首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In low fertility tropical soils, boron (B) deficiency impairs fruit production. However, little information is available on the efficiency of nutrient application and use by trees. Therefore, this work verified the effects of soil and foliar applications of boron in a commercial citrus orchard. An experiment was conducted with fertigated 4-year-old ‘Valencia’ sweet orange trees on ‘Swingle’ citrumelo rootstock. Boron (isotopically-enriched 10B) was supplied to trees once or twice in the growing season, either dripped in the soil or sprayed on the leaves. Trees were sampled at different periods and separated into different parts for total B contents and 10B/11B isotope ratios analyses. Soil B applied via fertigation was more efficient than foliar application for the organs grown after the B fertilization. Recovery of labeled B by fruits was 21% for fertigation and 7% for foliar application. Residual effects of nutrient application in the grove were observed in the year after labeled fertilizer application, which greater proportions derived from the soil supply.  相似文献   

2.
The production system for certified citrus nursery trees in São Paulo State, Brazil, stipulates the use of screenhouses, rigorous selection of rootstocks, and the production of budwood under high standards in order to prevent diseases such as sudden death, Citrus Var, and foot rot (Phytophthora spp.). The establishment of adequate nutritional levels for citrus nursery trees also leads to higher production efficiency in this system. This work was divided into two trials. The first evaluated the influence of certain concentrations and formulas of slow-release fertilizer on the growth of ‘Pera’ sweet orange (Citrus sinensis L. Osbeck) budded on ‘Rangpur’ lime (Citrus limonia Osbeck) on two substrates. The development of ‘Rangpur’ lime liners was not influenced by composition of the substrate, nor by the concentrations or formulas of slow-release fertilizers. Substrate composition and formulas, or concentrations of fertilizers also did not affect budded tree growth, except that the greatest root fresh and dry matter were found in plants cultivated with lower concentrations. The second trial evaluated the influence of different soluble and slow-release fertilizers on growth of ‘Valencia’ sweet orange (Citrus sinensis L. Osbeck) nursery trees budded on ‘Rangpur’ lime. Scion length, stem diameter, scion fresh and dry matter, and leaf area were not affected by fertilizer sources. Fertigation induced the greatest development of roots (fresh and dry matter) when limestone was added.  相似文献   

3.
The knowledge of nutrient mobility is an important tool to define the best fertilizer management and diagnosis techniques. Patterns of boron (B) mobility in plants have been reviewed, but there is very little information on B distribution and mobility in cotton. An experiment was conducted to study plant growth and B distribution in cotton when the nutrient was applied in the nutrient solution or to the leaves, and when a temporary deficiency was imposed. Cotton (Gossypium hirsutum, Latifolia, cv. IAC 22) was grown in nutrient solutions where B was omitted or not for 15 days. Boron was applied to young or mature cotton leaves in some of the minus B treatments. Root growth decreased when the plants were transferred to B solutions, but there was a full recovery when B was replaced in the nutrient medium. Boron deficiency, even when temporary, reduced cotton shoot dry matter yields, plant height and flower and fruit set, and these could not be prevented by foliar application of B. Because of decreased dry matter production, leaves of deficient cotton plants actually showed higher B concentrations than non deficient leaves. This would be misleading when a mature leaf is sampled for diagnosis. If there is any B mobility in cotton phloem, it is very low.  相似文献   

4.
Abstract

A study was made of the comparative nutrient content of healthy and declining sweet orange trees. Leaves were analysed for 12 elements using Kjeldahl and Spectrographic methods. No statistical differences were observed between healthy and declining trees in their content of N, P, Mg, Na, Mn, Fe, B, Cu, Mo, and Zn. Significant differences were obtained for K and Ca; healthy Blood Red trees were found to be lower in K but higher in Ca than declining trees. Phosphorus content was observed to be borderline to low in both healthy and declining trees. Magnesium was low to deficient. Boron content was high to excessive in most orchards regardless of tree condition.  相似文献   

5.
Field observations indicate that boron (B)‐toxicity symptoms may occur in citrus plants from inappropriate foliar spraying or overfertilizing with B especially under low‐rainfall conditions, where B can accumulate to levels that become toxic to plant growth. Previous work has indicated that different rootstocks can greatly influence the scion's tolerance to B toxicity, however, little is known about the response of different citrus scion–rootstock combinations to excess‐B conditions. In the present study, we investigated the effects of excess B on plant growth, gas exchange, B concentration, and distribution of four scion–rootstock combinations, Newhall and Skagg's Bonanza navel orange (Citrus sinensis Osb.) scions grafted on Carrizo citrange (C. sinensis L. Osb. × Poncirus trifoliata L. Raf.) and Trifoliate orange (Poncirus trifoliata L. Raf.) rootstocks. One‐year‐old plants of the four scion–rootstock combinations were grown for 183 d in sand–perlite (1 : 1, v/v) medium under greenhouse conditions. The plants were irrigated with half‐strength Hoagland's nutrient solution containing two B concentrations, 0.25 (control) and 2.50 (excess B) mg L–1. It was found that, apart from the combination of Newhall grafted on Carrizo citrange, the dry weights in various parts of the other three combinations were reduced by the excess‐B treatment. Furthermore, the plants of Skagg's Bonanza grafted on Carrizo citrange showed the highest growth reduction amongst the four scion–rootstock combinations. In most cases, the greater reductions in dry weight were found in roots as compared to the other plant parts under excess‐B conditions, indicating that roots were more sensitive to B toxicity than the other tissues. In the case of Newhall plants grafted on Carrizo citrange, the entire plant growth was increased by excess‐B treatment. Boron concentrations in all plants parts increased significantly by increasing the B supply in the nutrient solution. Leaves were the dominant sites of B accumulation and showed the greatest increase in B concentration compared to the other plant parts, as B concentration in the nutrient solution increased. Our results indicate that the combination of Newhall grafted on Carrizo citrange was more tolerant to B toxicity, while the combination of Skagg's Bonanza grafted on Carrizo citrange was relatively more sensitive to B toxicity, in comparison with the other scion–rootstock combinations. However, Newhall plants contained more B in leaves and in roots than Skagg's Bonanza plants when they were both grafted on Carrizo citrange, indicating that the mechanism underlying such great differential growth responses of the two scion–rootstock combinations to B toxicity may not be associated with B exclusion from roots or reduced translocation of B to shoots. Furthermore, B distribution in different plant parts implied that the mechanism was also unlikely related to altered distributions of accumulated B in plant tissues. However, inherent ability to tolerate excessive B concentration in plant tissues may be involved in B tolerance.  相似文献   

6.
《Applied soil ecology》2005,28(2):113-124
Three-year-old citrus trees were grown in the greenhouse to study the effects of fertilizer concentration and root herbivory on plant growth and mineral concentration. In separate experiments, sour orange (Citrus aurantium L.) and Swingle citrumelo (C. paradisi Macf. × Poncirus trifoliate L.) plants were treated with a complete fertilizer diluted to provide 25, 100, 200, or 400 ppm N and grown for 7 weeks with or without Diaprepes abbreviatus L. larvae. Increased fertilizer concentration increased the shoot mass and the shoot:root ratio of both sour orange and Swingle citrumelo. Root herbivory also increased the shoot:root ratio by depressing root growth more than shoot growth. Effects of root herbivory on growth were consistent across the four levels of fertilizer concentration, indicating that tolerance is not a function of nutrient status. For both rootstocks, concentrations of nitrogen in roots and leaves increased with fertilizer concentration, and C:N ratios decreased. In sour orange, root herbivory most strongly affected the concentration of carbon in roots, whereas in Swingle citrumelo, root herbivory most strongly affected leaf nitrogen. In general, herbivory reduced mineral concentrations of roots but the strength, and sometimes the direction, of herbivore effects varied significantly among fertilizer treatments. This research indicates that application of excess, balanced fertilizer is unlikely to offset growth reductions due to root herbivory by D. abbreviatus, and suggests that supplementation of specific nutrients may be of value.  相似文献   

7.
To determine the effect of boron (B) deficiency on biomass, reproductive yield, metabolism, and alterations in seed reserves of chickpea (Cicer arietinum L.) cv. ‘13.G‐256,’ plants were grown in refined sand until maturity at deficient (0.033 mg L?1) and adequate (0.33 mg L?1) B, supplied as boric acid (H3BO3). Boron‐deficient plants exhibited visible deficiency symptoms in addition to reduced number of pods and seeds, resulting in lowered biomass and economic yield. Boron deficiency lowered the concentration of B in leaves and seeds, photosynthetic pigments (leaves), Hill reaction activity, starch (in leaves and seeds), and proteins and protein N (in seeds), whereas phenols, sugars (in leaves and seeds), and nonprotein N (in seeds) were elevated. Specific activity of peroxidase (POX) increased in leaves and pod wall and decreased in seeds, while activity of acid phosphate and ribonuclease were stimulated in leaves, seeds, and pod wall in B‐deficient chickpea.  相似文献   

8.
The interaction effect of applied zinc (Zn) and boron (B) on early vegetative growth and uptake of Zn and B by two oilseed rape (canola) (Brassica napus L.) genotypes was investigated in a sand culture experiment under controlled environmental conditions. Two genotypes (Yickadee and Dunkeld) were grown at three Zn levels (0.05, 0.25, and 2.0 mg kg‐1 soil) and two B levels (0.05 mg kg‐1 soil and 0.5 mg kg‐1 soil). Dunkeld produced significantly higher shoot and root dry matter than Yickadee at low Zn and low B supply indicating the superiority of Dunkeld over Yickadee for tolerance to both low Zn and low B supply. Chlorophyll content of fresh leaf tissue was increased significantly by an increase in Zn and B supply. Zinc deficiency enhanced B concentration in younger and older leaves. Boron concentration was higher in older leaves than in the younger leaves irrespective of B deficiency and sufficiency indicating immobility of B in two oilseed rape genotypes tested. Zinc concentration was higher in younger leaves than in the older leaves indicating mobility of Zn. An increased supply of Zn enhanced B uptake under high boron supply only. Zinc uptake in Dunkeld was enhanced significantly with an increased rate of B supply under high Zn supply, while the effect was not significant in Yickadee. Dunkeld proved to be more efficient in Zn and B uptake than Yickadee.  相似文献   

9.
The experiment was conducted to evaluate the nutrient utilization ability of sweet orange (Citrus sinensis L. Osbeck) budded on five rootstocks (viz., Sathgudi, Rangpur lime, Cleopatra mandarin, Troyer citrange, and Trifoliate orange) in Alfisols at the experimental farm of the Citrus Improvement Project, S. V. Agricultural College Farm, Tirupati, Andhra Pradesh, India. Results of the study revealed that all the five rootstocks showed differential behaviors in terms of nutrient absorption from the soil. Rootstocks exhibited significant variation in the leaf content of potassium (K), copper (Cu), manganese (Mn), and boron (B) at all the three stages of sampling. Concentrations of the following key nutrient elements significantly varied: phosphorus (P), calcium (Ca), magnesium (Mg), zinc (Zn), and Cu at stage 1; K, Ca, Mg, Zn, iron (Fe), and Mn at stage 2; and nitrogen (N), P, Zn, Fe, and B at stage 3. The performances of rootstocks in terms of relative nutrient accumulation indices (RNAIs) were in the order of Sathgudi (1.00) > Rangpur lime (0.98) > Cleopatra mandarin (0.96) > Trifoliate orange (0.76) > Troyer citrange (0.69). The present study clearly demonstrated that citrus rootstocks employed had differential nutritional behavior and different abilities to utilize plant nutrient elements. Thus, the findings of the present study and the methodology adopted can help the horticultural breeders and nutritionists choose the best rootstock/scion combination having the desirable traits of nutrient utilization ability and also to plan effective fertilizer schedule programs for achieving greater yields.  相似文献   

10.
Soybean [Glycine max (L.) Merr. cv Essex] was grown in sand in a greenhouse under 2 levels of biologically effective ultraviolet‐B radiation (effective daily dose: 0 and 11.5 kJ/m2 UV‐BBE and 2 levels of P (6.5 and 52 μM). Plants were grown in each treatment combination up to the fifth trifoliolate stage. UV‐B radiation had no affect on plant growth and net photosynthesis at 6.5 μM P supply but decreased both these parameters when grown in the higher P concentration. Reductions in net photosynthesis were apparently due to direct effects on the photosynthetic machinery, since chlorophyll concentration and stanatal conductance were unaffected by UV‐B radiation. Both UV‐B radiation and reduced P supply increased the level of UV‐B absorbing compounds in leaf tissues and their effects were additive. The reduced sensitivity of P deficient plants to UV‐B radiation may be the result of this increase in UV absorbing compounds and possibly uv protective mechanisms associated with growth inhibition.  相似文献   

11.
Fluoride (F) is an air pollutant that causes phytotoxicity. Besides the importance of this, losses of agricultural crops in the vicinity of F polluting industries in Brazil have been recently reported. Injuries caused to plant leaf cell structures by excess F are not well characterized. However, this may contribute to understanding the ways in which plant physiological and biochemical processes are altered. A study evaluated the effects of the atmospheric F on leaf characteristics and growth of young trees of sweet orange and coffee exposed to low (0.04 mol L?1) or high (0.16 mol L?1) doses of HF nebulized in closed chamber for 28 days plus a control treatment not exposed. Gladiolus and ryegrass were used as bioindicators in the experiment to monitor F exposure levels. Fluoride concentration and dry mass of leaves were evaluated. Leaf anatomy was observed under light and electron microscopy. High F concentrations (~180 mg kg?1) were found in leaves of plants exposed at the highest dose of HF. Visual symptoms of F toxicity in leaves of citrus and coffee were observed. Analyses of plant tissue provided evidence that F caused degeneration of cell wall and cytoplasm and disorganization of bundle sheath, which were more evident in Gladiolus and coffee. Minor changes were observed for sweet orange and ryegrass. Increase on individual stomatal area was also marked for the Gladiolus and coffee, and which were characterized by occurrence of opened ostioles. The increased F absorption by leaves and changes at the structural and ultrastructural level of leaf tissues correlated with reduced plant growth.  相似文献   

12.
Plants frequently accumulate or reserve some organic nitrogenous substances of small molecules, when supplied with inorganic nitrogenous compounds in excess. It is well known that rice plants in the field accumulate asparagine when supplied with ammonium salts in excess. This phenomenon is effectively utilized as a criteria for adequate supply of nitrogen fertilizers in the field (1). Accumulation of asparagine has also been generally recognized among seedlings of various plant species grown with excess ammonium, nitrate or urea (2). With rye grass, glutamine was reported to be accumulated in leaves and sometimes excreted when ammonium sulfate was supplied in excess (3). Arginine is a major free amino acid accumulating in nitrogen fertilized apple trees (4), phosphate-deficient mulberries (5), and potassium deficient rice plants (6). Allantoin is known to be a reserve form of nitrogen in some families of higher plants, notably the Aceraceae, Leguminosae and Boraginaceae (7,8). Thus the form of reserve nitrogen compound differs with different plant species.  相似文献   

13.
ABSTRACT

The effect of boron (B) on cotton growth and fruit shedding may be due not only to physiological or biochemical effects, but also to vascular tissue malformation. This experiment investigated petiole and floral peduncle anatomical alterations and growth of cotton supplied with deficient and sufficient B in nutrient solution. Cotton (Gossypium hirsutum cv. ‘Delta Opal’) plants were grown in solutions containing 0, 1.5, 3.0, 4.5, and 6.0 μmol L?1 of B from 22 to 36 d after plant emergence (DAPE). From 36 to 51 DAPE, B was omitted from the nutrient solution. Petioles from young leaves and floral bud peduncles (first position of the first sympodial) were sampled and the cross-section anatomy observed under an optical microscope. The number of vascular bundles of the petiole was decreased in B-deficient plants and the xylem was disorganized. Phloem elements in the peduncle vascular cylinder of B-deficient plants did not show clear differentiation. The few xylem elements that were formed were also disorganized. Modifications caused by B deficiency may have impaired B and photosynthate translocation into new cotton growth. Boron accumulation in the shoot of B-deficient plants suggested that there was some B translocation within the plant. It could be inferred that cotton growth would be impaired by the decrease in carbohydrate translocation rather than by B deficiency in the tissue alone.  相似文献   

14.
The growth of ‘Ridge Pineapple’ sweet orange [Citrus sinensis (L.) Osbeck] seedlings and their susceptibility to Phytophthora root rot were studied under contrasting supplies of phosphate (Pi) or Phosphite (Phi). After 10 weeks of repeated applications of nutrient solutions, Phi concentrations were barely detectable in soil. Soil Pi was higher in Phi treatments than in pots that received Pi alone. Seedling growth was greatest when supplied with Pi or Phi separately, but when Pi and Phi were combined, growth was reduced to levels comparable to plants that received no P. Phi was found in both stems and leaves after it was applied to soil supporting the mobility of Phi within the plant. In addition, a small amount of Phi was found in roots after applications of Phi in foliar sprays. Different sources of soil-applied P did not affect the amount of Pi in roots, while the amounts of Pi in leaves were higher in plants that received Phi and Pi combined. Root resistance to Phytophthora root rot of citrus seedlings treated with Phi alone or in combination with Pi was greater than in plants treated with Pi alone, confirming the antifungal effect of Phi.  相似文献   

15.
To evaluate the distribution and source of nitrogen (N) in non-bearing orange trees (Citrus sinensis L. Osbeck cv. ‘Lane Late’ grafted on ‘Carrizo’ citrange), an orchard was established in a Gleyic Podzol (South Portugal). Trees were labelled with 15N-enriched ammonium nitrate. A set of trees was used for monthly leaf sampling while a second set was destructively harvested in November of each year and separated into different plant organs. Five trees also received unlabelled N after one year of labeling to evaluate the re-distribution of N within the plant. Nitrogen concentration in new leaves tended to decrease following the growth flushes of March, June, and August. The N derived from fertilizer (%Ndff) was small in April suggesting the importance of internal N reserves for new development in spring. Fertilizer use efficiency was 6, 20, and 30% in the 1st, 2nd, and 3rd years, respectively. More than half of the 15N absorbed by plants each year was allocated to young organs, but the %Ndff was practically the same for all plant organs in the three years. Of the total N content of trees in November 2001, about 35% derived from fertilizer applied that year, 16% from fertilizer applied the previous year, and the remaining 49% came from other N sources.  相似文献   

16.
Abstract

Greenhouse experiments were carried out to study the influence of gyttja, a sedimentary peat, on the shoot dry weight and shoot concentrations of zinc (Zn) and boron (B) in one bread wheat (Triticum aestivum L., cv. Bezostaja) and one durum wheat (Triticum durum L., cv. Kiziltan) cultivar. Plants were grown in a Zn‐deficient (DTPA‐Zn: 0.09 mg kg?1 soil) and B‐toxic soil (CaCl2/mannitol‐extractable B: 10.5 mg kg?1 soil) with (+Zn = 5 mg Zn kg?1 soil) and without (?Zn = 0) Zn supply for 55 days. Gyttja containing 545 g kg?1 organic matter was applied to the soil at the rates of 0, 1, 2.5, 5, and 10% (w/w). When Zn and gyttja were not added, plants showed leaf symptoms of Zn deficiency and B toxicity, and had a reduced growth. With increased rates of gyttja application, shoot growth of both cultivars was significantly enhanced under Zn deficiency, but not at sufficient supply of Zn. The adverse effects of Zn deficiency and B toxicity on shoot dry matter production became very minimal at the highest rate of gyttja application. Increases in gyttja application significantly enhanced shoot concentrations of Zn in plants grown without addition of inorganic Zn. In Zn‐sufficient plants, the gyttja application up to 5% (w/w) did not affect Zn concentration in shoots, but at the highest rate of gyttja application there was a clear decrease in shoot Zn concentration. Irrespective of Zn supply, the gyttja application strongly decreased shoot concentration of B in plants, particularly in durum wheat. For example, in Zn‐deficient Kiziltan shoot concentration of B was reduced from 385 mg kg?1 to 214 mg kg?1 with an increased gyttja application. The results obtained indicate that gyttja is a useful organic material improving Zn nutrition of plants in Zn‐deficient soils and alleviating adverse effects of B toxicity on plant growth. The beneficial effects of gyttja on plant growth in the Zn‐deficient and B‐toxic soil were discussed in terms of increases in plant available concentration of Zn in soil and reduction of B uptake due to formation of tightly bound complexes of B with gyttja.  相似文献   

17.
The interactive effect of applied zinc (Zn) and soil moisture on early vegetative growth of three alfalfa (lucerne) (Medicago sativa L.) varieties was investigated in a sand‐culture pot experiment to test whether there is link between Zn nutrition and soil moisture stress or excessive moisture tolerance in alfalfa plants. Three varieties (Sceptre, Pioneer L 69, and Hunterfield) with differential Zn efficiency (ability of a variety to grow and yield well in a Zn deficient soil is called a Zn‐efficient variety) were grown at two Zn levels (low Zn supply: 0.05 mg Zn kg‐1 of soil, adequate Zn supply: 2.0 mg Zn kg‐1 of soil) and three levels of soil moisture (soil moisture stress: 3% soil moisture on soil dry weight basis; adequate soil moisture: 12% soil moisture on soil dry weight basis; excessive soil moisture: 18% soil moisture on soil dry weight basis) in a Zn deficient (DTPA Zn: 0.06 mg kg‐1 soil) siliceous sand. Zinc treatments were applied at planting, while soil moisture treatments were applied three weeks after planting and continued for two weeks. Plants were grown in pots under controlled temperature conditions (20°C, 12 h day length; 15°C, 12 h night cycle) in a glasshouse. Plants grown at low Zn supply developed Zn deficiency symptoms, and there was a severe solute leakage from the leaves of Zn‐deficient plants. Adequate Zn supply significantly enhanced the leaf area, leaf to stem ratio, biomass production of shoots, and roots, succulence of plants and Zn concentration in leaves. At low Zn supply, soil moisture stress and excessive moisture treatments significantly depressed the shoot dry matter, leaf area and leaf to stem ratio of alfalfa plants, while there was little impact of soil moisture treatments when supplied Zn concentration was high. The detrimental effects of soil moisture stress and excessive soil moisture under low Zn supply were less pronounced in Sceptre, a Zn‐efficient alfalfa variety compared with Hunterfield, a Zn‐inefficient variety. Results suggest that the ability of alfalfa plants to cope with water stress and excessive soil moisture during early vegetative stage was enhanced with adequate Zn nutrition.  相似文献   

18.
Catharanthus roseus L., a medicinally important plant was grown till maturity at varying levels of boron (0.033, 0.066, 0.33 and 3.3 mg B L?1) supply. Optimum yield was observed in plants receiving 0.33 mg B L?1. Plants receiving deficient boron showed growth reduction and visual symptoms such as chlorosis and cupping of young emerging leaves and apical tip necrosis. The number and size of the flowers, pods and seeds formed and the pollen viability of the boron deficient plants was markedly reduced. The threshold values for deficiency and toxicity were 57 and 79 μg B g?1 dry weight for vegetative growth and 60.4 and 68.9 μg B g?1 dry weight for reproductive growth, respectively, and is reported for the first time in periwinkle. An increase was observed in reducing and non-reducing sugars and in activity of acid phosphatase and ribonuclease in boron stressed plants.  相似文献   

19.
The aim of the study was to examine effects of postharvest sprays of nitrogen (N), boron (B), and zinc (Zn) on reproductive response of sweet cherry (Prunus avium L.) trees, fruit quality and plant nutrition. The experiment was conducted during 2007–2009 in central Poland on mature ‘Burlat’ sweet cherry trees/F12, grown on a coarse-textured soil with low level of organic matter, and optimal soil reaction. Soil status of phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), iron (Fe), manganese (Mn), Zn and copper (Cu) was optimal, whereas B – low. Sweet cherry trees were sprayed with boric acid-B, ethylenediaminetetraacetic acid (EDTA)-Zn, and urea-N at 30–40 d prior to initiation of leaf fall according to following schema: i) spray of N at a rate of 23 kg ha?1; ii) spray of B and Zn at a dose of 1.1 kg ha?1 and 0.5 kg ha?1, respectively; and iii) spray of N, B and Zn at the same rates as in the above spray combinations. The trees sprayed with water served as the control. The results showed that fall spray treatments had no influence on cold damage of flower buds, plant N status and soluble solids concentration in fruit. Postharvest spray of N and combined spray of N, B and Zn injured leaves in the fall but did not cause defoliation. Sprays of B and Zn with or without N increased status of Zn and B in fall leaves, and B in flowers and midsummer leaves. Those sprays also improved fruit set and yield. In one out of two years of the study, fall sprays of N with or without B and Zn decreased mean fruit weight. The above results indicate that only leaf-applied B in the fall improved reproductive response of sweet cherry trees. It is concluded that under conditions of B shortage in a soil and/or plant tissues, postharvest B sprays can be recommended in sweet cherry orchards to improve reproductive growth of the trees.  相似文献   

20.
A greenhouse experiment was conducted to examine the favorable effects of sod culture system with bahiagrass (Paspalum notatum Flügge.) and Vulpia myuros (L.) C. C. Gmel. intercropped with citrus trees on the establishment of the network of arbuscular mycorrhizal (AM) fungus hyphae in their rhizospheres. Special acrylic root boxes with three compartments were used for the experiment. Four types of citrus rootstock seedlings, trifoliate orange (Poncirus trifoliata Raf.), sour orange (Citrus aurantium L.), rough lemon (Citrus jambhiri Lush.), and Citrus natsudaidai Hayata, were separately transplanted into one outer compartment in each box, and the seedlings of bahiagrass and V.myuros were separately transplanted into the other outer compartment. An AM fungus, Gigaspora margarita Becker and Hall, was inoculated in the center compartment of each box. Some boxes with both outer compartments without plants and with some plants in only one outer compartment were also prepared. The box with bare × bare had very low density of AM hyphae. There were a few hyphae in bare compartments in the boxes of trifoliate orange × bare, sour orange × bare, rough lemon × bare, and C. natsudaidai × bare. The density of hyphae in the compartments with citrus seedlings and grasses, however, was significantly higher than in every bare compartment, and the hyphae in the compartments with plants penetrated deeply into the sand. In particular, the density in the compartments of citrus seedlings increased when bahiagrass or V. myuros was transplanted as a neighboring plant. The percentage of AM fungus colonization in every plant root was high. New spore formation was observed in compartments with plants, whereas there were few spores in every bare compartment. In particular, the spore formation in bahiagrass compartments was superior to that in other compartments with plants. Our results suggest that the network system by AM hyphae is easily discernible in the rhizospheres between citrus rootstocks and bahiagrass or V. myuros, but bare ground severely inhibits the formation and development of AM hyphal network and reduces the number of AM spores in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号