this study suggested that soil samples used for Mn analyses be extracted immediately in a moist condition rather than air‐dried, particularly for analyses of rhizosphere soil samples.  相似文献   

7.
ABSTRACT

Plant species and genotypes within one species may significantly differ in phosphorus (P) uptake and utilization when they suffer from P starvation. The objective of this research was to screen P-efficient germplasm of oilseed rape (Brassica napus L.) and analyze the possible mechanism responsible for P efficiency by two-steps screening experiments and validation of P efficiency. Phosphorus efficiency coefficient at seedling stage, namely, ratio of shoot dry weight under low P to that under adequate P (PECS) of 194 oilseed rape cultivars varied from 0.050 to 0.62 and was significantly related with shoot dry weight under low P level (r = 0.859??, P < 0.01). Oilseed rape cultivar ‘Eyou Changjia’ presented the highest P efficiency coefficient in each growth stage and had the highest seed yield at low P, whereas oilseed rape cultivar ‘B104-2’ was the most sensitive to low P stress among the 12 candidate cultivars obtained from the two-steps screening experiments. Under low P condition in validation experiments of soil and solution cultures, ‘Eyou Changjia’ could produce much more dry matter and acquire more P than ‘B104-2.’ Moreover, P efficient coefficient obtained from the pot experiment was comparable to those from the field experiment. This might be attributed to high P uptake efficiency for ‘Eyou Changjia’ when it suffered from low-P stress. Comparison of results from the hydroponics with those from the pot and field experiments led to the conclusion that the P uptake efficiency in the hydroponics is highly related to that in soil culture conditions. These results show that there are large genotypic differences in response to phosphorus deficiency in oilseed rape germplasm (Brassica napus L.) and ‘Eyou Changjia’ is P-efficient and ‘B104-2’ is P-inefficient. By comparing these results further, the mechanism responsible for P efficiency was suggested to be mainly due to high P uptake efficiency by forming larger root system, and improving the ability of mobilizing and acquiring soil P in P-efficient oilseed rape under the condition of P starvation.  相似文献   

8.
ABSTRACT

The aim of the study was to examine response of mature phosphorus (P) deficient apple (Malus domestica Borkh.) trees to phosphorus fertilization and liming. The experiment was carried out during 2003–2005 in a commercial orchard in Central Poland on ‘Jonagold’ apple trees/M.26 planted in 1996 on a coarse-textured soil with low both pH (4.6) and organic matter (1.2%). Calcium-lactate soluble phosphorus concentration in the soil was within an optimal range despite appearance of leaf phosphorus deficiency symptoms. Soil and foliar applications of phosphorus, and soil liming were applied. Soil phosphorus fertilization was made in the first year of the experimental at a rate of 100 kg P per ha as triple superphosphate. Foliar sprays of a soluble compound containing organic phosphorus were performed 5 times per season at 2-week intervals, starting 4 weeks after full bloom. Soil liming was applied in the fall 2002 at a rate of 1100 kg Ca ha?1 as hydrated lime. Additional combination as soil phosphorus fertilization plus liming was also applied. Plots unsupplied with phosphorus and lime served as a control. The results showed that liming and liming plus soil P application increased soil pH, and phosphatase activity in the soil, and improved phosphorus nutrition, tree vigor, yield, fruit color, and firmness after storage; effect of these treatments was not found only in the first year of the study. In all years foliar phosphorus sprays improved phosphorus nutrition of apple trees, and fruit color and firmness after storage. In 2 out of 3 years foliar phosphorus application increased yield. The vegetative and reproductive responses of ‘Jonagold’ apple trees did not depend on soil phosphorus fertilization. It was concluded that maintaining an optimal pH of soils for apple trees limits the incidence of orchard phosphorus deficiency and that foliar phosphorus sprays should be applied in phosphorus-deficient apple orchards to improve yield, and fruit appearance and storability.  相似文献   

9.
  【目的】  研究秋施肥时间对富士苹果氮素吸收、分配及树体贮藏营养的影响。  【方法】  以4年生烟富3/M26/山定子苹果为试材,采用15N 同位素示踪尿素进行了施用时间盆栽试验。试验设5个施肥时间处理,分别为采收前45天(9月10日)、30天(9月25日)、15天(10月10日)、当天(10月25日)和采收后15天(11月10日)。每株(每盆)施同位素标记尿素5 g (15N丰度10.1%),普通尿素16.55 g,磷酸二氢钾20 g。12月底在果树完全进入休眠期后对树体进行解剖,测定了各组织15N吸收量、可溶性糖和可溶性蛋白含量。  【结果】  不同施肥时间对植株各器官的Ndff值影响显著。采收前45、30、15天施肥处理各器官的Ndff值均高于采收当天和采收后15天施肥处理。植株整体15N吸收量及肥料利用率均以采收前15天施肥处理最高。而采收前45、30、15天施肥处理的植株地上部各组织的15N吸收量高于采收当天和采收后15天施肥处理。采收前15天施肥处理侧根15N吸收量显著高于采收后15天施肥处理,植株叶片(落叶)中的可溶性糖含量、分配比例最低,分别为4.62 g和7.46%;采收前15天和采收当天施肥的植株主干木质部可溶性蛋白的分配比例显著高于采收前45天和采收后15天施肥处理,前二者分配比例分别为6.22%和6.09%。侧根可溶性蛋白的分配比例在采收前15天、采收当天、采收后15天施肥处理之间没有显著差异,但均显著高于采收前45天施肥处理。  【结论】  从养分吸收及树体贮藏营养综合来看,本地区富士苹果适宜的秋施肥时间为采收前15天左右。  相似文献   

10.
《Journal of plant nutrition》2013,36(8):1397-1411
Abstract

The objective of the experiment was to examine response of immature apple trees to application of mono-ammonium phosphate (MAP) fertilizer on replant problem soil. The study was carried out during 2001–2003 under a greenhouse on ‘Jonagold’ apple trees/M.9 EMLA planted singly in 50 L polyethylene containers filled with a sandy loam soil with low status of both organic matter and phosphorus (P) in soil solution. This soil originated from an apple orchard unfertilized with P for 23 years. The biological test showed the presence of specific replant disease in the soil. Immediately before apple tree planting, the soil was mixed with MAP at rates of 1, 2, and 3 g L? 1. Trees grown in the soil untreated with MAP served as a control. Each year apple trees were drip-irrigated and supplied with nitrogen (N) at differentiated rates to achieve a level of 50 g N per plant. The results showed that MAP application increased soil solution P status. Simultaneously, MAP supply at rates of 2 and 3 g L? 1 caused a drop in soil pH value in the last two years of the experiment. MAP treatments increased both dry weight and length of fine roots (< 2 mm in diameter), vigor of trees, the number of flower clusters per tree, flower intensity, the number of fruits per tree, and P concentrations in leaf and fruit tissues. Fruits from MAP-supplied trees were firmer than those of the control trees. Mean fruit weight, titratable acidity, and soluble solids concentration of ‘Jonagold’ apples at harvest were not influenced by MAP treatment. Fruits from MAP-supplied apple trees had increased calcium concentration only in one year. It is concluded that pre-plant application of MAP at a rate of 1g L? 1can be recommended on coarse-textured soils with low P status in soil solution to increase precocity of apple trees. However, MAP-supplied apple trees have to be watered to avoid the risk of osmotic stress.  相似文献   

11.
In pot experiments, uptake of zinc (Zn), copper (Cu), iron (Fe), and manganese (Mn) by hybrid rice from different soil types was compared with a traditional rice (Oryza sativa L.) cultivar. The concentration and total uptake of Fe in the shoots of hybrid rice grown in Oxisol and Ultisol were lower than those of the traditional cultivar. The concentration and total uptake of Zn in the shoots of hybrid rice grown in the Inceptisol (calcareous) were significantly higher than those of the traditional cultivar. Higher ratios of Zn and Fe in upper leaves (UL) to the lower leaves (LL) were found in hybrid rice grown in the calcareous Zn‐deficiency soil. The results indicated that hybrid rice root avoided absorbing excess Fe from Fe‐toxic soils due to its higher oxidizing power, and was more efficient in absorbing Zn from calcareous Zn‐deficient soils than the traditional cultivar.  相似文献   

12.
Wheat cultivars differ widely in manganese (Mn) efficiency. To investigate the reasons for different Mn efficiencies, a pot experiment with soil, a solution‐culture experiment, and model calculations were carried out. The pot experiment was conducted with wheat (Triticum aestivum L. cvs. PBW 373, PBW 154, PBW 343, PBW 138, and Triticum durum L. cvs. PBW 34 and PDW 233) grown in a screen house in India. The soil was a loamy sand with pH 8.1, DTPA‐extractable Mn 1.62 mg (kg soil)–1, and initial soil solution Mn concentration (CLi) of 0.19 μM. When fertilized with 50 mg Mn (kg soil)–1, CLi increased to 0.32 μM. At CLi 0.19 μM, wheat cv. PBW 373 produced 74% of its maximum shoot dry weight (SDW) with 64% of its maximum root length (RL), while cv. PDW 233 produced only 25% of its maximum SDW with 11% of its maximum RL. The other wheat cultivars were between these extremes. Manganese deficiency caused a reduction in shoot growth, but more strongly reduced root growth. The low Mn efficiency of T. durum cv. PDW 233 was related to a strong depression of its root growth. Manganese influx was similar for all cultivars. In solution culture below 1 μM Mn, under controlled climate‐chamber conditions, Mn influx was linearly related to Mn concentration. Both the efficient cv. PBW 343 and the inefficient cv. PDW 233 had a similar influx. Uptake kinetic parameters from the solution experiment together with soil and plant parameters from the pot experiment were used in a mechanistic nutrient‐uptake model. Calculated values of Mn influx for wheat grown in soil were 55% to 74% of measured values. A sensitivity analysis showed that increasing CLi or the slope of the uptake isotherm by about 30% would be enough to reach the observed influx. The results of this research indicate that an increase of Mn solubility by microbial or chemical mobilization would increase Mn uptake. But on the other hand, no chemical mobilization would be required to increase Mn uptake if the plant improved its uptake kinetics. Low Mn efficiency of some wheat cultivars was related to their reduced root growth at low soil Mn supply.  相似文献   

13.
长武王东沟试区林1991年起,先后引进苹果品种26个,建立了种质资源保存圃。通过多年对引进苹果品种适应性试验研究,提出了发展富士着色系;新红星及其它短枝型列;乔纳金及其短枝型;王林、陆奥、金矮生等,品种,逐渐改变了目前以秦冠为主的单一苹果品种,尤其乔纳金品系,是黄土高原气候凉爽地区更为适合的高档次品种。  相似文献   

14.
Abstract

Sequential extraction of pine bark medium alone and after amendment with either manganese sulfate (MnSO4), composted rice hulls, or soil showed that at pH 5.5–7.0 most of the manganese (Mn) exists in a form that is extracted by acidic hydroxylamine hydrochloride, and which could therefore be in oxide or strongly‐bound forms. Acidification to pH 4.5–5.0 transferred large amounts of this ‘oxide’ Mn into ‘readily available’ and ‘weakly adsorbed’ fractions. Similar extractions of Sitka spruce bark showed that most of its Mn was extracted by weak cationic reagents ('readily available’ and ‘weakly adsorbed’ fractions). Growth of oats in pine bark, peat, and eucalypt sawdust media, with and without MnSO4 amendment, lowered the amounts of Mn in ‘readily soluble’ and ‘weakly adsorbed’ fractions and caused some loss of ‘oxide’ Mn. Comparison of data for Mn extracted by 2 mM DTPA (1:1.5 v/v) with Mn in sequential fractions showed that DTPA dissolves some ‘oxide’ Mn. The data further suggest that up to about 36 mg/L DTPA‐extractable Mn would not be toxic to most plants growing in media of pH 6.0, but 60 mg/L DTPA‐extractable Mn may be if the medium pH falls below 5.5.  相似文献   

15.
Plant genotypes differ in their capacity to grow in soils with low manganese (Mn) availability. The physiological mechanisms underlying differential tolerance to Mn deficiency are poorly understood. To study the relationship between Mn content in soil, plant genotypes, and rhizosphere microorganisms in differential Mn efficiency, two wheat (Triticum aestivum L.) cultivars, RAC891 (tolerant to Mn deficiency) and Yanac (sensitive), were grown in a Mn‐deficient soil to which 5, 10, 20 or 40 mg Mn kg–1 were added. The shoot dry matter of both cultivars increased with increasing Mn addition to the soil. At all soil Mn fertilizer levels, the tolerant RAC891 had a greater shoot dry matter and a higher total shoot Mn uptake than the sensitive Yanac. The concentration of DTPA‐extractable Mn in the rhizosphere soil of RAC891 at Mn20 and Mn40 was slightly lower than in the rhizosphere of Yanac. The population density of culturable microorganisms in the rhizosphere soil was low (log 6.8–6.9 cfu (g soil)–1) in both cultivars and neither Mn oxidation nor reduction were observed in vitro. To assess the non‐culturable fraction of the soil microbial community, the ribosomal intergenetic spacer region of the bacterial DNA in the rhizosphere soil was amplified (RISA) and separated in agarose gels. The RISA banding patterns of the bacterial rhizosphere communities changed markedly with increasing soil Mn level, but there were no differences between the wheat cultivars. The bacterial community structure in the rhizosphere was significantly correlated with the concentration of DPTA‐extractable Mn in the rhizosphere, fertilizer Mn level, shoot dry matter, and total shoot Mn uptake. The results obtained by RISA indicate that differential tolerance to Mn deficiency in wheat may not be related to changes in the composition of the bacterial community in the rhizosphere.  相似文献   

16.
Manganese (Mn) toxicity in plants is often not a clearly identifiable disorder and it can interfere with the absorption, translocation, and utilization of other elements such as Ca, Mg, Fe, and P. Soil conditions, management factors, and the use of different genotypes of rootstock can determine the degree of Mn toxicity and of interaction with other elements in the orchard. Five plants of the cultivar ‘Big Top’® grafted onto itself, onto plum rootstock ‘Mr.S.2/5’ and onto hybrid peach x almond rootstock ‘GF677’ were grown in 25-L containers under three treatments, 0, 20, 30% concentration of total lime, obtained by mixing powdered CaCO3 to a sandy soil. Plants were fertilized with manure and a solid fertilizer early in April and irrigated in summer periodically with water rich in manganese. After just 28 d, active lime caused a decrease of chlorophyll SPAD index especially in plants grafted on itself, while those grafted on the tolerant ‘GF677’ rootstock behaved better than those grafted on ‘Mr.S.2/5.’ From June to September, irrigation caused increases in soil Mn concentration and Mn concentration in control plants. This caused first a serious defoliation in Big Top / Big Top plants and then a re-greening of cultivar grafted onto ‘Mr.S.2/5’ and ‘GF677,’ probably due to the interaction between iron and manganese at high pH. In particular the 20% CaCO3 addition to the soil preserved the plants of cultivar grafted onto ‘Mr.S.2/5’ from Mn toxicity, as shown by their high chlorophyll content and growth and lower Mn leaf concentrations. Plants grafted onto ‘GF677’ rootstock showed the best behaviour under 30% CaCO3 treatment associated to higher Fe(III)-reducing capacity and photosynthetic activity. Rootstocks and soil conditions (lime and waterlogging) influenced mineral status and growth of the peach cultivar ‘Big Top,’ particularly by interacting together and modifying Fe-Mn availability.  相似文献   

17.
  【目的】   苹果种植后土壤很少翻动,根系常受土壤紧实胁迫。研究在土壤中掺混稻壳炭提高苹果根系硫同化代谢以及根系构型的效果,为果园土壤管理提供技术参考。   【方法】   以砧木分别为平邑甜茶和八棱海棠的两年生‘红富士’苹果 (Malusdomestica ‘Red Fuji’) 幼树为试材进行盆栽试验。对掺入和没掺入稻壳炭的土壤分别进行镇压 (土壤紧实度值分别为1558和1572 KPa) 和不镇压 (土壤紧实度值分别为923和939 KPa),共4个处理。苹果幼树移栽成活后60天,测定土壤孔隙度、氧气浓度和水溶性硫含量,分析苹果根系硫酸根和硫化氢 (H2S) 含量及ATP硫酸化酶 (ATPS)、O-乙酰丝氨酸裂解酶 (OASTL) 和L-半胱氨酸脱巯基酶(L-CD)、D-半胱氨酸脱巯基酶 (D-CD) 活性,以及根系活力和形态构型等。   【结果】   镇压处理显著降低了土壤中水溶性硫含量,降低了八棱海棠和平邑甜茶为砧木的苹果幼树根系硫酸根含量,降低了根系ATPS、OASTL和L-CD、D-CD活性以及内源H2S含量,并显著降低根系活力、根长密度、根系长度、根系体积和根系分形维数,在平邑甜茶为砧木的幼树根系中的降低幅度大于八棱海棠砧木。无论是否镇压土壤,掺入稻壳炭均提高了土壤孔隙度、土壤氧气浓度以及不同形态硫含量,提高了苹果根系硫酸根和内源H2S含量,根系ATPS、OASTL和L-CD、D-CD活性,根系活力,根系长度,根长密度和根系分形维数,且在紧实土壤中八棱海棠砧木的提升幅度大于在平邑甜茶砧木中,两种砧木的苹果幼树在紧实土壤中的提升幅度均大于在正常土壤中。   【结论】   土壤紧实显著降低土壤水溶性硫含量,抑制苹果根系硫代谢和根系生长,在土壤中掺入稻壳炭可以显著提高紧实土壤中苹果根系硫代谢、根系生长和根系分枝。因此,在苹果移栽时,在土壤中掺入一定比例的稻壳炭可以有效缓解土壤紧实对苹果根系生长和硫代谢的不利影响。  相似文献   

18.
Analysis and research on the nutrition of some Australian native plants as well as diagnostic analysis of failed native plant gardens reinforces the view that manganese (Mn) availability is a major factor in the edaphology and cultivation of Australian native species. Yellow Kandosol soils on sandstone show a unique endemic floral assemblage. These soils show low total soil Mn levels of only 20–30 mg/kg. Despite this, endemic species such as Eucalyptus haemastoma and Acacia suaveolens show greater foliar Mn levels (around 291 and 389 mg/kg, respectively) than iron (Fe) levels, with Fe/Mn ratios as low as 0.14 and 0.27. During pot trial work on artificial soils created from crushed sandstone and green waste compost that were designed to research phosphorus (P) and calcium (Ca) nutrition, some interesting data on Mn uptake were collected. Levels of foliar Mn as high as 1250 and 389 mg/kg, respectively, accumulated in E. haemastoma and A. suaveolens when soils were artificially acidified to pH 4.7 (CaCl2) using ferrous sulfate. These Mn levels were associated with visible toxicity symptoms in foliage of E. haemastoma but not in A. suaveolens. Foliar Mn in both species showed a strong inverse correlation (R2 > 0.93) with soil pH. Previous research has shown that eucalypts from this floral assemblage are prone to Mn toxicity when grown in conditions of high soil Mn availability. Diagnostic analysis of soils and foliage for a client with horticultural problems in a native plant landscape showed severe chlorosis in a wide range of native species due to Mn deficiency induced by neutral soil pH (around 7.0 in CaCl2). Such soil pHs are considerably greater than those of the plant’s natural distribution. Despite apparently elevated soil P and the appearance of what looked like P toxicity, foliar P levels were not sufficiently elevated to conclude acute P toxicity but rather simple and severe Mn deficiency. The work suggests that induced Mn deficiency and toxicity may be underdiagnosed problems in the cultivation of many Australian native plants.  相似文献   

19.
生物质炭改善果园土壤理化性状并促进苹果植株氮素吸收   总被引:2,自引:1,他引:2  
【目的】 探究生物质炭对苹果植株生长、土壤理化特性和氮素利用的影响,为生产上苹果园合理应用生物质炭提供依据。 【方法】 以两年生红富士/平邑甜茶为试材,以400℃亚高温热解木材产生的生物质炭为供试肥料,采用15N同位素示踪技术进行了盆栽试验。设底施生物质炭0、15、30、45和60 g/kg,分别以CK、T1、T2、T3和T4表示。调查了苹果植株生长发育、土壤理化性质、根际微生物数量及氮素的吸收、利用和损失。 【结果】 添加生物质炭的所有处理植株株高、茎粗和总干重均显著高于CK;T2、T3和T4处理的根系活力均显著高于T1和CK处理,但三个处理间差异不显著;随着生物质炭用量的增加,土壤容重逐渐降低,T3和T4处理的土壤容重分别为1.22和1.20 g/cm3,两者间差异不显著,但均显著高于CK、T1和T2处理;T3和T4处理的土壤有机质、碱解氮、有效磷、速效钾和根际土细菌、放线菌、真菌数量均显著高于其他处理,两者间差异不显著;与CK相比,添加生物质炭显著增加了植株对肥料15N的吸收,T4和T3处理植株15N利用率分别为15.18%和15.63%,均显著高于其他处理;土壤15N残留率以T4处理最高,为38.16%,T3次之,T1最低,为30.02%;氮素损失以T1处理最高,为58.54%,T4处理最低,为45.66%,且T4与T3处理间差异不显著。通过对植株生物量和氮素利用效率与生物质炭施用量进行拟合分析,两者出现最大值时的生物质炭施用量分别为64 g/kg和55 g/kg。 【结论】 施用生物质炭降低了土壤容重,提高了土壤碱解氮、有效磷和速效钾含量及根际土壤细菌、放线菌和真菌数量,促进了苹果植株根系和地上部的生长及对肥料氮的吸收,增加了土壤对氮的固定,减少了氮的损失,提高了氮肥利用率,本试验条件下适宜的生物质炭施用量为55~64 g/kg土。   相似文献   

20.
Seedlings of two bush bean cultivars (Phaseolus vulqaris L. cvs. Mn‐sensitive ‘Wonder Crop 2’ and Mn‐tolerant ‘Green Lord') were grown for 14 days in full strength Hoagland No. 2 nutrient solution containing 0.05 ‐ 2 mg L‐1 of vanadium (V) as ammonium vanadate.

Increasing V concentration in the solution decreased total dry weight of both cultivars. Plant tops were stunted and leaf color became dark green at 1 ‐ 2 mg L‐1 V, especially in ‘Green Lord’. Veinal necrosis similar to that of Mn toxicity was observed in the primary leaves of ‘Wonder Crop 2’ at 0.2 mg L‐1 V or above, but not in those of ‘Green Lord’.

The V concentrations in the roots increased exponentially with increasing V concentration in the solution; however, V concentrations in the leaves and stems were not affected. The Mn concentrations in the primary leaves increased under the higher V treatment in ‘Wonder Crop 2'; but not in ‘Green Lord’. In contrast, Fe concentration in the leaves of ‘Wonder Crop 2’ decreased markedly with increasing V concentration in the solution. Enhanced Mn uptake and greater reduction of Fe uptake by ‘Wonder Crop 2’ may explain the incidence of V‐induced Mn toxicity.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号